Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Electronic supplementary information

Modulating Radiative Efficiency in *ortho*-Carboranyl Luminophores through Electron-Donating Substituents : Insights from Intramolecular-Charge-Transfer-Based Emissions

Soyeon Kim,^{a‡} Dong Kyun You,^{a‡} Namkyun Kim,^a Ilsup Shin,^a Dongwook Kim,^b and Kang Mun Lee^{*a}

^a Department of Chemistry, Institute for Molecular Science and Fusion Technology,

Kangwon National University, Chuncheon 24341, Republic of Korea.

^b Department of Chemistry, Korea Advanced Institute of Science and Technology, (KAIST),

Daejeon 34141, Republic of Korea

[‡] The first and second authors contributed equally to this work.

Contents

NMR spectra for the precursor FA and 1CH-6CP	S2–S14
Crystallographic data and parameters for 1CH-6CP	S15
Selected bond lengths (Å) and angles (°) for 1CH-6CP	S16
Theoretical calculation details for 1CH–6CP	S17–S34
PL spectra of 2CM-6CP in THF/distilled water mixtures	S35
Emission decay curves for 1CH–6CP in crystalline states	S36
Cartesian coordinates of 1CH-6CP in each optimized geometry	S37–S48

Fig. S1 ¹H (top) and ¹³C (bottom) nuclear magnetic resonance (NMR) spectra of **FA** in CDCl₃ (*from residual CHCl₃ in CDCl₃).

Fig. S2 ${}^{1}H{}^{11}B{}$ (top) and ${}^{13}C$ (bottom) nuclear magnetic resonance (NMR) spectra of **1CH** in CDCl₃ (*from residual CHCl₃ in CDCl₃).

Fig. S3 $^{11}B{}^{1}H$ NMR spectra of 1CH in CDCl₃.

Fig. S4 ¹H{¹¹B} (top) and ¹³C (bottom) nuclear magnetic resonance (NMR) spectra of **2**CM in CDCl₃ (*from residual CHCl₃ in CDCl₃).

Fig. S5 $^{11}B{}^{1}H$ NMR spectra of 2CM in CDCl₃.

Fig. S6 ${}^{1}H{}^{11}B{}$ (top) and ${}^{13}C$ (bottom) nuclear magnetic resonance (NMR) spectra of **3**CE in CDCl₃ (*from residual CHCl₃ in CDCl₃).

Fig. S7 ¹¹B{¹H} NMR spectra of 3CE in CDCl₃.

Fig. S8 ${}^{1}H{}^{11}B{}$ (top) and ${}^{13}C$ (bottom) nuclear magnetic resonance (NMR) spectra of 4CE in CDCl₃ (*from residual CHCl₃ in CDCl₃).

Fig. S9 $^{11}B{^{1}H}$ NMR spectra of 4CE in CDCl₃.

Fig. S10 ¹H{¹¹B} (top) and ¹³C (bottom) nuclear magnetic resonance (NMR) spectra of **5CB** in CDCl₃ (*from residual CHCl₃ in CDCl₃).

Fig. S11 $^{11}B{}^{1}H$ NMR spectra of 5CB in CDCl₃.

Fig. S12 ¹H{¹¹B} (top) and ¹³C (bottom) nuclear magnetic resonance (NMR) spectra of **6CP** in CD_2Cl_2 (*from residual CH_2Cl_2 in CD_2Cl_2).

Fig. S13 $^{11}B{}^{1H}$ NMR spectra of 6CP in CD₂Cl₂.

1CH	2CM	3CE	4CE	5CB	6CP
2389101	2389102	2389103	2389106	2389104	2389105
$C_{17}H_{24}B_{10}$	$C_{20}H_{32}B_{10}Si$	$C_{21}H_{34}B_{10}Si$	C ₂₃ H ₃₈ B ₁₀ Si	C ₂₃ H ₃₈ B ₁₀ Si	C ₃₅ H ₃₈ B ₁₀ Si
336.46	408.64	422.67	450.72	450.72	594.84
Orthorhombic	Triclinic	Triclinic	Triclinic	Monoclinic	Triclinic
$P2_{1}2_{1}2_{1}$	P_{-1}	P_{-1}	P_{-1}	P21/c	P_{-1}
6.9920(2)	9.3569(6)	9.0417(4)	11.0532(6)	11.2901(6)	11.5149(7)
10.1133(3)	10.8812(6)	11.2430(5)	13.0146(6)	9.1352(4)	14.8401(10)
27.3441(9)	12.1208(7)	12.4505(6)	19.2255(9)	25.9770(12)	21.6004(15)
90	98.2648(19)	98.9030(15)	95.7529(18)	90	103.837(2)
90	94.752(2)	93.8354(17)	90.2216(19)	93.4738(18)	95.280(2)
90	92.699(2)	91.7182(18)	105.5694(16)	90	99.771(2)
1933.56(10)	1214.88(12)	1246.57(10)	2649.4(2)	2674.3(2)	3497.9(4)
4	2	2	4	4	4
1.156	1.117	1.126	1.130	1.119	1.130
0.057	0.103	0.102	0.100	0.099	0.092
704	432	448	960	960	1248
203(2)	203(2)	203(2)	203(2)	203(2)	203(2)
φ and ω -scan	φ and ω -scan	φ and ω -scan	φ and ω -scan	φ and ω -scan	φ and ω -scan
-8 < h < 9,	-11 < h < 11,	-11 < h < 11,	-13 < h < 13,	-14 < h < 12,	-14 < h < 14,
-13 < k < 13,	-13 < k < 13,	-14 < k < 14,	-15 < k < 15,	-11 < k < 9,	-18 < k < 18,
-32 < l < 36	-14 < l < 14 22576	-15 < l < 15 27262	-23 < l < 23	-33 < l < 33	-26 < l < 26
21042 4675 [0.0686]	22270 4780 [0 0507]	5422 [0.0870]	49407	29932 5825 [0 0011]	
4075 [0.0080]	4780 [0.0397]	5432 [0.0870]	0012	5825 [0.0911]	13635 [0.1092]
4073	4/00	3432	9915	3023	078
240	510	0.0517	003	514	978
0.0430	0.0430	0.0317	0.0049	0.0003	0.1268
1.052	1 021	0.1424	0.1320	0.1373	1.094
1.032	1.021 0.210 -0.200	1.030	1.047 0.216 -0.220	1.070 0.262 -0.261	
[0.103, -0.232]	0.219, -0.390	0.387, -0.330		10.203, -0.201	$\frac{[0.273, -0.290]}{[-0.273, -0.290]} = \frac{[-0.290]}{[-0.273, -0.290]} = \frac{[-0.290]}{[-0.273, -0.290]} = \frac{[-0.290]}{[-0.273, -0.290]} = \frac{[-0.290]}{[-0.290]} = \frac{[-0.290]}{[$
	1CH 2389101 $C_{17}H_{24}B_{10}$ 336.46 Orthorhombic $P2_12_12_1$ 6.9920(2) 10.1133(3) 27.3441(9) 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 91 933.56(10) 4 1.156 0.057 704 203(2) φ and ω -scan $-8 < h < 9$, $-13 < k < 13$, $-32 < l < 36$ 21842 4675 [0.0686] 4675 246 0.0430 0.1122 1.052 0.165, -0.232	1CH2CM23891012389102 $C_{17}H_{24}B_{10}$ $C_{20}H_{32}B_{10}Si$ 336.46408.64OrthorhombicTriclinic $P2_12_12_1$ P_{-1} 6.9920(2)9.3569(6)10.1133(3)10.8812(6)27.3441(9)12.1208(7)9098.2648(19)9094.752(2)9092.699(2)1933.56(10)1214.88(12)421.1561.1170.0570.103704432203(2) φ and ω -scan $-8 < h < 9$, $-11 < h < 11$, $-13 < k < 13$, $-13 < k < 13$, $-32 < l < 36$ $-14 < l < 14$ 21842335764675[0.0686]4780[0.0597]467547802463160.04300.04500.11220.12291.0521.0210.165, -0.232 0.219, -0.390	ICH2CM3CE238910123891022389103 $C_{17}H_{24}B_{10}$ $C_{20}H_{32}B_{10}Si$ $C_{21}H_{34}B_{10}Si$ 336.46408.64422.67OrthorhombicTriclinicTriclinic $P_{21}2_{12}1$ P_{-1} P_{-1} 6.9920(2)9.3569(6)9.0417(4)10.1133(3)10.8812(6)11.2430(5)27.3441(9)12.1208(7)12.4505(6)9098.2648(19)98.9030(15)9094.752(2)93.8354(17)9092.699(2)91.7182(18)1933.56(10)1214.88(12)1246.57(10)4221.1561.1171.1260.0570.1030.102704432448203(2)203(2)203(2) φ and ω -scan φ and ω -scan $-8 < h < 9$, $-11 < h < 11$, $-13 < k < 13$, $-13 < k < 13$, $-13 < k < 13$, $-14 < k < 14$, $-32 < l < 36$ $-14 < l < 14$ $21 < 46$ 316314 0.0430 0.0450 0.0517 0.1122 0.1229 0.1424 1.052 1.021 1.030 $0.165, -0.232$ $0.219, -0.390$ $0.587, -0.356$	1CH2CM3CE4CE2389101238910223891032389106 $C_{17}H_{24}B_{10}$ $C_{20}H_{32}B_{10}Si$ $C_{21}H_{34}B_{10}Si$ $C_{23}H_{38}B_{10}Si$ 336.46408.64422.67450.72OrthorhombicTriclinicTriclinicTriclinic $P_{21}_{21}_{21}$ P_{-1} P_{-1} P_{-1} 6.9920(2)9.3569(6)9.0417(4)11.0532(6)10.1133(3)10.8812(6)11.2430(5)13.0146(6)27.3441(9)12.1208(7)12.4505(6)19.2255(9)9098.2648(19)98.9030(15)95.7529(18)9094.752(2)93.8354(17)90.2216(19)9092.699(2)91.7182(18)105.5694(16)1933.56(10)1214.88(12)1246.57(10)2649.4(2)42241.1561.1171.1261.1300.0570.1030.1020.100704432448960203(2)203(2)203(2)203(2) φ and ω -scan φ and ω -scan φ and ω -scan σ and ω -scan φ and ω -scan φ and ω -scan σ and ω -scan φ and ω -scan φ and ω -scan ϕ and ω -scan φ and ω -scan φ and ω -scan ϕ and ω -scan φ and ω -scan φ and ω -scan σ and ω -scan φ and ω -scan φ and ω -scan σ and ω -scan φ and ω -scan φ and ω -scan σ (δ	ICH2CM3CE4CE5CB23891012389102238910323891062389104 $C_{17}H_{24}B_{10}$ $C_{20}H_{32}B_{10}Si$ $C_{21}H_{34}B_{10}Si$ $C_{23}H_{38}B_{10}Si$ $C_{23}H_{38}B_{10}Si$ 336.46 408.64422.67450.72450.72OrthorhombicTriclinicTriclinicTriclinicMonoclinic $P^2_{12}L_{21}$ P_{-1} P_{-1} P_{-1} P_{24}/c $6.9920(2)$ 9.3569(6)9.0417(4)11.0532(6)11.2901(6)10.1133(3)10.8812(6)11.2430(5)13.0146(6)9.1352(4)27.3441(9)12.1208(7)12.4505(6)19.2255(9)25.9770(12)9098.2648(19)98.9030(15)95.7529(18)909094.752(2)93.8354(17)90.2216(19)93.4738(18)9092.699(2)91.7182(18)105.5694(16)90913.56(10)121.488(12)1246.57(10)2649.4(2)2674.3(2)4422441.1561.1171.1261.1301.1190.0570.1030.1020.1000.099704432448960960203(2)203(2)203(2)203(2)203(2) φ and ω -scan φ and ω -scan φ and ω -scan φ and ω -scan $-8 < h < 9,$ $-11 < h < 11,$ $-11 < h < 13,$ $-14 < h < 12,$ $-13 < k < 13,$ $-14 < k < 14,$ $-15 < k < 15,$ $-11 < k < 9,$ $-32 < l < 36$ $-14 < l < 1$

 Table S1 Crystallographic data and parameters for 1CH–6CP

	ea cona rengu	is (i i) und ung		001		
Compound	1CH	2CM	3CE	4CE	5CB	6CP
			length (Å)			
C2–C14	1.502(3)	1.501(2)	1.507(2)	1.505(4)	1.503(3)	1.506(3)
C9–C10	1.524(3)	1.520(2)	1.524(2)	1.525(4)	1.519(3)	1.523(4)
C9–C13	1.521(3)	1.519(2)	1.524(3)	1.524(4)	1.523(3)	1.520(4)
C14–C15	1.645(3)	1.708(2)	1.710(2)	1.727(4)	1.739(3)	1.758(3)
C15–Si	_	1.9340(16)	1.9368(18)	1.944(3)	1.949(2)	1.945(3)
			angles (°)			
C1C2C14	117.64(18)	119.39(14)	119.42(16)	120.9(2)	118.91(19)	120.4(2)
C2-C14-C15	120.07(16)	120.08(12)	119.83(14)	121.3(2)	120.04(17)	121.2(2)
C9–C10–C11	111.21(17)	111.11(14)	110.99(15)	110.8(2)	111.15(18)	111.0(2)
С9-С13-С12	111.37(17)	111.34(14)	111.60(15)	111.6(2)	111.23(19)	111.4(2)
С10-С9-С13	100.94(16)	101.00(13)	100.84(15)	100.7(2)	100.96(17)	101.0(2)
C10-C11-C12	108.22(17)	108.21(14)	108.40(16)	108.4(2)	108.35(19)	108.5(2)
C11–C12–C13	108.23(18)	108.32(14)	108.11(16)	108.4(2)	108.3(2)	108.0(2)
C14C15Si	_	122.37(10)	121.74(11)	124.08(17)	120.66(14)	123.10(16)

Table S2 Selected bond lengths (Å) and angles (°) for 1CH–6CP

Fig. S14 Selected frontier orbitals of **1CH** from CAM-B3LYP calculations (Isovalue = 0.02 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	□ _{calc} (/nm)	$f_{ m calc}$	Major contribution
			S ₀
1	264.85	0.7989	HOMO \rightarrow LUMO (91.21%)
2	245.53	0.0325	HOMO-2 \rightarrow LUMO (35.09%)
			HOMO \rightarrow LUMO+1 (52.03%)
3	239.60	0.0277	HOMO-1 \rightarrow LUMO (54.01%)
			HOMO \rightarrow LUMO+3 (24.65%)
4	207.27	0.1670	HOMO-2 \rightarrow LUMO (51.36%)
			HOMO \rightarrow LUMO+1 (35.66%)
5	198.78	0.0251	HOMO-3 \rightarrow LUMO (18.22%)
			HOMO-2 \rightarrow LUMO+1 (10.06%)
			HOMO-1 \rightarrow LUMO+1 (27.81%)
			HOMO-1 \rightarrow LUMO+3 (11.04%)
			HOMO \rightarrow LUMO+4 (11.17%)
			S ₁
1	435.63	0.2138	HOMO \rightarrow LUMO (93.20%)
2	320.68	0.0007	HOMO-1 \rightarrow LUMO (85.81%)
3	443.77	0.4609	HOMO-2 \rightarrow LUMO (71.21%)
			HOMO-1 \rightarrow LUMO (13.77%)
4	352.46	0.0001	HOMO-3 \rightarrow LUMO (8.40%)
			HOMO-2 \rightarrow LUMO (58.39%)
			HOMO-1 \rightarrow LUMO+1 (9.93%)
5	349.93	0.0613	HOMO-6 \rightarrow LUMO (20.84%)
			HOMO-5 \rightarrow LUMO (14.13%)
			HOMO-3 \rightarrow LUMO (23.84%)
			HOMO \rightarrow LUMO+1 (21.72%)

Table S3 Computed absorption wavelengths (\square_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **1CH** from TD-CAM-B3LYP calculations using the CAM-B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

	E (eV)	fluorene	carborane	terminal-H
		S_0		
LUMO+3	1.19	45.07	54.84	0.08
LUMO+2	1.18	52.99	46.94	0.06
LUMO+1	0.59	91.07	8.83	0.10
LUMO	-0.27	88.25	11.66	0.09
HOMO	-7.55	96.59	3.36	0.05
HOMO-1	-8.39	99.90	0.10	0.00
HOMO-2	-8.67	98.72	1.28	0.00
HOMO-3	-9.46	81.63	18.34	0.03
		S ₁		
LUMO+3	1.18	95.14	4.86	0.00
LUMO+2	0.64	95.61	4.39	0.00
LUMO+1	-0.05	83.32	16.58	0.11
LUMO	-2.18	25.35	74.24	0.41
HOMO	-7.32	90.08	9.90	0.03
HOMO-1	-8.58	99.71	0.29	0.00
HOMO-2	-8.86	96.83	3.17	0.00
HOMO-3	-9.31	4.46	95.52	0.02

Table S4 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of **1CH** at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF.

Fig. S15 Selected frontier orbitals of **2CM** from CAM-B3LYP calculations (Isovalue = 0.02 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	□ □ _{calc} (/nm)	$f_{ m calc}$	Major contribution
			S ₀
1	267.09	0.0858	HOMO \rightarrow LUMO (91.52%)
2	246.49	0.0302	HOMO-2 \rightarrow LUMO (36.41%)
			HOMO LUMO+1 (50.95%)
3	240.19	0.0260	HOMO-1 \rightarrow LUMO (53.73%)
			HOMO LUMO+3 (14.77%)
			HOMO LUMO+4 (12.09%)
4	208.34	0.1664	HOMO-2 \rightarrow LUMO (51.71%)
			HOMO \rightarrow LUMO+1 (36.89%)
5	199.67	0.0159	HOMO-3 \rightarrow LUMO (20.32%)
			HOMO-2 \rightarrow LUMO+1 (8.45%)
			HOMO-1 \rightarrow LUMO+1 (26.56%)
			HOMO LUMO+3 (13.39%)
			S ₁
1	434.57	1.0396	HOMO \rightarrow LUMO (92.95%)
2	325.77	0.0030	HOMO-1 \rightarrow LUMO (82.90%)
3	302.80	0.0240	HOMO-2 \rightarrow LUMO (72.91%)
			HOMO-1 \rightarrow LUMO (13.96%)
4	289.19	0.0215	HOMO-3 \rightarrow LUMO (93.97%)
5	274.84	0.0469	HOMO-3 \rightarrow LUMO (7.86%)
			HOMO-1 \rightarrow LUMO (51.89%)
			HOMO-1 \rightarrow LUMO+1 (9.45%)
			HOMO \rightarrow LUMO+1 (12.26%)

Table S5 Computed absorption wavelengths (\square_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **2CM** from TD-CAM-B3LYP calculations using the CAM-B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

	E (eV)	fluorene	carborane	silyl	_
		S_0			_
LUMO+3	1.28	3.35	92.89	3.76	
LUMO+2	1.20	93.75	5.70	0.55	
LUMO+1	0.61	93.41	5.66	0.93	
LUMO	-0.28	87.74	11.77	0.39	
HOMO	-7.52	95.78	3.92	0.30	
HOMO-1	-8.39	99.70	0.17	0.13	
HOMO-2	-8.64	97.60	1.34	1.06	
HOMO-3	-9.38	73.62	24.84	1.54	
		S_1			_
LUMO+3	1.21	95.26	4.36	0.38	
LUMO+2	0.67	95.21	4.35	0.43	
LUMO+1	-0.05	83.38	15.19	1.43	
LUMO	-2.11	23.16	74.26	2.58	
HOMO	-7.26	90.28	9.48	0.24	
HOMO-1	-8.54	99.61	0.35	0.04	
HOMO-2	-8.81	95.51	4.13	0.36	
HOMO-3	-9.15	6.01	86.99	7.00	

Table S6 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of **2CM** at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF.

Fig. S16 Selected frontier orbitals of **3CE** from CAM-B3LYP calculations (Isovalue = 0.02 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	□ _{calc} (/nm)	$f_{ m calc}$	Major contribution
			S ₀
1	266.08	0.8047	HOMO \rightarrow LUMO (91.40%)
2	246.56	0.0270	HOMO-2 \rightarrow LUMO (35.20%)
			HOMO \rightarrow LUMO+1 (51.50%)
3	239.86	0.0256	HOMO \rightarrow LUMO (53.58%)
			HOMO \rightarrow LUMO+3 (18.82%)
			HOMO \rightarrow LUMO+4 (9.29%)
4	208.10	0.1791	HOMO-2 \rightarrow LUMO (52.51%)
			HOMO \rightarrow LUMO+1 (35.61%)
5	199.76	0.0285	HOMO-3 \rightarrow LUMO (18.05%)
			HOMO-2 \rightarrow LUMO+1 (9.31%)
			HOMO-1 \rightarrow LUMO+1 (24.58%)
			HOMO-1 \rightarrow LUMO+3 (8.88%)
			HOMO \rightarrow LUMO+3 (13.61%)
			S_1
1	438.38	1.0283	HOMO \rightarrow LUMO (93.03%)
2	327.40	0.0019	HOMO-2 \rightarrow LUMO (32.68%)
			HOMO-1 \rightarrow LUMO (50.54%)
3	304.74	0.0213	HOMO-2 \rightarrow LUMO (73.55%)
			HOMO-1 \rightarrow LUMO (14.16%)
4	293.35	0.0304	HOMO-3 \rightarrow LUMO (57.58%)
			HOMO-2 \rightarrow LUMO (29.77%)
5	275.87	0.0534	HOMO-2 \rightarrow LUMO (6.16%)
			HOMO-1 \rightarrow LUMO (51.14%)
			HOMO-1 \rightarrow LUMO+1 (8.79%)
			HOMO \rightarrow LUMO+1(11.10%)

Table S7 Computed absorption wavelengths (\square_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **3CE** from TD-CAM-B3LYP calculations using the CAM-B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

	E (eV)	fluorene	carborane	silyl			
	S ₀						
LUMO+3	1.26	5.44	89.68	4.88			
LUMO+2	1.19	90.17	8.60	1.23			
LUMO+1	0.59	90.47	7.82	1.71			
LUMO	-0.26	87.49	11.82	0.68			
НОМО	-7.52	95.83	3.85	0.32			
HOMO-1	-8.38	99.78	0.14	0.08			
HOMO-2	-8.64	97.89	1.51	0.60			
HOMO-3	-9.37	72.23	22.65	5.12			
		S_1					
LUMO+3	1.22	95.09	4.52	0.39			
LUMO+2	0.68	95.15	4.37	0.48			
LUMO+1	-0.04	84.02	14.80	1.18			
LUMO	-2.13	22.81	74.63	2.56			
HOMO	-7.25	90.19	9.49	0.31			
HOMO-1	-8.53	99.61	0.31	0.07			
HOMO-2	-8.80	95.61	3.63	0.76			
HOMO-3	-9.12	6.38	67.25	26.36			

Table S8 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of **3CE** at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF.

Fig. S17 Selected frontier orbitals of **4CE** from CAM-B3LYP calculations (Isovalue = 0.02 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	□ _{calc} (/nm)	$f_{ m calc}$	Major contribution
			S ₀
1	267.06	0.7977	HOMO \rightarrow LUMO (91.24%)
2	247.02	0.0270	HOMO-2 \rightarrow LUMO (35.60%)
			HOMO \rightarrow LUMO+1 (49.96%)
3	240.12	0.0247	HOMO-1 \rightarrow LUMO (52.99%)
			HOMO \rightarrow LUMO+3 (9.37%)
			HOMO \rightarrow LUMO+4 (18.37%)
4	208.72	0.1755	HOMO-2 \rightarrow LUMO (52.91%)
			HOMO \rightarrow LUMO+1 (36.16%)
5	200.52	0.0251	HOMO-5 \rightarrow LUMO (10.54%)
			HOMO-3 \rightarrow LUMO (9.69%)
			HOMO-1 \rightarrow LUMO+1 (22.58%)
			HOMO \rightarrow LUMO+3 (20.45%)
			S ₁
1	441.78	0.9949	HOMO \rightarrow LUMO (92.97%)
2	331.83	0.0016	HOMO-2 \rightarrow LUMO (44.76%)
			HOMO-1 \rightarrow LUMO (40.24%)
3	306.46	0.0199	HOMO-2 \rightarrow LUMO (73.16%)
			HOMO-1 \rightarrow LUMO (14.38%)
4	297.77	0.0273	HOMO-3 \rightarrow LUMO (86.14%)
5	278.56	0.1269	HOMO-3 \rightarrow LUMO (19.33%)
			HOMO-1 \rightarrow LUMO (24.12%)
			HOMO \rightarrow LUMO+1 (8.47%)

Table S9 Computed absorption wavelengths (\square_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **4CE** from TD-CAM-B3LYP calculations using the CAM-B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

	E (eV)	fluorene	carborane	silyl
		S_0		
LUMO+3	1.24	8.14	85.88	5.98
LUMO+2	1.18	85.97	11.75	2.28
LUMO+1	0.60	89.99	7.73	2.28
LUMO	-0.27	86.05	12.94	1.01
HOMO	-7.51	95.68	3.99	0.33
HOMO-1	-8.38	99.60	0.18	0.22
HOMO-2	-8.61	96.38	1.55	2.07
HOMO-3	-9.31	48.53	18.85	32.61
		S_1		
LUMO+3	1.22	94.96	4.52	0.52
LUMO+2	0.68	94.99	4.37	0.64
LUMO+1	-0.04	84.58	14.26	1.16
LUMO	-2.16	22.04	75.30	2.66
HOMO	-7.25	90.08	9.43	0.49
HOMO-1	-8.53	99.55	0.31	0.14
HOMO-2	-8.78	93.61	3.95	2.44
HOMO-3	-9.04	5.69	47.60	46.72

Table S10 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of 4CE at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF.

Figure S18 Selected frontier orbitals of **5CB** from CAM-B3LYP calculations (Isovalue = 0.02 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	D _{calc} (/nm)	f_{calc}	Major contribution
			S ₀
1	267.10	0.8198	HOMO \rightarrow LUMO (91.38%)
2	247.04	0.0249	HOMO-2 \rightarrow LUMO (36.02%)
			HOMO \rightarrow LUMO+1 (49.72%)
3	240.09	0.0251	HOMO \rightarrow LUMO (52.99%)
			HOMO \rightarrow LUMO+3 (9.61%)
			HOMO \rightarrow LUMO+4 (18.27%)
4	208.56	0.1802	HOMO-2 \rightarrow LUMO (52.23%)
			HOMO \rightarrow LUMO+1 (35.81%)
5	200.64	0.0341	HOMO-4 \rightarrow LUMO (19.01%)
			HOMO-1 \rightarrow LUMO+1 (20.70%)
			HOMO \rightarrow LUMO+3 (22.68%)
			S ₁
1	443.99	0.9966	HOMO \rightarrow LUMO (93.00%)
2	333.61	0.0047	HOMO-2 \rightarrow LUMO (61.51%)
			HOMO-1 \rightarrow LUMO (15.66%)
3	307.13	0.0200	HOMO-3 \rightarrow LUMO (11.54%)
			HOMO-2 \rightarrow LUMO (65.49%)
			HOMO-1 \rightarrow LUMO (14.14%)
4	299.74	0.0539	HOMO-6 \rightarrow LUMO (48.20%)
			HOMO-5 \rightarrow LUMO (19.15%)
			HOMO-3 \rightarrow LUMO (22.08%)
5	280.17	0.0793	HOMO-6 \rightarrow LUMO (22.48%)
			HOMO-4 \rightarrow LUMO (9.42%)
			HOMO-3 \rightarrow LUMO (29.83%)
			HOMO-1 \rightarrow LUMO (12.66%)

Table S11 Computed absorption wavelengths (\square_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **5CB** from TD-CAM-B3LYP calculations using the CAM-B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

	E (eV)	fluorene	carborane	silyl
		S_0		
LUMO+3	1.25	6.96	88.38	4.67
LUMO+2	1.17	81.19	16.28	2.53
LUMO+1	0.59	89.45	8.50	2.05
LUMO	-0.28	85.71	13.39	0.90
HOMO	-7.51	95.63	3.99	0.38
HOMO-1	-8.38	99.76	0.14	0.10
HOMO-2	-8.63	97.60	1.52	0.88
HOMO-3	-9.08	2.95	8.00	89.05
		S_1		
LUMO+3	1.22	95.11	4.44	0.45
LUMO+2	0.68	95.04	4.38	0.58
LUMO+1	-0.04	84.87	13.88	1.25
LUMO	-2.18	21.64	75.49	2.87
HOMO	-7.24	90.12	9.40	0.49
HOMO-1	-8.52	99.39	0.34	0.27
HOMO-2	-8.78	65.19	9.48	25.33
HOMO-3	-8.83	33.98	11.60	54.42

Table S12 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of **5CB** at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF.

Fig. S19 Selected frontier orbitals of **6CP** from CAM-B3LYP calculations (Isovalue = 0.02 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	\square_{calc} (/nm)	$f_{ m calc}$	Major contribution
			S ₀
1	269.51	0.7704	HOMO \rightarrow LUMO (89.88%)
2	247.67	0.0261	HOMO-2 \rightarrow LUMO (13.63%)
			HOMO-1 \rightarrow LUMO (25.19%)
			HOMO \rightarrow LUMO+1 (44.31%)
3	240.50	0.0171	HOMO-1 \rightarrow LUMO (48.06%)
			HOMO \rightarrow LUMO+2 (36.88%)
4	229.36	0.0065	HOMO-3 \rightarrow LUMO (24.12%)
			HOMO-2 \rightarrow LUMO+1 (46.66%)
			HOMO-1 \rightarrow LUMO+1 (17.35%)
			S ₁
1	445.76	0.9705	HOMO \rightarrow LUMO (93.08%)
2	331.66	0.0010	HOMO-1 \rightarrow LUMO (72.72%)
3	310.29	0.0166	HOMO-3 \rightarrow LUMO (10.17%)
			HOMO-2 \rightarrow LUMO (32.35%)
			HOMO-1 \rightarrow LUMO (10.52%)
			HOMO-1 \rightarrow LUMO+1 (19.50%)
4	308.19	0.0190	HOMO-4 \rightarrow LUMO (11.73%)
			HOMO-3 \rightarrow LUMO (28.25%)
			HOMO-1 \rightarrow LUMO (7.11%)
			HOMO-1 \rightarrow LUMO (17.34%)
			HOMO-1 \rightarrow LUMO+1 (19.05%)
5	296.74	0.0122	HOMO-5 \rightarrow LUMO (9.66%)
			HOMO-4 \rightarrow LUMO (19.68%)
			HOMO-3 \rightarrow LUMO (9.40%)
			HOMO-1 \rightarrow LUMO (38.85%)

Table S13 Computed absorption wavelengths (\square_{calc} in nm) and oscillator strengths ($f_{calc.}$) for 6CP from TD-CAM-B3LYP calculations using the CAM-B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

	E (eV)	fluorene	carborane	silyl
		S ₀		
LUMO+3	0.70	30.20	8.49	61.32
LUMO+2	0.64	1.49	9.75	88.76
LUMO+1	0.31	4.90	3.55	91.55
LUMO	-0.22	80.50	13.72	5.78
HOMO	-7.40	93.28	4.20	2.52
HOMO-1	-8.30	88.05	0.38	11.57
HOMO-2	-8.33	3.65	1.67	94.68
HOMO-3	-8.36	5.98	2.41	91.62
		S_1		
LUMO+3	0.73	82.00	5.13	12.86
LUMO+2	0.49	2.01	2.70	95.29
LUMO+1	0.00	83.26	13.14	3.60
LUMO	-2.11	21.49	75.91	2.60
HOMO	-7.18	89.49	9.57	0.94
HOMO-1	-8.24	0.39	1.40	98.21
HOMO-2	-8.29	0.45	2.66	96.89
HOMO-3	-8.32	0.12	1.66	98.22

Table S14 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of **6CP** at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF.

Fig. S20 PL spectra of (a) **2CM** ($\lambda_{ex} = 308 \text{ nm}$). (b) **3CE** ($\lambda_{ex} = 309 \text{ nm}$), (c) **4CE** ($\lambda_{ex} = 310 \text{ nm}$), (d) **5CB** ($\lambda_{ex} = 312 \text{ nm}$), and (e) **6CP** ($\lambda_{ex} = 315 \text{ nm}$) in THF/distilled water mixtures (5.0 \square 10⁻⁵ M). Inset figures show the emission color in each state under irradiation by a hand-held UV lamp ($\lambda_{ex} = 254 \text{ nm}$).

Fig. S21 Emission decay curves for fluorene-based silyl-*o*-carboranyl compounds **1CH–6CP** in crystalline states detected at each emission maximum at 298 K. Each pink line is its exponential fitting curve for the decay curves.

Atom	Х	Y	Z	В	-4.80294	-1.06899	0.82316	С	5.75060	-1.51632	
С	-3.16450	-0.48281	-1.28397	Н	-5.47355	-1.86627	1.38802	Н	6.51470	-2.28662	
С	-2.26142	-0.25237	0.07667	В	-3.21397	-0.60176	1.44921	С	6.12382	-0.17299	
В	-3.34821	-1.58768	-0.00765	Н	-2.66118	-1.05595	2.38963	Н	7.17627	0.09131	
Н	-2.92158	-2.67540	-0.13630	В	-4.53099	0.58174	1.41703	С	5.15957	0.83365	
В	-4.73045	-1.01705	-0.94545	Н	-5.01104	0.97702	2.42686	Н	5.46175	1.87674	
Н	-5.23291	-1.77940	-1.69571	С	1.47224	0.36127	0.01709	С	3.81931	0.48059	
В	-4.41392	0.64705	-1.44101	С	0.10834	0.58236	0.03000	С	2.59650	1.38813	
Н	-4.70078	1.01144	-2.52803	Н	-0.27759	1.59483	0.04072	С	2.53914	2.27318	
В	-2.83001	1.11233	-0.81508	С	-0.77317	-0.50686	0.03577	Н	3.39056	2.95886	
Н	-2.04422	1.72256	-1.44456	С	-0.25376	-1.80479	0.03874	Н	1.62496	2.87342	
В	-2.89719	1.06532	0.95061	Н	-0.91928	-2.65669	0.06004	Н	2.56055	1.66891	
Н	-2.14055	1.73074	1.56674	С	1.11780	-2.02999	0.02164	С	2.56325	2.26309	
В	-4.28161	1.64505	0.01394	Н	1.49500	-3.04734	0.02319	Н	3.41527	2.94835	
Н	-4.57829	2.79242	0.00564	С	1.98157	-0.94351	0.00945	Н	2.60156	1.65141	
В	-5.47026	0.32294	-0.06184	С	3.44730	-0.87050	-0.00524	Н	1.64953	2.86326	
Н	-6.63667	0.52518	-0.12894	С	4.40692	-1.87651	-0.01752	Н	-2.61436	-0.84429	
				Н	4.11853	-2.92299	-0.01760				

Table S15 Cartesian coordinates of the ground state (S₀) fully optimized geometry of 1CH in THF from CAM-B3LYP calculations (in Å)

Atom	Х	Y	Z	В	8.53257	9.40994	15.29676	С	0.70715	
С	7.10880	8.52530	17.48570	Н	9.54923	9.30133	14.69075	Н	0.61322	
С	5.91172	8.40724	15.49606	В	7.03722	8.98476	14.48188	С	-0.43273	
В	7.55238	8.00571	15.94609	Н	7.04158	8.53482	13.38315	Н	-1.38688	
Н	7.90369	6.88176	15.80184	В	7.33288	10.67998	14.92449	С	-0.36361	
В	8.54210	9.11629	17.03696	Н	7.48253	11.49527	14.07160	Н	-1.25833	
Н	9.51683	8.72976	17.59245	С	2.68978	6.53982	15.23736	С	0.85680	
В	7.24402	10.11052	17.75899	С	3.57245	7.54102	15.51460	С	1.19631	
Н	7.20529	10.50072	18.87895	Н	3.25286	8.45618	15.99817	С	0.90704	
В	5.76143	9.37758	16.94300	С	4.94880	7.38361	15.17343	Н	-0.16350	
Н	4.74929	9.29662	17.55656	С	5.36515	6.18171	14.50082	Н	1.21681	
В	5.72076	9.99292	15.21445	Н	6.40618	6.08641	14.21975	Н	1.43897	
Н	4.71204	10.31696	14.67880	С	4.48464	5.17796	14.22185	С	0.44014	
В	6.46011	10.99630	16.45048	Н	4.81591	4.27672	13.71868	Н	-0.63659	
Н	5.96134	12.04871	16.68813	С	3.12674	5.33710	14.59307	Н	0.63502	
В	8.22935	10.75886	16.42496	С	2.01447	4.47280	14.42682	Н	0.74627	
Н	9.01070	11.63250	16.62678	С	1.93437	3.18746	13.85166	Н	6.98550	
				Н	2.81804	2.70558	13.44831			

Table S16 Cartesian coordinates of the first-excited state (S₁) fully optimized geometry of 1CH in THF from CAM-B3LYP calculations (in Å)

Atom	Х	Y	Z	В	-3.76348	-2.75763	-0.26831	С	2.92037	0.55719	2.4
С	-2.84697	0.36629	0.04995	- Н	-4.07019	-3.89742	-0.38914	Н	3.77686	0.55561	3.
С	-1.74676	-0.86372	-0.32630	С	1.96752	-0.45357	0.32640	Н	2.02341	0.34936	3.
В	-2.87085	-0.34112	-1.50688	С	0.61824	-0.66770	0.53961	Н	2.82586	1.55805	2.
Н	-2.49705	0.29612	-2.42253	Н	0.25884	-0.91596	1.53092	С	3.23202	-1.89805	1.
В	-4.36370	0.01031	-0.64478	С	-0.27929	-0.57334	-0.53192	Н	4.09335	-1.93571	2.
Н	-5.02220	0.91542	-1.02521	С	0.21565	-0.29765	-1.81120	Н	3.36142	-2.66619	1.
В	-4.06984	-0.25023	1.06704	Н	-0.46180	-0.25836	-2.65416	Н	2.33970	-2.14161	2.
Н	-4.52238	0.47235	1.88601	С	1.57120	-0.08242	-2.02938	Н	-2.30177	2.22929	0.
В	-2.39691	-0.76161	1.25391	Н	1.92803	0.13030	-3.03165	С	-3.84818	3.20596	0.
Н	-1.71269	-0.39880	2.13971	С	2.44767	-0.15513	-0.95491	С	-1.07143	2.39062	1.
В	-2.20340	-2.31800	0.43621	С	3.90288	0.01726	-0.87815	С	-1.57484	2.84809	-1.
Н	-1.33172	-3.03342	0.79055	С	4.83478	0.32168	-1.86406	Н	-1.49373	2.05656	2.
В	-3.68876	-1.95655	1.31525	Н	4.52786	0.47545	-2.89393	Н	-0.15032	1.83359	1.
Н	-3.94342	-2.49935	2.33827	С	6.17479	0.42643	-1.50522	Н	-0.80792	3.44777	1.
В	-4.91927	-1.48031	0.12467	Н	6.91758	0.66338	-2.25980	Н	-4.59754	3.14301	-0.
Н	-6.07632	-1.68168	0.29258	С	6.57159	0.22924	-0.18325	Н	-4.31002	2.87990	1.
В	-4.16958	-1.53007	-1.48600	Н	7.62086	0.31431	0.08012	Н	-3.57080	4.25883	0.
Н	-4.77086	-1.76565	-2.48047	С	5.63507	-0.07622	0.80314	Н	-1.31034	3.90308	-1.
В	-2.49865	-2.05605	-1.28433	Н	5.95539	-0.22838	1.82960	Н	-0.67097	2.30871	-1.
Н	-1.82710	-2.59437	-2.09445	С	4.29859	-0.18141	0.45144	H	-2.29308	2.78184	-2.
				С	3.10349	-0.50197	1.33916				

Table S17 Cartesian coordinates of the ground state (S₀) fully optimized geometry of **2CM** in THF from CAM-B3LYP calculations (in Å)

						-					
Atom	Х	Y	Z	В	7.32562	10.66176	14.89499	С	1.04664	6.32709	1
С	7.17613	8.27856	17.33089	Н	7.45636	11.54065	14.10396	Н	-0.00166	6.18569	1
С	5.89169	8.37829	15.37608	С	2.65408	6.52227	15.20054	Н	1.39666	7.25058	
В	7.53052	7.91065	15.69493	С	3.55642	7.49949	15.49992	Н	1.62496	5.49399	
Н	7.85326	6.80404	15.41746	Н	3.27896	8.35798	16.09926	С	0.36886	7.59236	
В	8.58419	8.90211	16.81663	С	4.89834	7.39136	15.02720	Н	-0.68840	7.46194	
Н	9.59124	8.46877	17.27486	С	5.25442	6.26685	14.20209	Н	0.46455	7.67318	
В	7.34960	9.85694	17.67295	Н	6.26694	6.21023	13.82374	Н	0.70447	8.53167	
Н	7.37358	10.18358	18.81530	С	4.35381	5.28743	13.90019	Н	7.02721	6.91719	
В	5.82468	9.23101	16.88112	Н	4.64094	4.44465	13.28179	С	8.28219	7.24152	
Н	4.83223	9.14724	17.52395	С	3.03386	5.39556	14.40162	С	5.29534	6.91879	
В	5.71482	9.98582	15.20507	С	1.91113	4.54175	14.24547	С	7.37155	5.24216	
Н	4.68707	10.36127	14.74394	С	1.78189	3.32204	13.55015	Н	5.05527	7.87983	
В	6.53313	10.86819	16.48169	Н	2.62717	2.89229	13.02427	Н	4.53461	6.71574	
Н	6.07212	11.90525	16.83634	С	0.55608	2.69230	13.55661	Н	5.21568	6.14600	
В	8.29104	10.59682	16.35359	Н	0.42477	1.75321	13.03132	Н	9.30365	7.23673	
Н	9.10363	11.43243	16.59175	С	-0.53381	3.25752	14.24077	Н	8.11008	8.21025	
В	8.50757	9.34124	15.10834	Н	-1.48821	2.74204	14.23017	Н	8.21200	6.46864	
Н	9.49662	9.25546	14.45406	С	-0.41516	4.46458	14.93228	Н	7.29393	4.45453	
В	6.96671	9.01610	14.33701	Н	-1.27204	4.87962	15.45197	Н	6.65998	5.01288	
Н	6.89914	8.65165	13.20878	С	0.80505	5.10818	14.93804	Н	8.37670	5.19762	
				С	1.19264	6.41584	15.60736				

Table S18 Cartesian coordinates of the first-excited state (S₁) fully optimized geometry of **2CM** in THF from CAM-B3LYP calculations (in Å)

				-							
Atom	Х	Y	Ζ	Н	5.85991	-2.01814	0.39739	Н	-2.56754	-2.14635	2.604
С	1.56269	-1.10505	-0.30263	C	-2.11777	-0.50830	0.35785	Н	-3.63775	-2.62039	1.274
С	2.72166	0.11514	-0.14557	С	-0.78182	-0.79726	0.56024	С	-2.98221	0.58264	2.466
В	2.24608	-0.76991	1.23367	Н	-0.42424	-1.04547	1.55240	Н	-3.83151	0.64572	3.152
Н	1.58690	-0.23131	2.04809	С	0.10832	-0.76650	-0.52098	Н	-2.82442	1.56958	2.024
В	1.96574	-2.43156	0.68687	С	-0.38104	-0.47547	-1.79823	Н	-2.09627	0.32294	3.052
Н	1.07278	-3.04018	1.16507	Н	0.28730	-0.48569	-2.64878	Н	2.27291	2.01049	-0.297
В	2.23930	-2.47644	-1.05651	С	-1.72392	-0.18078	-2.00511	С	0.66616	2.40777	0.581
Н	1.52642	-3.10644	-1.75819	Н	-2.07744	0.04439	-3.00587	Н	0.55863	3.49742	0.605
В	2.68700	-0.84548	-1.56474	С	-2.59217	-0.19154	-0.92182	Н	0.65223	2.05298	1.614
Н	2.33695	-0.35536	-2.57406	С	-4.03328	0.07068	-0.83195	Н	-0.20330	1.99715	0.065
В	4.20644	-0.42151	-0.78739	С	-4.95532	0.42296	-1.81115	С	2.14492	2.43477	-2.118
Н	4.89475	0.38260	-1.31728	Н	-4.65071	0.54801	-2.84554	Н	1.97535	3.51182	-2.214
В	3.93022	-2.07188	-1.35963	С	-6.28237	0.61361	-1.43969	Н	1.31226	1.92311	-2.606
Н	4.50171	-2.49664	-2.30773	Н	-7.01728	0.88883	-2.18900	Н	3.06173	2.19218	-2.662
В	3.48952	-3.05900	0.04962	С	-6.67619	0.45379	-0.11181	С	3.68768	2.99281	0.472
Н	3.74050	-4.21658	0.11900	Н	-7.71530	0.60595	0.16148	Н	4.64253	2.51590	0.228
В	3.48114	-2.00334	1.47866	С	-5.74953	0.10055	0.86788	Н	3.69670	3.95162	-0.061
Н	3.72864	-2.38217	2.57469	Н	-6.06736	-0.02156	1.89910	С	3.59282	3.25885	1.979
В	3.93877	-0.38601	0.94616	С	-4.42599	-0.09051	0.50359	Н	4.43846	3.85958	2.326
Н	4.44828	0.43475	1.62463	С	-3.24340	-0.47531	1.38247	Н	3.59124	2.33287	2.560
В	4.71027	-1.79206	0.21112	С	-3.45071	-1.85380	2.03011	H	2.67935	3.80424	2.232
				Н	-4.30383	-1.83065	2.71373				

Table S19 Cartesian coordinates of the ground state (S₀) fully optimized geometry of **3CE** in THF from CAM-B3LYP calculations (in Å)

Atom	Х	Y	Z	Н	10.61803	-0.40090	8.74168	Н	7.49989	7.88762	9.7707
С	7.39815	2.70190	9.80286	C	5.50017	5.91444	9.97956	Н	6.59636	8.08976	11.2819
С	7.40839	1.37038	7.87429	С	6.49379	5.02679	9.69164	C	5.34439	7.56000	8.0734
В	8.28407	2.77373	8.31787	Н	7.36820	5.32341	9.12512	Н	5.19468	8.61172	7.8164
Н	8.16805	3.74973	7.65232	С	6.38221	3.67389	10.13103	Н	4.53219	6.97794	7.6318
В	8.99209	2.94942	10.01067	С	5.23656	3.29033	10.91224	Н	6.28605	7.23373	7.6246
Н	9.31123	4.00123	10.45972	Н	5.17717	2.26934	11.26676	Н	6.03080	1.44976	6.5878
В	8.05201	1.67582	10.88177	С	4.24116	4.17685	11.20425	C	4.87800	2.88177	6.9954
Н	7.65360	1.75273	11.99775	Н	3.38269	3.86990	11.79072	Н	4.08759	2.95201	6.2413
В	7.00708	1.04139	9.50449	С	4.35372	5.50833	10.73572	Н	5.40608	3.83881	7.0166
Н	5.90367	0.67881	9.75293	C	3.48596	6.62077	10.89137	Н	4.39749	2.74169	7.9680
В	8.07775	0.00249	8.43690	С	2.24585	6.72519	11.55359	C	5.05990	-0.16001	6.6356
Н	7.70193	-1.03221	7.99145	Н	1.80824	5.86532	12.04846	Н	4.19808	-0.10074	5.9635
В	8.46137	0.13507	10.15453	С	1.60629	7.94602	11.55555	Н	4.68664	-0.37441	7.6407
Н	8.40026	-0.84269	10.82817	Н	0.65134	8.05844	12.05607	Н	5.67384	-1.00754	6.3197
В	9.72576	1.37721	10.37554	С	2.18185	9.05497	10.91198	C	6.74296	1.67434	4.8526
Н	10.58752	1.30165	11.19218	Н	1.65824	10.00485	10.92822	Н	7.45803	0.86407	4.6679
В	9.94196	2.14507	8.77685	С	3.40927	8.96083	10.25350	Н	5.91250	1.49808	4.1561
Н	10.96823	2.64215	8.44015	Н	3.83211	9.83198	9.76464	C	7.39386	3.02626	4.5420
В	9.00156	1.25716	7.57853	С	4.06282	7.74588	10.23990	Н	7.72921	3.07873	3.5015
Н	9.36192	1.21953	6.44770	С	5.39226	7.38323	9.60022	Н	8.26562	3.20733	5.1758
В	9.74203	0.37968	8.93843	С	6.54525	8.20602	10.19707	Н	6.69609	3.85404	4.7012
				Н	6.41210	9.26672	9.96941				

Table S20 Cartesian coordinates of the first-excited state (S1) fully optimized geometry of 3CE in THF from CAM-B3LYP calculations (in Å)

r	Х	Y	Ζ	С	0.84119	-0.97268	-0.56810	Н	2.13988	0.20731	-3.04316
С	-1.49609	-1.31500	0.31349	Н	0.48112	-1.20767	-1.56245	Н	3.87345	0.53869	-3.14306
С	-2.67825	-0.12327	0.04380	С	-0.04398	-0.96192	0.51707	Н	-2.29773	1.80151	0.01736
В	-2.62919	-0.94994	1.54137	С	0.45124	-0.69804	1.79802	С	-2.64742	2.50713	1.73653
Н	-2.28544	-0.36074	2.49966	Н	-0.21326	-0.73292	2.65117	Н	-3.00841	3.52929	1.56847
В	-2.15606	-2.61711	1.18929	С	1.79379	-0.40367	2.00500	Н	-3.49594	1.97330	2.17704
Н	-1.43615	-3.16795	1.94777	Н	2.15202	-0.20015	3.00869	С	-1.47945	2.54908	2.72944
В	-1.87611	-2.72917	-0.55143	С	2.65616	-0.38781	0.91679	Н	-0.64414	3.14010	2.34428
Н	-0.96937	-3.36053	-0.97086	С	4.09600	-0.11942	0.82548	Н	-1.09179	1.55275	2.95333
В	-2.18149	-1.12536	-1.24447	С	5.02154	0.21626	1.80722	Н	-1.78794	2.99929	3.67733
Н	-1.53488	-0.65150	-2.10833	Н	4.72129	0.32020	2.84520	C	-3.50144	2.58951	-1.20533
В	-3.88399	-0.75295	-0.99808	С	6.34638	0.41773	1.43361	Н	-4.51708	2.23835	-0.99454
Н	-4.41246	-0.01589	-1.75156	Н	7.08392	0.68031	2.18484	Н	-3.50756	3.65707	-0.95100
В	-3.39481	-2.40156	-1.37970	С	6.73464	0.28477	0.10114	C	-3.18129	2.43172	-2.69680
Н	-3.63288	-2.88255	-2.43704	Н	7.77211	0.44489	-0.17374	Н	-3.91250	2.96232	-3.31347
В	-3.39083	-3.32171	0.14049	С	5.80447	-0.05180	-0.88112	Н	-3.19003	1.38545	-3.01049
Н	-3.62147	-4.48492	0.17882	Н	6.11803	-0.15315	-1.91588	Н	-2.19517	2.83607	-2.94120
В	-3.85191	-2.21466	1.45268	С	4.48308	-0.25338	-0.51469	C	-0.52894	2.17196	-0.51610
Н	-4.41822	-2.56039	2.43533	С	3.29729	-0.62358	-1.39555	Н	0.17281	1.77157	0.22012
В	-4.15662	-0.63171	0.72832	С	3.50553	-1.98685	-2.07409	Н	-0.30773	1.65332	-1.45466
Н	-4.86565	0.20206	1.17819	Н	2.62028	-2.26988	-2.65049	C	-0.28674	3.68024	-0.68772
В	-4.63134	-2.09772	-0.13853	Н	3.69905	-2.76904	-1.33623	Н	0.74847	3.87822	-0.97951
Н	-5.77670	-2.35781	-0.30575	Н	4.35481	-1.94619	-2.76167	Н	-0.47226	4.23051	0.23953
С	2.17681	-0.68136	-0.36636	С	3.02751	0.45714	-2.45498	Н	-0.93077	4.11452	-1.45716
				Н	2.86848	1.43356	-1.99055				

Table S21 Cartesian coordinates of the ground state (S₀) fully optimized geometry of 4CE in THF from CAM-B3LYP calculations (in Å)

Atom	Х	Y	Z	С	-0.08931	5.87558	16.80553	Н	-2.25291	6.02199	14
С	2.21252	6.78230	17.14389	H	-0.38699	6.83046	16.38961	Н	-3.61474	4.89562	1
С	3.60943	7.14817	15.28595	С	1.25265	5.70902	17.26013	Н	3.60019	6.05035	1
В	3.88628	6.47822	16.84123	С	1.63588	4.45151	17.84409	С	5.30819	5.29513	
Н	4.26219	5.35573	16.91796	Н	2.64761	4.34617	18.21417	Н	5.25512	4.82834	
В	3.18431	7.26083	18.35613	С	0.76034	3.40847	17.93401	Н	6.02847	6.11510	
Н	3.08147	6.67506	19.38395	Н	1.06752	2.46635	18.37353	С	5.82822	4.27232	
В	1.91885	8.31199	17.61111	С	-0.55941	3.58159	17.45182	Н	5.12357	3.44609	
Н	0.84461	8.53087	18.06720	С	-1.65914	2.68364	17.41845	Н	5.99284	4.72646	
В	2.16929	7.90488	15.83010	С	-1.75737	1.34501	17.84842	Н	6.77923	3.83799	
Н	1.21572	7.88536	15.12481	Н	-0.90457	0.84070	18.28899	С	3.19033	7.05521	
В	3.69009	8.77009	15.27909	С	-2.96281	0.69485	17.69330	Н	3.93221	7.85733	
Н	3.75528	9.32390	14.23050	Н	-3.06987	-0.33516	18.01373	Н	3.38238	6.38571	
В	2.74026	9.47293	16.58746	С	-4.06207	1.35597	17.11946	С	1.77853	7.63703	
Н	2.23016	10.53246	16.41178	Н	-4.99926	0.82148	17.00679	Н	1.62923	8.11934	
В	3.45975	9.00108	18.15318	С	-3.97431	2.68192	16.69174	Н	1.58486	8.38646	
Н	3.48810	9.71147	19.10708	Н	-4.83757	3.16889	16.25068	Н	1.01225	6.86160	
В	4.73764	7.81449	17.76388	С	-2.77529	3.34841	16.84018	С	2.31726	4.68256	
Н	5.69425	7.65529	18.45177	С	-2.42330	4.77706	16.46208	Н	2.56763	4.13262	
В	4.93786	7.73350	16.01325	С	-3.27748	5.78936	17.24285	Н	1.34387	5.14937	
Н	5.99723	7.46106	15.55055	Н	-2.96537	6.81010	17.00798	С	2.20307	3.70756	
В	4.50333	9.28112	16.77759	Н	-3.18406	5.63998	18.32078	Н	1.45075	2.93497	
Н	5.26875	10.19182	16.76185	Н	-4.33100	5.68795	16.97031	Н	3.15141	3.19688	
С	-0.96610	4.83540	16.89264	С	-2.57039	5.00936	14.94973	Н	1.91765	4.22230	
				Н	-1.96709	4.30004	14.37851				

Table S22 Cartesian coordinates of the first-excited state (S1) fully optimized geometry of 4CE in THF from CAM-B3LYP calculations (in Å)

Atom	Х	Y	Z	C	1.14853	-0.91722	0.56991	Н	4.16883	-2.43455	1.3200
С	-2.45789	-0.38752	-0.13958	Н	0.81444	-1.18309	1.56572	Н	3.05534	-2.04461	2.6424
С	-1.14823	-1.47757	-0.29079	С	0.26204	-0.99128	-0.51201	Н	-2.18462	1.55474	-0.3200
В	-2.29336	-1.35416	-1.55137	С	0.72254	-0.67414	-1.79361	С	-0.56168	2.04409	0.490′
Н	-2.00235	-0.83884	-2.56626	Н	0.05985	-0.76490	-2.64394	Н	-0.53230	3.13367	0.583
В	-3.85728	-1.11695	-0.78569	С	2.02978	-0.25049	-2.00458	Н	0.29882	1.74060	-0.1067
Н	-4.63736	-0.41655	-1.33120	Н	2.36138	-0.00704	-3.00855	Н	-0.44396	1.62619	1.4925
В	-3.59910	-1.04349	0.94935	С	2.89259	-0.15818	-0.92063	С	-2.11110	1.91985	-2.1599
Н	-4.20731	-0.30473	1.63715	С	4.30049	0.24674	-0.83428	Н	-1.96895	2.99313	-2.3107
В	-1.87221	-1.21354	1.23782	С	5.18569	0.67132	-1.81882	Н	-3.02485	1.62509	-2.6823
Н	-1.28550	-0.60063	2.05530	Н	4.87284	0.74787	-2.85547	Н	-1.27012	1.40986	-2.6338
В	-1.39466	-2.83585	0.70413	С	6.48667	0.99793	-1.44987	С	-3.58764	2.58434	0.4938
Н	-0.43691	-3.32853	1.19014	Н	7.19271	1.33117	-2.20336	С	-3.36904	4.04179	0.0313
В	-2.95007	-2.58898	1.48967	С	6.89127	0.90033	-0.11920	Н	-4.08443	4.69240	0.547
Н	-3.15369	-2.98722	2.58782	Н	7.90976	1.15855	0.15205	Н	-3.53619	4.16295	-1.0420
В	-4.19322	-2.53441	0.21912	С	6.00162	0.47436	0.86588	Н	-2.36821	4.41783	0.263
Н	-5.30800	-2.89513	0.40504	Н	6.32770	0.40164	1.89920	С	-3.48179	2.56178	2.0284
В	-3.38016	-2.72353	-1.34706	С	4.70420	0.14759	0.50406	Н	-4.25770	3.20499	2.4606
Н	-3.89359	-3.21602	-2.29561	С	3.56344	-0.33759	1.38855	Н	-2.51579	2.94136	2.3738
В	-1.65667	-2.92092	-1.03831	С	3.19449	0.70847	2.45270	Н	-3.61721	1.56206	2.4462
Н	-0.87246	-3.46056	-1.73912	Н	4.03044	0.86762	3.13936	С	-5.00588	2.18045	0.0633
В	-2.82995	-3.64559	0.06716	Н	2.33621	0.37269	3.04164	Н	-5.72720	2.90385	0.462
Н	-2.93958	-4.82466	0.14152	Н	2.94142	1.66679	1.99260	Н	-5.29305	1.19561	0.4327
С	2.44938	-0.50027	0.36377	С	3.90564	-1.67644	2.06153	H	-5.11727	2.17775	-1.0253
				Н	4,75143	-1.55600	2.74405				

Table S23 Cartesian coordinates of the ground state (S₀) fully optimized geometry of **5CB** in THF from CAM-B3LYP calculations (in Å)

Atom	Х	Y	Z	C	3.57695	7.48223	15.57006	Н	0.44938	7.75139	14.13108
С	7.35817	8.23400	17.25173	H	3.33478	8.32994	16.19958	Н	0.74916	8.57114	15.67333
С	5.91812	8.33271	15.38702	С	4.90199	7.35983	15.05672	Н	7.32353	6.74521	18.42167
В	7.57888	7.89654	15.57883	С	5.21222	6.25154	14.19377	С	5.83330	5.68229	17.96964
Н	7.89958	6.79739	15.26455	Н	6.21241	6.18507	13.78522	Н	5.80697	4.77721	18.58291
В	8.70182	8.89898	16.62831	С	4.28334	5.29789	13.89287	Н	5.88740	5.36778	16.92370
Н	9.75382	8.48836	16.99542	Н	4.53576	4.46572	13.24561	Н	4.88786	6.21279	18.11125
В	7.51554	9.81583	17.58666	С	2.98096	5.41965	14.43387	С	8.88544	5.73628	18.12182
Н	7.62107	10.15466	18.71749	С	1.83660	4.59117	14.28891	Н	8.87216	4.81835	18.71680
В	5.94763	9.15153	16.90734	С	1.66353	3.39311	13.56720	Н	9.78951	6.29235	18.38095
Н	5.00617	9.03108	17.62015	Н	2.48441	2.96162	13.00536	Н	8.96382	5.44829	17.07024
В	5.69449	9.93784	15.25361	С	0.42635	2.78611	13.59411	С	7.21913	7.22766	20.27551
Н	4.62710	10.29619	14.87677	Н	0.26164	1.86360	13.04923	С	7.07373	5.93577	21.10082
В	6.58528	10.81763	16.47731	С	-0.63152	3.35365	14.32456	Н	7.05350	6.17950	22.17040
Н	6.13158	11.83867	16.88383	Н	-1.59559	2.85641	14.32991	Н	7.90816	5.24551	20.94190
В	8.33508	10.58929	16.21057	С	-0.46927	4.54018	15.04182	Н	6.14658	5.40228	20.87171
Н	9.14452	11.44047	16.39961	Н	-1.30235	4.95780	15.59694	С	6.00259	8.12066	20.56299
В	8.48312	9.35427	14.93544	С	0.76313	5.16056	15.02725	Н	5.93568	8.32733	21.63884
Н	9.42249	9.29799	14.20881	С	1.19502	6.44404	15.71584	Н	5.06501	7.63982	20.26571
В	6.89725	9.00920	14.27778	С	1.08792	6.32349	17.24490	Н	6.06438	9.08124	20.04707
Н	6.75070	8.65631	13.15348	Н	0.04506	6.19286	17.54480	С	8.50059	7.94446	20.72957
В	7.26107	10.65325	14.83208	Н	1.46508	7.23075	17.72366	Н	8.42971	8.20073	21.79433
Н	7.31200	11.54634	14.04784	Н	1.66306	5.47249	17.61697	Н	8.67405	8.87254	20.17965
С	2.64663	6.53167	15.27147	С	0.38146	7.64895	15.21641	Н	9.38433	7.31108	20.60618
				Н	-0.67128	7.53504	15.48735				

Table S24 Cartesian coordinates of the first-excited state (S1) fully optimized geometry of 5CB in THF from CAM-B3LYP calculations (in Å)

Atom	Х	Y	Ζ	C	4.75722	-0.36189	-0.81751	(С	0.17427	-2.36833	-0.49032
С	-0.41896	2.11105	-0.64174	C	5.57636	-1.03935	-1.71362]	Η	0.36051	-2.38523	0.57728
С	-1.88898	1.31429	-0.24872	Н	5.24655	-1.24089	-2.72799	(С	-1.63528	-0.93008	1.92915
В	-0.41703	3.68861	-0.00016	С	6.83235	-1.45691	-1.28490	(С	-0.34638	-0.76628	2.46151
Н	0.62372	4.11456	0.36267	Н	7.48633	-1.98731	-1.96925]	Η	0.46293	-0.41684	1.82898
В	-1.12449	2.33904	0.89686	С	7.25808	-1.19923	0.01744	(С	-0.07131	-1.04577	3.79386
Н	-0.62246	1.85591	1.84273	Н	8.24069	-1.53150	0.33630]	Η	0.93594	-0.91453	4.17592
В	-2.86596	2.37818	0.65306	С	6.43486	-0.51924	0.91385	(С	-1.08462	-1.49410	4.63534
Н	-3.53981	1.91504	1.50661	Н	6.77708	-0.32317	1.92571]	Н	-0.87208	-1.71134	5.67713
В	-1.96472	3.88677	0.81467	С	5.18246	-0.10149	0.49217	(С	-2.36776	-1.66490	4.13286
Н	-2.06479	4.55588	1.78833	С	4.11727	0.65386	1.27584]	Н	-3.16454	-2.01680	4.78008
В	-1.72621	4.54711	-0.81641	С	4.62240	2.04011	1.70890	(С	-2.63639	-1.38976	2.79528
Н	-1.64288	5.71197	-1.02579	Н	5.45790	1.94191	2.40750]	Н	-3.64410	-1.54120	2.42494
В	-2.46150	3.42166	-1.97431	Н	3.82850	2.60037	2.21086	(С	-3.79530	-1.18366	-0.22891
Н	-2.92074	3.75476	-3.01547	Н	4.96156	2.62194	0.84859	(С	-4.00775	-2.35582	-0.96817
В	-3.17565	2.09918	-1.05510	С	3.65060	-0.14183	2.50468	1	Н	-3.16564	-2.88553	-1.39804
Н	-4.07851	1.43819	-1.42645	Н	4.47664	-0.28325	3.20702	(С	-5.28622	-2.86852	-1.16848
В	-3.24262	3.74061	-0.40991	Н	3.27278	-1.12663	2.21822]	Η	-5.41587	-3.77635	-1.74876
Н	-4.27870	4.31137	-0.32003	Н	2.85550	0.39572	3.02976	(С	-6.38900	-2.22152	-0.62805
С	3.01550	0.77137	0.23085	Н	-2.02583	-0.61916	0.11367]	Η	-7.38719	-2.61790	-0.78376
С	1.77401	1.36831	0.35342	С	-0.87374	-1.59695	-1.00743	(С	-6.20461	-1.06259	0.11930
Н	1.48734	1.83904	1.28657	С	-1.08970	-1.64517	-2.39438]	Η	-7.05836	-0.55058	0.55117
С	0.89861	1.38358	-0.74089	Н	-1.91331	-1.09393	-2.83655	(С	-4.92686	-0.55541	0.31595
С	1.31225	0.82130	-1.95229	С	-0.28030	-2.40606	-3.22770]	Η	-4.81856	0.34725	0.90545
Н	0.65737	0.85222	-2.81221	Н	-0.47182	-2.42494	-4.29571]	В	-1.61547	1.87799	-1.84082
С	2.55628	0.21761	-2.07785	С	0.76774	-3.14778	-2.69147]	Η	-1.43561	1.09853	-2.70131
Н	2.84931	-0.21829	-3.02698	Н	1.40115	-3.74443	-3.34008]	В	-0.72069	3.40051	-1.71261
С	3.40682	0.18848	-0.98072	С	0.98919	-3.13155	-1.32055]	H	0.11199	3.62822	-2.51979
				Н	1.79592	-3.71709	-0.89172					

Table S25 Cartesian coordinates of the ground state (S_0) fully optimized geometry of **6CP** in THF from CAM-B3LYP calculations (in Å)

tom	Х	Y	Z	C	9.44377	2.58805	7.84911	C	5.85154	-0.68359	9.44645
С	5.83223	3.12221	12.15264	С	9.46259	2.77331	6.45234	Н	6.58631	-1.23400	10.02321
С	4.45141	1.33478	12.80859	Н	8.58480	3.13807	5.93091	С	5.69081	-1.50931	12.68876
В	6.21181	3.76781	13.59573	С	10.62309	2.47980	5.76883	С	7.07222	-1.29565	12.55319
Н	7.30190	4.22553	13.70520	Н	10.66908	2.61181	4.69388	Н	7.43753	-0.42714	12.01508
В	5.92534	1.95786	13.42990	С	11.75549	2.00867	6.45451	C	8.00207	-2.17493	13.09448
Н	6.87324	1.25209	13.46892	Н	12.65673	1.78494	5.89379	Н	9.06319	-1.98232	12.97017
В	4.44562	1.53129	14.42120	С	11.74595	1.82237	7.83799	C	7.57352	-3.29773	13.79521
Н	4.40819	0.56061	15.10536	Н	12.63411	1.45849	8.34341	Н	8.29762	-3.98507	14.22099
В	5.43833	2.90688	14.91417	С	10.59177	2.10931	8.53762	C	6.21278	-3.53304	13.94416
Н	6.00155	2.84966	15.95947	С	10.32435	1.99313	10.02870	Н	5.86722	-4.40659	14.48788
В	4.71254	4.41277	14.29112	С	11.26075	2.90384	10.83895	С	5.28716	-2.65091	13.39424
Н	4.72621	5.44519	14.88181	Н	12.29838	2.58018	10.72411	Н	4.23006	-2.85991	13.51903
В	3.37609	3.90049	13.22503	Н	11.00930	2.85904	11.90159	С	2.70284	-1.13940	12.15380
Н	2.41605	4.57336	13.02783	Н	11.18528	3.94291	10.51088	C	2.06115	-1.78617	11.08972
В	3.15737	2.15875	13.36063	С	10.44827	0.53694	10.50714	Н	2.51919	-1.79027	10.10609
Н	2.08133	1.69203	13.19187	Н	11.47275	0.17886	10.37798	C	0.83765	-2.42696	11.26220
В	3.67297	3.09406	14.78636	Н	9.77942	-0.12213	9.94853	Н	0.36203	-2.91774	10.41886
Н	2.95262	3.19789	15.72736	Н	10.19796	0.46464	11.56884	C	0.22719	-2.43746	12.51014
С	8.88317	2.47342	10.09805	Н	4.40401	-0.34787	11.93502	Н	-0.72766	-2.93508	12.64720
С	8.07458	2.60072	11.18839	С	4.72292	-0.14957	10.08096	C	0.84725	-1.80645	13.58412
Н	8.42690	2.35610	12.18323	С	3.78709	0.51674	9.27265	Н	0.37823	-1.81015	14.56291
С	6.73012	3.04806	11.02210	Н	2.88320	0.92322	9.71536	C	2.06777	-1.16661	13.40478
С	6.27744	3.41271	9.70749	С	3.97816	0.66051	7.90410	Н	2.53045	-0.68019	14.25782
Н	5.26574	3.78063	9.59811	Н	3.23425	1.17754	7.30628	В	4.14664	2.81374	11.97324
С	7.08560	3.29266	8.61461	С	5.11844	0.13745	7.30210	Н	3.70354	2.77030	10.87742
Н	6.72512	3.56444	7.62910	Н	5.27035	0.24682	6.23286	В	4.90527	4.40331	12.52764
С	8.40450	2.80995	8.79133	С	6.05312	-0.53852	8.07644	H	4.98648	5.35031	11.81598
				Н	6.93863	-0.96348	7.61411				

Table S26 Cartesian coordinates of the first-excited state (S1) fully optimized geometry of 6CP in THF from CAM-B3LYP calculations (in Å)

`