Electronic Supplementary Information

Titanosiloxanes Consisting of Tetrahedrally Coordinated Ti Cores and Branched Siloxane Cages

Shohei Saito,^{a‡} Kenta Kawamura,^{a‡} Naoto Sato,^a Takamichi Matsuno,^{a,b} Hiroaki Wada,^a Kazuyuki Kuroda,^{a,b} Atsushi Shimojima^{a,b}*

^a Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan), Fax: (+81)-3-5286-3281, E-mail: shimojima@waseda.jp

^b Kagami Memorial Research Institute for Materials Science and Technology, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051 (Japan)

[‡] *These authors equally contributed to this work.*

Table of Contents

Experimental details
1. Materials3
2. Synthesis
2.1 Synthesis of ^{<i>i</i>} Bu ₇ (HO)Si ₈ O ₁₂
2.2 Synthesis of $({}^{i}Bu_{7}Si_{8}O_{13})_{4}Ti$
2.3 Synthesis of $(^{i}Bu_{7}Si_{8}O_{13})_{3}TiCp$
2.4 Characterization5
Data
Fig. S1 ²⁹ Si NMR signal assignments of (^{<i>i</i>} Bu ₇ Si ₈ O ₁₃) ₄ Ti7
Fig. S2 Crystal structure of (^{<i>i</i>} Bu ₇ Si ₈ O ₁₃) ₄ Ti viewed along the <i>b</i> axis8
Fig. S3 Crystal structure of (^{<i>i</i>} Bu ₇ Si ₈ O ₁₃) ₄ Ti viewed along the <i>c</i> axis8
Fig. S4 UV–Vis spectrum of (^{<i>i</i>} Bu ₇ Si ₈ O ₁₃) ₄ Ti9
Fig. S5 ²⁹ Si NMR spectrum of (^{<i>i</i>} Bu ₇ Si ₈ O ₁₃) ₄ Ti after leaving to stand in the air9
Fig. S6 ²⁹ Si NMR spectrum of (^{<i>i</i>} Bu ₇ Si ₈ O ₁₃) ₃ TiCp10
Fig. S7 MALDI-TOF MS spectrum of (^{<i>i</i>} Bu ₇ Si ₈ O ₁₃) ₃ TiCp10
Table S1 Crystal data of (^{<i>i</i>} Bu ₇ Si ₈ O ₁₃) ₄ Ti11
Table S2 Ti–O lengths of (^{<i>i</i>} Bu ₇ Si ₈ O ₁₃) ₄ Ti11
Table S3 Ti–O–Ti angles of (ⁱ Bu ₇ Si ₈ O ₁₃) ₄ Ti12
Table S4 Ti–O–Si angles of $({}^{i}Bu_{7}Si_{8}O_{13})_{4}Ti$ 12
References

Experimental details

1. Materials

Acetonitrile (super anhydrous, FUJIFILM Wako Pure Chemical Co., 99.8%), trichloro(cyclopentadienyl)titanium(IV) (CpTiCl₃, Tokyo Chemical Industry Co., Ltd., >98.0%), trichlorosilane (Tokyo Chemical Industry Co., Ltd., >98.0%), *N*,*N*-diethylhydroxylamine (Et₂NOH, Sigma-Aldrich Co., LLC., \geq 98%), toluene (super anhydrous, FUJIFILM Wako Pure Chemical Co., 99.5%), 1,3,5,7,9,11,14-heptaisobutyltricyclo[7.3.3.1^{5,11}]heptasiloxane-endo-3,7,14-triol ('Bu₇(HO)₃Si₇O₉, Sigma-Aldrich Co., LLC., 97%), tetrahydrofuran (THF, FUJIFILM Wako Pure Chemical Co., 99.5%), hexane (super anhydrous, FUJIFILM Wako Pure Chemical Co., 99.0%) were used as received. DOWEX (TM) 50Wx8 50-100 Mesh (H) cation exchange resin (FUJIFILM Wako Pure Chemical Co.) was dried under vacuum before use. Triethylamine (Et₃N, FUJIFILM Wako Pure Chemical Co., 99.0%) was dehydrated before use. The dehydration was performed using Molecular Sieves 3A 1/8 (pore size: 3Å, pellet diameter: 1/8 inch, FUJIFILM Wako Pure Chemical Co.), followed by distillation.

2. Synthesis

2.1 Synthesis of ^{*i*}Bu₇(HO)Si₈O₁₂

^{*i*}Bu₇(HO)Si₈O₁₂ was synthesized by reacting mono-hydride POSS (^{*i*}Bu₇HSi₈O₁₂) with H₂O in the presence of Et₂NOH as a catalyst. ^{*i*}Bu₇HSi₈O₁₂ was obtained by reacting incompletely condensed POSS (^{*i*}Bu₇(HO)₃Si₇O₉) with trichlorosilane (HSiCl₃) according to a previous procedure.^[1] To a mixture of ^{*i*}Bu₇HSi₈O₁₂ and H₂O in THF, a 1vol% solution of Et₂NOH in THF was added. The molar ratio of ^{*i*}Bu₇HSi₈O₁₂ : H₂O : Et₂NOH was 1 : 40 : 0.03. The mixture was stirred at room temperature for 1 d, and then a strong-acid cation-exchange resin was added, and the mixture was stirred for further 3 h to remove Et₂NOH. The resin was removed by filtration and the solvent was removed from the filtrate under reduced pressure to give ^{*i*}Bu₇(HO)Si₈O₁₂ as a white solid (yield: 98%).

¹Bu₇(HO)Si₈O₁₂. ¹H NMR (500.16 MHz; CDCl₃; 25 °C; TMS) $\delta = 0.56-0.66$ ppm (14H, SiCH₂CH(CH₃)₂), 0.92–1.02 ppm (42H, SiCH₂CH(CH₃)₂), 1.80–1.92 ppm (7H, SiCH₂CH(CH₃)₂); ¹³C NMR (126.77 MHz; CDCl₃; 25 °C; TMS) $\delta = 22.34$, 22.44, 22.50, and 22.56 ppm (SiCH₂CH(CH₃)₂)), 23.83 and 23.88 ppm (SiCH₂CH(CH₃)₂), 25.70 ppm (SiCH₂CH(CH₃)₂); ²⁹Si NMR (99.37 MHz; CDCl₃; 25 °C; TMS) $\delta = -66.74$ ppm (3Si, (SiO)₃*Si*CH₂CH(CH₃)₂), -67.80 ppm (4Si, (SiO)₃*Si*CH₂CH(CH₃)₂), -101.04 ppm (1Si, (SiO)₃*Si*(OH)).

2.2 Synthesis of (ⁱBu₇Si₈O₁₃)₄Ti

(${}^{7}Bu_{7}Si_{8}O_{13}$)₄Ti was synthesized by the reaction of ${}^{7}Bu_{7}(HO)Si_{8}O_{12}$ with TiCl₄ in a hexane solution containing Et₃N to trap HCl as triethylamine hydrochloride (Et₃N·HCl). (${}^{7}Bu_{7}(HO)Si_{8}O_{12}$ and Et₃N were dissolved in hexane (40 mL per 1 g of ${}^{7}Bu_{7}(HO)Si_{8}O_{12}$). A 5 vol% solution of TiCl₄ in hexane was slowly added to a hexane solution of ${}^{7}Bu_{7}(HO)Si_{8}O_{12}$ and Et₃N. The molar ratio of ${}^{7}Bu_{7}(HO)Si_{8}O_{12}$: TiCl₄ : Et₃N was 4 : 1 : 4.8. After stirring the mixture at 0 °C for 6 h, Et₃N·HCl was removed by filtration. Note that the filtration was performed under N₂ atmosphere because (${}^{7}Bu_{7}Si_{8}O_{13}$)₄Ti is sensitive to H₂O. By removing hexane under reduced pressure, a powder containing (${}^{7}Bu_{7}Si_{8}O_{13}$)₄Ti was obtained. The powder was purified by recrystallization. After dissolution of the powder in the binary acetonitrile-toluene solvent (0.3 mL of acetonitrile and 0.5 mL of toluene per 0.1 g of the powder) at 70 °C, the mixture was cooled at room temperature for 1 d. Then, (${}^{7}Bu_{7}Si_{8}O_{13}$)₄Ti was obtained as colorless needle crystals (yield: 33%).

(ⁱBu₇Si₈O₁₃)₄Ti. ¹H NMR (500.16 MHz; CDCl₃; 25 °C; TMS) $\delta = 0.56-0.65$ ppm (14H, SiCH₂CH(CH₃)₂), 0.91–1.03 ppm (42H, SiCH₂CH(CH₃)₂), 1.79–1.93 ppm (7H, SiCH₂CH(CH₃)₂); ¹³C NMR (126.77 MHz; CDCl₃; 25 °C; TMS) $\delta = 22.31$ and 22.58 ppm (SiCH₂CH(CH₃)₂)), 23.77, 23.85, and 23.90 ppm (SiCH₂CH(CH₃)₂)), 25.75 and 25.85 ppm (SiCH₂CH(CH₃)₂); ²⁹Si NMR (99.37 MHz; CDCl₃; 25 °C; TMS) $\delta = -66.97$ ppm (12Si, (SiO)₃*Si*CH₂CH(CH₃)₂), -67.89 ppm (4Si, (SiO)₃*Si*CH₂CH(CH₃)₂), -68.01 ppm (12Si, (SiO)₃*Si*CH₂CH(CH₃)₂), -115.15 ppm (4Si, (SiO)₃*Si*OTi); MALDI-TOF MS calcd for C₁₁₂H₂₅₂O₅₂Si₃₂TiNa⁺ [M + Na]⁺: 3400.8; found: 3401.9.

2.3 Synthesis of (ⁱBu₇Si₈O₁₃)₃TiCp

 $({}^{i}Bu_{7}Si_{8}O_{13})_{3}$ TiCp was synthesized by the reaction of ${}^{i}Bu_{7}(HO)Si_{8}O_{12}$ with CpTiCl₃ in a hexane solution containing Et₃N. After ${}^{i}Bu_{7}(HO)Si_{8}O_{12}$ and Et₃N were dissolved in hexane (50 mL per 1 g of ${}^{i}Bu_{7}(HO)Si_{8}O_{12}$), a 0.7 wt% solution of CpTiCl₃ in toluene was added. The molar ratio of ${}^{i}Bu_{7}(HO)Si_{8}O_{12}$: CpTiCl₃ : Et₃N was 3 : 1 : 3.2. After stirring the mixture at room temperature for 1 d, Et₃N·HCl was removed by filtration. Note that the filtration was performed under a N₂ atmosphere because (${}^{i}Bu_{7}Si_{8}O_{13}$)₃TiCp is sensitive to H₂O. By removing hexane and toluene under reduced pressure, a yellow powder containing (${}^{i}Bu_{7}Si_{8}O_{13}$)₃TiCp was obtained. After GPC separation, (${}^{i}Bu_{7}Si_{8}O_{13}$)₃TiCp was obtained (yield: 35%).

(ⁱBu₇Si₈O₁₃)₃TiCp. ¹H NMR (500.16 MHz; CDCl₃; 25 °C; TMS) $\delta = 0.54-0.68$ ppm (SiCH₂CH(CH₃)₂), 0.91–1.03 ppm (SiCH₂CH(CH₃)₂), 1.78–1.96 ppm (SiCH₂CH(CH₃)₂), 6.53 ppm (C₅H₅); ¹³C NMR (126.77 MHz; CDCl₃; 25 °C; TMS) $\delta = 22.31$, 22.42, and

22.55 ppm (SiCH₂CH(CH₃)₂), 23.81 and 23.86 ppm (SiCH₂CH(CH₃)₂)), 25.69, 25.72, 25.73, and 25.83 ppm (SiCH₂CH(CH₃)₂), 116.26 ppm (C_5H_5); ²⁹Si NMR (99.37 MHz; CDCl₃; 25 °C; TMS) δ = -67.06 ppm ((SiO)₃SiCH₂CH(CH₃)₂), -67.78 ppm ((SiO)₃SiCH₂CH(CH₃)₂), -67.85 ppm ((SiO)₃SiCH₂CH(CH₃)₂), -111.54 ppm ((SiO)₃SiOTiC₅H₅); MALDI-TOF MS calcd for C₈₉H₁₉₄O₃₉Si₂₄TiNa⁺ [M + Na]⁺: 2633.4; found: 2634.5.

Note that suitable intensity ratio of $({}^{i}Bu_{7}Si_{8}O_{13})_{3}TiCp$ could not be obtained in the ¹H and ²⁹Si NMR spectra because the signals of impurity $({}^{i}Bu_{7}(HO)Si_{8}O_{12})$ overlapped to the signals of $({}^{i}Bu_{7}Si_{8}O_{13})_{3}TiCp$.

2.4 Characterization

Solution-state ¹H, ¹³C, and ²⁹Si NMR spectra were recorded on a JNM-ECZ 500 (JEOL) spectrometer with resonance frequencies of 500.16 MHz, 126.77 MHz, and 99.37 MHz, respectively, at ambient temperature. Sample solutions were put in 5 mm glass tubes. The chemical shifts were referenced to internal tetramethylsilane (TMS) at 0 ppm. Chloroform-d (CDCl₃) was used to obtain lock signals. In the case of (ⁱBu₇Si₈O₁₃)₄Ti, CDCl₃ was dehydrated before use to avoid hydrolysis of the Si-O-Ti bonds. The dehydration was performed using Molecular Sieves 3A 1/8. The ²⁹Si NMR measurement was performed with a 45° pulse and a recycle delay of 30 s for quantitative analyses. Matrix-assisted laser desorption/ionization mass (MALDI-TOF MS) spectra were recorded on a Bruker Autoflex instrument using dithranol as a matrix and sodium trifluoroacetate as a cationization agent. Single crystal X-ray structural analysis was performed on a XtaLAB PRO MM007 (Rigaku) diffractometer using a graphite monochromated Mo-K α ($\lambda = 0.71073$ Å) radiation. The structure was solved by direct methods using Olex². All calculations were performed using the Crystal Structure crystallographic software package. Refinement was performed using CrysAis^{Pro} Version 1.171.39.33c. Crystal structure models were created using VESTA software. Powder XRD measurements were performed on a RINT Ultima III diffractometer with a parallel beam geometry equipped with a scintillation detector and a parabolic multilayer mirror using Cu-Ka radiation. Diffuse reflectance (DR) ultraviolet-visible (UV-Vis) spectra were recorded on a JASCO V-650 spectrophotometer with polytetrafluoroethylene polymer (Spectralon: 6916-H422A) as a reference. Gel permeation chromatography (GPC) was carried out by a LC-9100 Recycling Preparative HPLC system (Japan Analytical Industry Co., Ltd.) equipped with a refractive index (RI) detector. Two types of cross-linked polystyrene-divinylbenzene copolymer packed columns (YMC-GPC

T2000 and YMC-GPC T4000; exclusion limits of 2000 and 4000, respectively, and theoretical plate of > 20000) were used with chloroform as the eluent at a flow rate of 7.0 mL min⁻¹. Optical microscope images were taken on an OLYMPUS BX51 apparatus. The visualizing of molecular models was performed in CrystalMaker and VESTA (version 3).^[2]

Fig. S1 ²⁹Si NMR signal assignments of (${}^{i}Bu_{7}Si_{8}O_{13}$)₄Ti. Note that the assignments of the two signals at -66.97 and -68.01 ppm were speculated with reference to the ²⁹Si NMR chemical shifts of Ti–POSS complexes.^[3]

Fig. S2. Crystal structure of $({}^{i}Bu_{7}Si_{8}O_{13})_{4}Ti$ viewed along the *b* axis. Hydrogen and carbon atoms are omitted for clarity. Atom colors: Blue, Ti; Yellow, Si; Red, O. This structural model was visualized by VESTA (version 3).

Fig. S3. Crystal structure of $({}^{i}Bu_{7}Si_{8}O_{13})_{4}Ti$ viewed along the *c* axis. Hydrogen and carbon atoms are omitted for clarity. Atom colors: Blue, Ti; Yellow, Si; Red, O. This structural model was visualized by VESTA (version 3).

Fig. S4. UV–Vis spectrum of (ⁱBu₇Si₈O₁₃)₄Ti.

Fig. S5. ²⁹Si NMR spectrum of $({}^{i}Bu_{7}Si_{8}O_{13})_{4}Ti$ after leaving to stand in the air (room temperature, 40% relative humidity) for 1 d.

Fig. S6. ^{29}Si NMR spectrum of ($^{i}Bu_{7}Si_{8}O_{13})_{3}TiCp$.

Fig. S7 MALDI-TOF MS spectrum of (ⁱBu₇Si₈O₁₃)₃TiCp.

	$(^{i}\mathrm{Bu}_{7}\mathrm{Si}_{8}\mathrm{O}_{13})_{4}\mathrm{Ti}$
Formula	$C_{112}H_{252}O_{52}Si_{32}Ti$
$M/g \cdot mol$	3377.78
Temperature /K	93
Crystal system	monoclinic
Space group	$P2_{l}/c$
<i>a</i> /Å	20.4538(7)
b /Å	21.7114(6)
c /Å	42.2709(12)
lpha /°	90
eta /°	90.158(3)
γ /°	90
$V/\text{\AA}^3$	18771.6(10)
Ζ	4
D_{calc} /g cm ⁻³	1.195
<i>F</i> (000)	5328
GoF	1.325
Total number of reflections	133642
Unique number of reflections	33639
<i>R1</i>	0.1399
wR2	0.4126

Table S1 Crystal data of $({}^{i}Bu_{7}Si_{8}O_{13})_{4}Ti$

Table S2 Ti–O lengths of (ⁱ Bu ₇ Si ₈ O ₁₃) ₄ Ti		
	length (Å)	
Ti ₁ –O ₁	1.765(8)	
$Ti_1 - O_{14}$	1.735(9)	
Ti ₁ O ₂₇	1.754(7)	
$Ti_1 - O_{40}$	1.766(9)	

_	angles (°)
O_1 -Ti ₁ - O_{14}	109.4(3)
O_1 -Ti ₁ - O_{40}	110.9(3)
O_1 -Ti ₁ - O_{27}	107.3(3)
O ₁₄ -Ti ₁ -O ₂₇	110.0(3)
O ₁₄ -Ti ₁ -O ₄₀	109.7(3)
O_{27} - Ti_1 - O_{40}	109.5(3)

Table S3 Ti-O-Ti angles of (ⁱBu₇Si₈O₁₃)₄Ti

Table S4 Ti–O–Si angles of (ⁱBu₇Si₈O₁₃)₄Ti

	angles (°)
$Ti_1-O_1-Si_1$	176.7(4)
$Ti_1-O_{14}-Si_9$	162.7(4)
$Ti_1-O_{27}-Si_{17}$	172.7(4)
$Ti_1-O_{40}-Si_{25}$	177.9(4)

References

[1] C.-H. Lu, C.-H. Tsai, F.-C. Chang, K.-U. Jeong and S.-W. Kuo, *J. Colloid Interface Sci.*, 2011, **358**, 93.

[2] K. Momma and F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272.

[3] T. Hikino, Y. Kawakubo, T. Matsuno, S. Yamazoe, K. Kuroda and A. Shimojima,

Chem. Mater., 2024, DOI: 10.1021/acs.chemmater.4c01454.