Electronic Supplementary Material (ESI) for Dalton Transactions.

This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Accelerating the reaction kinetics of Ni_{1-x}O/Ni(OH)₂/NF by defect

engineering for urea-assisted water splitting

Yuan Rui,^a Zong Li,^a Miaohui Wang,^a Yunxia Liu,^{*,b} Haiping Lin,^a Peipei Huang^{*,a} and Qing Li^{*,a}

^aSchool of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, P. R. China

^bSchool of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072,

P. R. China.

*Corresponding author: yxliu@nwpu.edu.cn; huangpeipei@snnu.edu.cn; liqing@snnu.edu.cn;

Fig. S1 (a) The XRD pattern of $Ni(OH)_2/NF$. (b) The Raman spectrum of NiO/NF.

Fig. S2 The SEM image of Ni(OH)₂/NF.

Fig. S3 SEM images at different magnifications of treated nickel foam (a, b).

Fig. S4 (a) XPS survey spectra of NiO/NF, NiO/Ni(OH)₂/NF and Ni_{1-x}O/Ni(OH)₂/NF. (b) Highresolution Zn 2p XPS spectra of Ni_{1-x}O/Ni(OH)₂/NF and Ni(OH)₂/NF.

Fig. S5 (a) A representative digital photograph of the working electrode with a specifically designed shape. The schematic diagram illustrates the application of the working electrode in UOR performance measurement without (electrode-1) and with (electrode-2) the special shape. (b) LSV curves acquired with electrode-1 and electrode-2 loading with Ni_{1-x}O/Ni(OH)₂/NF.

Fig. S6 UOR polarization curves of $Ni_{1-x}O/Ni(OH)_2/NF$ in 1 M KOH with 0.33 M urea at scanning rates of 10 mV s⁻¹, 5 mV s⁻¹ and 2 mV s⁻¹, respectively.

Fig. S7 LSV curves of NF with different acid etching time durations.

Fig. S8 LSV curves of $Ni_{1-x}O/Ni(OH)_2/NF$ with different acid etching times and $NiO/Ni(OH)_2/NF$.

Fig. S9 (a) XRD patterns of NiO/NF-900 and Ni_{1-x}O/Ni(OH)₂/NF. (b) The high-resolution Zn 2p XPS spectrum of NiO/NF-900. (c) LSV curves of NiO/NF-900 and Ni_{1-x}O/Ni(OH)₂/NF.

Fig. S10 CV curves for (a) $Ni_{1-x}O/Ni(OH)_2/NF$, (b) $Ni(OH)_2/NF$, and (c) $NiO/Ni(OH)_2/NF$ at different scan rates in the non-faradaic potential region. (d) Linear relationships between the capacitive current and the scan rate of catalysts.

Fig. S11 XRD patterns of the Post-Ni_{1-x}O/Ni(OH)₂/NF and Ni_{1-x}O/Ni(OH)₂/NF. (b) The digital photograph during the chronopotentiometry test of Ni_{1-x}O/Ni(OH)₂/NF, in which the saturated Ca(OH)₂ solution became turbid, signifying the production of CO_2 .¹

Fig. S12 CV curves of $Ni_{1-x}O/Ni(OH)_2/NF$, $Ni(OH)_2/NF$, $NiO/Ni(OH)_2/NF$, NiO/ZnO/NF and NiO/NF in 1 M KOH with 10 mV s⁻¹.

 Ni^{2+} sites are firstly electrochemically oxidized to high-valent Ni^{3+} species in the forward scanning, and Ni^{3+} species then chemically oxidize urea molecules with themselves being reduced back to Ni^{2+} . As shown in Fig. S12, the CV curve of $Ni_{1-x}O/Ni(OH)_2/NF$ exhibits the largest oxidation peak, suggesting most Ni^{3+} sites are generated in $Ni_{1-x}O/Ni(OH)_2/NF$ and conducive to a great UOR performance.

Fig. S13 (a) XPS survey spectra and (b) high-resolution XPS spectra of Zn 2p for Ni₁₋ $_{x}O/Ni(OH)_{2}/NF$ and Post-Ni_{1-x}O/Ni(OH)₂/NF.

Fig. S14 Two-electrode polarization curves for water splitting and urea splitting of commercial RuO_2 (+) || 20% Pt/C (-).

Table S1. Element Zn, Ni and O contents of $Ni_{1-x}O/Ni(OH)_2/NF$ with different acid etching times.

Catalysts	Element	Atomic%*	
4 h	Ni	28.36	
	Zn	4.94	
	0	66.70	
8 h	Ni	28.32	
-	Zn	3.51	
	0	68.17	
12 h	Ni	25.44	
	Zn	2.88	
	0	71.68	
24 h	Ni	26.92	
	Zn	1.55	
-	0	71.53	
Post-Ni _{1-x} O/Ni(OH) ₂ /NF	Ni	21.90	
	Zn	2.72	
_	0	75.38	

*These values were estimated by XPS.

Table S2. Comparison of UOR performances of $Ni_{1-x}O/Ni(OH)_2/NF$ with recent reported electrocatalysts.

Catalysts	Potential (vs.	Tafel slope	Reference
	RHE)	(mV dec ⁻¹)	
Ni _{1-x} O/Ni(OH) ₂ /NF	1.317@10 1.346@100	18.7	This work
Ir/NiPS ₃	1.36@10	21.1	Nat. Communt. 2024 ,15,2851.
Ni(OH) ₂ /g-C ₃ C ₄	1.361@10	/	Small 2024 , 2401053.
LaNiO₃−NiO	1.34@10	39.87	ACS Materials Lett. 2024 , 6, 1029-1041.
Pt–Ni(OH)₂@Ni-CNFs-2	1.363@10	13.4	Energy Environ. Sci., 2024 . 17,1984-1996.
pt-NFS	1.37@10	49.87	Small Methods 2024 , 2301434.
V-Co ₂ P ₄ O ₁₂ /CC	1.33@10	50	Adv. Funct. Mater. 2024 , 2313974.
CF@CoOS-2	1.36@10	155	Small 2024 , 2310112.
a-RuO ₂ /NiO	1.334@10	34.8	ACS Nano 2024 , 18, 1214-1225.
NiB _x	1.40@100	22.8	Adv. Funct. Mater. 2024 , 2411011.
Ni SAs-NC	1.39@10	42	Appl. Catal. B. Environ 2022 , 310, 121352.
NiO/CuO@CuM	1.35@10	32.2	Nano Energy 2023 , 115, 108714.
Cu _{0.5} Ni _{0.5} /NF	1.33@10	22.77	Small 2023 , 19, 2300959.
Co/CoSe₂@CNx	1.34@10	-	J. Mater. Chem. A, 2023 ,11, 5179-5187.
WM-Ni _{0.99} Co _{0.01} (OH) ₂	1.37@10	31	Energy Environ. Mater. 2023 ,0, e1257.
Ni/W ₅ N ₄ /NF	1.34@10	35.8	Appl. Catal. B. Environ. 2023 ,323, 122168.
Ni _{0.05} /CW	1.36@10	20.93	J. Energy Chem. 2023 , 76,566-575.
Cu-NiFe LDH	1.35@onset	26	Adv. Energy Mater. 2024 , 2403004.
Ni(OH)S/NF	1.34@10	-	Appl. Catal. B. Environ. 2022 , 312, 121389.
Rh/NiV-LDH	1.33@10	36	Sci. Bulletin 2022 , 67,1763-1775.

Table S3. Comparison of urea electrolysis performances of $Ni_{1-x}O/Ni(OH)_2/NF||20\%$ Pt/C

Catalysts	Current density	Potenti	al(V) Reference
	(mA/cm ⁻²)		
Ni _{1-x} O/Ni(OH) ₂ /NF 20% Pt/C	10	1.379	This work
YNi-10 Pt/C	10	1.47	ACS Appl. Mater. Interfaces 2024 , 16, 50937–50947.
V-Ni(OH) ₂ Pt foil	10	1.50	Adv. Funct. Mater. 2022 , 2209698
WN/Ni₃N Pt/C	10	1.38	Adv. Energy Mater. 2023 , <i>13</i> , 2302452.
NiFe-F-4 Pt/C	50	1.65	J. Colloid Interf. Sci. 2022 ,615, 309-317.
CrCoNiFe Pt/C	10	1.485	J. Mater. Sci. Technol. 2024 ,203, 97-107.
aNi-cys (+) Pt/C (-)	10	1.41	J. Colloid Interf. Sci. 2025 ,679, 1141-1149.
CoS-2 Pt/C	10	1.56	Small 2024 , 20,2310112.
Mo-FeNi LDH Pt/C	10	1.38	Small 2024 , 20,2305877.
Ni/MNO-10 Pt/C	10	1.45	Small Struct. 2023 , <i>4</i> , 2300212.
FeNi-OH/Co(OH) ₂ /NF Pt/C	10	1.44	Appl. Surf. Sci. 2024,670,160649.

with that of previously reported catalysts.

REFERENCE

1 Z. Ji, Y. Song, S. Zhao, Y. Li, J. Liu and W. Hu, ACS Catal., 2021, **12**, 569-579.