## **Supporting information**

# Fluorescent Zinc(II) Thione and Selone Complexes for Light-Emitting Applications

Suman Mandal<sup>#, a</sup>, Gopendra Muduli<sup>#,a</sup>, Bikash Lahkar<sup>#,a</sup>, Arushi Rawat,<sup>b</sup> Osamu Tsutsumi<sup>b</sup> and Ganesan Prabusankar<sup>\*,a</sup>

- [a] Mr. Suman Mandal, Mr. Gopendra Muduli, Mr. Bikash Lahkar, and Prof. Dr.
   Ganesan Prabusankar, Organometallics, and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India-502285 E-mail: prabu@chy.iith.ac.in
- [b] Ms. Arushi Rawat, and Prof. Dr. Osamu Tsutsumi, Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
   E-Mail: tsutsumi@sk.ritsumei.ac.jp

<sup>#</sup>Equal contribution

| Table of contents |            |                                                                         |          |  |  |  |  |
|-------------------|------------|-------------------------------------------------------------------------|----------|--|--|--|--|
| S.no.             | Figure     | Figure description                                                      | Page no. |  |  |  |  |
| 1                 | Figure S1  | FT-IR spectrum of 1 at RT (KBr).                                        | 5        |  |  |  |  |
| 2                 | Figure S2  | <sup>1</sup> H NMR of <b>1</b> in DMSO- $d_6$ at RT.                    |          |  |  |  |  |
| 3                 | Figure S3  | $^{13}$ C NMR of <b>1</b> in DMSO- $d_6$ at RT.                         | 7        |  |  |  |  |
| 4                 | Figure S4  | FT-IR spectrum of <b>2</b> at RT (KBr).                                 | 8        |  |  |  |  |
| 5                 | Figure S5  | <sup>1</sup> H NMR of <b>2</b> in DMSO- $d_6$ at RT.                    | 9        |  |  |  |  |
| 6                 | Figure S6  | <sup>13</sup> C NMR of <b>2</b> in DMSO- $d_6$ at RT.                   | 10       |  |  |  |  |
| 7                 | Figure S7  | FT-IR spectrum of <b>3</b> at RT (KBr).                                 | 11       |  |  |  |  |
| 8                 | Figure S8  | <sup>1</sup> H NMR of <b>3</b> in DMSO- $d_6$ at RT.                    | 12       |  |  |  |  |
| 9                 | Figure S9  | <sup>13</sup> C NMR of <b>3</b> in DMSO- $d_6$ at RT.                   | 13       |  |  |  |  |
| 10                | Figure S10 | FT-IR spectrum of 4 at RT (KBr).                                        | 14       |  |  |  |  |
| 11                | Figure S11 | <b>Figure S11</b> <sup>1</sup> H NMR of <b>4</b> in DMSO- $d_6$ at RT.  |          |  |  |  |  |
| 12                | Figure S12 | $^{13}$ C NMR of <b>4</b> in DMSO- $d_6$ at RT.                         | 16       |  |  |  |  |
| 13                | Figure S13 | Crystal structure of <b>1</b> (Hydrogen atoms are omitted for clarity). | 17       |  |  |  |  |
| 14                | Figure S14 | Crystal structure of <b>2</b> (Hydrogen atoms are omitted for clarity). | 18       |  |  |  |  |
| 15                | Figure S15 | Crystal structure of <b>3</b> (Hydrogen atoms are omitted for clarity). | 19       |  |  |  |  |
| 16                | Figure S16 | Crystal structure of <b>4</b> (Hydrogen atoms are omitted for clarity). | 20       |  |  |  |  |
| 17                | Figure S17 | PXRD pattern of <b>1</b> at RT (Experimental vs simulated).             | 21       |  |  |  |  |
| 18                | Figure S18 | PXRD pattern of <b>2</b> at RT (Experimental vs simulated).             | 22       |  |  |  |  |
| 19                | Figure S19 | PXRD pattern of <b>3</b> at RT (Experimental vs simulated).             | 23       |  |  |  |  |
| 20                | Figure S20 | PXRD pattern of <b>4</b> at RT (Experimental vs simulated).             | 24       |  |  |  |  |
| 21                | Figure S21 | Packing diagram of <b>1</b> showing intermolecular interactions.        | 25       |  |  |  |  |
| 22                | Figure S22 | Packing diagram of <b>2</b> showing intermolecular interactions.        | 26       |  |  |  |  |
| 23                | Figure S23 | Packing diagram of <b>3</b> showing intermolecular interactions.        | 27       |  |  |  |  |

| 24 | Figure S24   | Packing diagram of <b>4</b> showing intermolecular                                                                                        | 28 |
|----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|----|
| 25 | E: 625       | Translasian landaria finterna landar C. H                                                                                                 | 20 |
| 25 | Figure 525   | interactions in <b>1</b> .                                                                                                                | 29 |
| 26 | Figure S26   | Topological analysis of intramolecular S…H                                                                                                | 30 |
|    |              | interactions in <b>2</b> .                                                                                                                |    |
| 27 | Figure S27   | Topological analysis of intramolecular SH                                                                                                 | 31 |
|    | 8            | interactions in <b>3</b> .                                                                                                                |    |
| 28 | Figure S28   | Topological analysis of intramolecular Se····H                                                                                            | 32 |
|    |              | interactions in 4.                                                                                                                        |    |
| 29 | Figure S29   | Thermogravimetric analysis of 1-4 from 40-790 °C at a                                                                                     | 33 |
|    |              | heating range of 10 °C/min under an inert environment.                                                                                    |    |
| 30 | Figure S30   | UV-Vis absorption spectra of $L^1$ and $L^2$ in acetonitrile at RT (C = 1 x 10 <sup>-5</sup> M).                                          | 34 |
| 31 | Figure S31   | Emission spectra of $L^1$ and $L^2$ at RT in solution state                                                                               | 35 |
|    |              | using acetonitrile (C = $1 \times 10^{-5}$ M) and in crystalline                                                                          |    |
|    |              | state at RT along with crystal images of $L^1$ and $L^2$ under                                                                            |    |
|    |              | ambient light vs under UV light.                                                                                                          |    |
| 32 | Figure S32   | UV-Vis absorption spectra of $1(a)$ , $2(b)$ , $3(c)$ , and $4(d)$                                                                        | 36 |
|    |              | in acetonitrile (black solid line), DMF (red solid line),                                                                                 |    |
|    |              | and CHCl <sub>3</sub> (blue solid line) (C = $1 \times 10^{-5}$ M).                                                                       | 25 |
| 33 | Figure S33   | Emission spectra of $1$ (a), $2$ (b), $3$ (c), and $4$ (d) in                                                                             | 37 |
|    |              | acetonitrile (black solid line), DMF (red solid line), and                                                                                |    |
| 24 | E: 624       | CHCl <sub>3</sub> (blue solid line).<br>Environment $f_1(x) = 2(x) + a + 1/(x) + DME/(C)$                                                 | 20 |
| 34 | Figure S34   | Emission spectra of $I(a)$ , $2(b)$ , $3(c)$ , and $4(d)$ in DMF (C<br>= 10 <sup>-5</sup> M) with increasing water concentration from 20% | 38 |
|    |              | $= 10^{-10}$ With increasing water concentration from 20%                                                                                 |    |
|    |              | aggregation                                                                                                                               |    |
| 35 | Figure S35   | Photoluminescence decay profiles of 1 in crystalline                                                                                      | 39 |
| 55 | i igui e see | state.                                                                                                                                    | 57 |
| 36 | Figure S36   | Photoluminescence decay profiles of 2 in crystalline                                                                                      | 40 |
|    |              | state.                                                                                                                                    |    |
| 37 | Figure S37   | Photoluminescence decay profiles of <b>3</b> in crystalline                                                                               | 41 |
|    | 8            | state.                                                                                                                                    |    |
| 38 | Figure S38   | Photoluminescence decay profiles of <b>4</b> in crystalline                                                                               | 42 |
|    |              | state.                                                                                                                                    |    |
| 39 | Figure S39   | DFT Optimized structure of (i) 1, (ii) 2, (iii) 3, and (iv)                                                                               | 43 |
|    |              | 4.                                                                                                                                        |    |
| 40 | Figure S40   | DFT calculated UV-Vis spectra (gas phase) of 1-4.                                                                                         | 44 |
| 41 | Figure S41   | Natural transition orbitals (NTOs) of complexes 1-                                                                                        | 45 |
|    |              | 4 illustrate the active singlet excited states in the                                                                                     | -  |
|    |              | absorption bands. NTO pairs that contribute more than                                                                                     |    |
|    |              | 50% to each excited state.                                                                                                                |    |
| 42 | Table S1     | Change in the chemical shift values of the $C=S$ and                                                                                      | 46 |
|    |              | C=Se Carbon atom in complexes 1-4 compared to that of                                                                                     |    |
|    |              | ligands $L^1$ and $L^2$ in DMSO- $d_6$ at RT.                                                                                             |    |
| 43 | Table S2     | Fitting parameters of fluorescence decay of 1-4. (RAx =                                                                                   | 47 |
|    |              | Relative amplitude of x-th component)                                                                                                     |    |

| 44                                  | Table S3           | The structural parameters of 1-4.                                                                 | 48 |  |
|-------------------------------------|--------------------|---------------------------------------------------------------------------------------------------|----|--|
| 45                                  | Table S4           | Selected bond lengths and angles of complexes 1-4.                                                | 49 |  |
| 46                                  | Table S5           | Key parameters (HOMO/LUMO, band gap, energy level location) from DFT calculations of <b>1-4</b> . | 50 |  |
| 47                                  | Table S6           | Excitation energies and oscillator strengths of 1.                                                | 51 |  |
| 45                                  | Table S7           | Excitation energies and oscillator strengths of 2.                                                | 52 |  |
| 46                                  | Table S8           | Excitation energies and oscillator strengths of <b>3</b> .                                        | 53 |  |
| 47                                  | Table S9           | Excitation energies and oscillator strengths of 4.                                                | 54 |  |
| Cartes                              | ian coordinates of | f 1.                                                                                              | 55 |  |
| Cartesian coordinates of <b>2</b> . |                    |                                                                                                   |    |  |
| Cartesian coordinates of <b>3</b> . |                    |                                                                                                   |    |  |
| Cartes                              | ian coordinates of | f 4.                                                                                              | 62 |  |



Figure S1: FT-IR spectrum of 1 at RT (KBr).



Figure S2: <sup>1</sup>H NMR spectrum of 1 in DMSO- $d_6$  at RT.



Figure S3: <sup>13</sup>C NMR spectrum of 1 in DMSO- $d_6$  at RT.



Figure S4: FT-IR spectrum of 2 at RT (KBr).



Figure S5: <sup>1</sup>H NMR spectrum of 2 in DMSO- $d_6$  at RT.



Figure S6: <sup>13</sup>C NMR spectrum of 2 in DMSO- $d_6$  at RT.



Figure S7: FT-IR spectrum of 3 at RT (KBr).



Figure S8: <sup>1</sup>H NMR spectrum of 3 in DMSO- $d_6$  at RT.



Figure S9:  ${}^{13}$ C NMR of 3 in DMSO- $d_6$  at RT.



Figure S10: FT-IR spectrum of 4 at RT (KBr).



**Figure S11:** <sup>1</sup>H NMR spectrum of **4** in DMSO- $d_6$  at RT.



Figure S12: <sup>13</sup>C NMR spectrum of 4 in DMSO- $d_6$  at RT.



Figure S13: Crystal structure of 1 (Hydrogen atoms are omitted for clarity).



Figure S14: Crystal structure of 2 (Hydrogen atoms are omitted for clarity).



Figure S15: Crystal structure of 3 (Hydrogen atoms are omitted for clarity).



Figure S16: Crystal structure of 4 (Hydrogen atoms are omitted for clarity).



Figure S17: PXRD pattern of 1 at RT (Experimental vs simulated).



Figure S18: PXRD pattern of 2 at RT (Experimental vs simulated).



Figure S19: PXRD pattern of 3 at RT (Experimental vs simulated).



Figure S20: PXRD pattern of 4 at RT (Experimental vs simulated).



Figure S21: Packing diagram of 1 showing intermolecular interactions.



Figure S22: Packing diagram of 2 showing intermolecular interactions.



Figure S23: Packing diagram of 3 showing intermolecular interactions.



Figure S24: Packing diagram of 4 showing intermolecular interactions.



**Figure S25:** Topological analysis of intramolecular S···H interactions in **1.** (I)  $\rho(\mathbf{r}) = 0.0145$ ,  $\nabla^2 \rho(\mathbf{r}) = 0.048$ ; (II)  $\rho(\mathbf{r}) = 0.004$ ,  $\nabla^2 \rho(\mathbf{r}) = 0.0122$ ; (III)  $\rho(\mathbf{r}) = 0.0038$ ,  $\nabla^2 \rho(\mathbf{r}) = 0.0114$ ; (IV)  $\rho(\mathbf{r}) = 0.0136$ ,  $\nabla^2 \rho(\mathbf{r}) = 0.0455$ .



**Figure S26:** Topological analysis of intramolecular S····H interactions in **2.** (I)  $\rho(\mathbf{r}) = 0.0146$ ,  $\nabla^2 \rho(\mathbf{r}) = 0.0481$ ; (II)  $\rho(\mathbf{r}) = 0.0146$ ,  $\nabla^2 \rho(\mathbf{r}) = 0.0481$ .



**Figure S27:** Topological analysis of intramolecular S····H interactions in **3.** (I)  $\rho(\mathbf{r}) = 0.0146$ ,  $\nabla^2 \rho(\mathbf{r}) = 0.0483$ ; (II)  $\rho(\mathbf{r}) = 0.0146$ ,  $\nabla^2 \rho(\mathbf{r}) = 0.0482$ .



**Figure S28:** Topological analysis of intramolecular Se…H interactions in **4.** (I)  $\rho(\mathbf{r}) = 0.0135$ ,  $\nabla^2 \rho(\mathbf{r}) = 0.0404$ ; (II)  $\rho(\mathbf{r}) = 0.0139$ ,  $\nabla^2 \rho(\mathbf{r}) = 0.0405$ .



**Figure S29:** Thermogravimetric analysis of complexes 1-4 from 40-790 °C at a heating range of 10 °C/min under an inert environment.



**Figure S30:** UV-Vis absorption spectra of  $L^1$  and  $L^2$  in acetonitrile at RT (C = 1 x 10<sup>-5</sup> M).



**Figure S31:** (a) Emission spectra of  $L^1$  and  $L^2$  at RT in solution state using acetonitrile (C = 1 x 10<sup>-5</sup> M), (b) Emission spectra of  $L^1$  and  $L^2$  in the crystalline state at RT, (c) Emission spectra of  $L^1$  vs 1 in acetonitrile using the same concentration at RT, (d) Emission spectra of  $L^1$  vs 1 in the crystalline state at RT, (e) Crystal images of  $L^1$  and  $L^2$  under ambient light vs under UV light.



Figure S32: UV-Vis absorption spectra of 1(a), 2(b), 3(c), and 4(d) in acetonitrile (black solid line), DMF (red solid line), and CHCl<sub>3</sub> (blue solid line) (C = 1 x 10<sup>-5</sup> M).



**Figure S33:** Emission spectra of **1** (a), **2**(b), **3**(c), and **4**(d) in acetonitrile (black solid line), DMF (red solid line), and CHCl<sub>3</sub> (blue solid line).



**Figure S34:** Emission spectra of 1(a), 2(b), 3(c), and 4(d) in DMF (C =  $10^{-5}$  M) with increasing water concentration from 20% to 80% showing an increase in emission intensity upon aggregation, (e) images of solution of 1 in DMF under ambient light and under UV light with increasing water percentage from 0% to 80%.



Figure S35: Photoluminescence decay profiles of 1 in crystalline state.



Figure S36: Photoluminescence decay profiles of 2 in crystalline state.



Figure S37: Photoluminescence decay profiles of 3 in crystalline state.



Figure S38: Photoluminescence decay profiles of 4 in crystalline state.



Figure S39: DFT Optimized structures of (i) 1, (ii) 2, (iii) 3, and (iv) 4.



Figure S40: DFT calculated UV-Vis spectra (gas phase) of 1(a), 2(b), 3(c), and 4(d).

| Complex | $\lambda_{\text{calc.}}(\text{nm})$                        | Hole | Electron |
|---------|------------------------------------------------------------|------|----------|
| 1       | $S_1$<br>w = 0.73<br>3.1724 (0.2061)<br>390.82 nm          | 8 X  | B C C    |
|         | $S_2$<br>w = 0.75<br>3.1881 (0.064)<br>388.89 nm           |      | S. AS    |
| 2       | S <sub>1</sub><br>w=0.52<br>3.1737 (0.1483)<br>390.67 nm   |      | of the   |
|         | $S_2$<br>w = 0.52<br>3.1869 (0.0868)<br>389.04 nm          |      |          |
| 3       | S <sub>1</sub><br>w = 0.51<br>3.1755 (0.1772)<br>390.43 nm |      |          |
|         | S <sub>2</sub><br>w =0.51<br>3.1881 (0.064)<br>388.89 nm   |      |          |
| 4       | S <sub>1</sub><br>w =0.64<br>3.1605 (0.1086)<br>392.29 nm  |      |          |
|         | S <sub>2</sub><br>w =0.64<br>3.1754 (0.126)<br>390.45 nm   |      |          |

**Figure S41:** Natural transition orbitals (NTOs) of complexes 1-4 illustrate the active singlet excited states in the absorption bands. NTO pairs that contribute more than 50% to each excited state.

| complexes 1 | -4 compared to | o that of ligands | s $L^1$ and $L^2$ in 1 | DMSO- $d_6$ . |  |
|-------------|----------------|-------------------|------------------------|---------------|--|
|             |                |                   |                        |               |  |
|             |                |                   |                        |               |  |

Table S1: Change in the chemical shift values of the C=S and C=Se Carbon atom in

| Ligand           | $C=S Carbon (\delta_c ppm)$ | Complex | $C=S Carbon (\delta_c ppm)$ | Shift in $\delta_c$ (ppm) |
|------------------|-----------------------------|---------|-----------------------------|---------------------------|
| $\mathbf{L}^{1}$ | 167.37 ppm                  | 1       | 160.42 ppm                  | 6.95 ppm                  |
|                  | 167.37 ppm                  | 2       | 160.42 ppm                  | 6.95 ppm                  |
|                  | 167.37 ppm                  | 3       | 160.44 ppm                  | 6.93 ppm                  |
| L <sup>2</sup>   | 160.76 ppm                  | 4       | 154.84 ppm                  | 6.92 ppm                  |

| Compound | τ, ns | τ1, ns | <b>τ2, ns</b> | RA1     | RA2     | decay       | Emission |
|----------|-------|--------|---------------|---------|---------|-------------|----------|
|          |       |        |               |         |         |             | nm       |
| 1        | 4.581 | 1.32   | 5.11          | 4330.37 | 1001.38 | bi-         | 455      |
|          |       |        |               |         |         | exponential |          |
| 2        | 8.502 | 2.47   | 7.03          | 1893.38 | 854.30  | bi-         | 475      |
|          |       |        |               |         |         | exponential |          |
| 3        | 18.08 | 6.55   | 21.37         | 1283    | 1379.3  | bi-         | 535      |
|          |       |        |               |         |         | exponential |          |
| 4        | 0.95  | 0.37   | 0.99          | 289.62  | 246.45  | bi-         | 425      |
|          |       |        |               |         |         | exponential |          |

 Table S2. Fitting parameters of fluorescence decay of 1-4. (RAx = Relative amplitude of x-th component)

| Identification code                            | 1                                                          | 2                                       | 3                                       | 4                                                                                        |
|------------------------------------------------|------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------|
| Empirical formula                              | $\begin{array}{c} C_{42}H_{40}Cl_2N_4S_2\\ Zn \end{array}$ | $C_{42}H_{40}Br_2N_4S_2Zn$              | $C_{42}H_{40}I_2N_4S_2Zn$               | C <sub>43.5</sub> H <sub>41.5</sub> Cl <sub>2</sub> N <sub>5</sub> Se <sub>2</sub><br>Zn |
| Formula weight                                 | 801.17                                                     | 890.09                                  | 984.07                                  | 928.567                                                                                  |
| Temperature/K                                  | 273.15                                                     | 273.15                                  | 273.15                                  | 298.15                                                                                   |
| Crystal system                                 | monoclinic                                                 | triclinic                               | monoclinic                              | triclinic                                                                                |
| Space group                                    | C2/c                                                       | P-1                                     | $P2_1/c$                                | P-1                                                                                      |
| a/Å                                            | 39.7664(15)                                                | 9.7737(15)                              | 10.1471(17)                             | 9.833(4)                                                                                 |
| b/Å                                            | 10.2851(4)                                                 | 12.6125(19)                             | 18.739(3)                               | 12.903(5)                                                                                |
| c/Å                                            | 20.4074(8)                                                 | 18.399(3)                               | 22.137(4)                               | 18.383(8)                                                                                |
| $\alpha/^{\circ}$                              | 90                                                         | 78.893(5)                               | 90                                      | 78.137(14)                                                                               |
| β/°                                            | 105.501(2)                                                 | 77.020(5)                               | 98.777(6)                               | 76.450(14)                                                                               |
| $\gamma^{\circ}$                               | 90                                                         | 74.820(5)                               | 90                                      | 74.168(14)                                                                               |
| Volume/Å <sup>3</sup>                          | 8043.1(5)                                                  | 2111.3(6)                               | 4160.0(12)                              | 2156.3(15)                                                                               |
| Ζ                                              | 8                                                          | 2                                       | 4                                       | 2                                                                                        |
| $\rho_{calc}g/cm^3$                            | 1.323                                                      | 1.400                                   | 1.571                                   | 1.430                                                                                    |
| $\mu/\text{mm}^{-1}$                           | 0.882                                                      | 2.606                                   | 2.209                                   | 2.417                                                                                    |
| F(000)                                         | 3328.0                                                     | 904.0                                   | 1952.0                                  | 940.6                                                                                    |
| Crystal size/mm <sup>3</sup>                   | 0.27 × 0.21 ×<br>0.17                                      | $0.28 \times 0.18 \times 0.17$          | 0.2 	imes 0.17 	imes 0.16               | $0.28 \times 0.17 \times 0.17$                                                           |
| Dediction                                      | MoK $\alpha$ ( $\lambda$ =                                 | MoK $\alpha$ ( $\lambda$ =              | MoK $\alpha$ ( $\lambda$ =              | Mo K $\alpha$ ( $\lambda$ =                                                              |
| Kadiation                                      | 0.71073)                                                   | 0.71073)                                | 0.71073)                                | 0.71073)                                                                                 |
| 2⊖ range for data collection/°                 | 4.1 to 54.302                                              | 3.806 to 54.382                         | 3.724 to 54.702                         | 4.32 to 53.1                                                                             |
|                                                | $-48 \le h \le 50, -$                                      | $-12 \le h \le 12, -16$                 | $-13 \le h \le 12, -23$                 | $-12 \le h \le 11, -16$                                                                  |
| Index ranges                                   | $13 \le k \le 13, -$                                       | $\leq$ k $\leq$ 16, -23 $\leq$ l $\leq$ | $\leq$ k $\leq$ 24, -28 $\leq$ l $\leq$ | $\leq$ k $\leq$ 16, -23 $\leq$ l $\leq$                                                  |
|                                                | $26 \le l \le 26$                                          | 23                                      | 28                                      | 22                                                                                       |
| Reflections collected                          | 90769                                                      | 42432                                   | 148885                                  | 41203                                                                                    |
| Independent                                    | $8911 [R_{int} =$                                          | $9377 [R_{int} =$                       | $9316 [R_{int} =$                       | $8945 [R_{int} =$                                                                        |
| reflections                                    | $0.0736, R_{sigma} = 0.02661$                              | $0.0894, R_{sigma} = 0.07871$           | $0.1543, R_{sigma} = 0.06201$           | $0.0518, R_{sigma} = 0.04271$                                                            |
| Data/restraints/parame<br>ters                 | 8911/0/464                                                 | 9377/0/464                              | 9316/0/464                              | 8945/0/492                                                                               |
| Goodness-of-fit on F <sup>2</sup>              | 1.030                                                      | 1.036                                   | 1.016                                   | 1.015                                                                                    |
| Final R indexes                                | $R_1 = 0.0388$ .                                           | $R_1 = 0.0555$ ,                        | $R_1 = 0.0471$ .                        | $R_1 = 0.0375.$                                                                          |
| [I>=2σ (I)]                                    | $wR_2 = 0.0907$                                            | $wR_2 = 0.1249$                         | $wR_2 = 0.0908$                         | $wR_2 = 0.0857$                                                                          |
| Final R indexes [all                           | $R_1 = 0.0648,$                                            | $R_1 = 0.1152,$                         | $R_1 = 0.0995,$                         | $R_1 = 0.0626,$                                                                          |
| data]                                          | $wR_2 = 0.1028$                                            | $wR_2 = 0.1476$                         | $wR_2 = 0.1076$                         | $wR_2 = 0.0959$                                                                          |
| Largest diff. peak/hole<br>/ e Å <sup>-3</sup> | 1.02/-0.36                                                 | 1.06/-1.18                              | 0.88/-0.95                              | 0.69/-0.46                                                                               |

 Table S3. The structural parameters of complexes 1-4.

|                 | 1         | 2          | 3          | 4          |  |  |  |
|-----------------|-----------|------------|------------|------------|--|--|--|
| Bond Length [Å] |           |            |            |            |  |  |  |
| M1-E1           | 2.3882(6) | 2.3687(13) | 2.3857(13) | 2.4854(10) |  |  |  |
| M1-E2           | 2.3808(7) | 2.3794(13) | 2.3725(13) | 2.5049(8)  |  |  |  |
| M1-X1           | 2.2354(7) | 2.3862(9)  | 2.5613(7)  | 2.2567(13) |  |  |  |
| M1-X2           | 2.2433(7) | 2.3869(8)  | 2.6113(7)  | 2.2541(12) |  |  |  |
|                 |           | Bond Angle | [°]        |            |  |  |  |
| E1-M1-E2        | 109.86(2) | 108.64(5)  | 106.49(5)  | 104.26(17) |  |  |  |
| X1-M1-X2        | 115.84(3) | 115.32(3)  | 117.24(2)  | 114.21(5)  |  |  |  |
| E1-M1-X1        | 111.94(3) | 105.70(4)  | 108.75(4)  | 107.99(3)  |  |  |  |
| E2-M1-X2        | 110.48(3) | 105.38(4)  | 104.89(4)  | 107.40(3)  |  |  |  |

 Table S4. Selected bond lengths and angles of complexes 1-4.

Here, M = Zn(II)

E = S/Se

 $\mathbf{X} = \mathbf{C}\mathbf{l} \ / \ \mathbf{Br} \ / \ \mathbf{I}$ 

**Table S5**: Key parameters (HOMO/LUMO, band gap, energy level location) from DFTcalculations of 1-4.

| Compound | HOMO   | LUMO   | HOMO-1 | LUMO+1 | Band gap | Singlet | Triplet |
|----------|--------|--------|--------|--------|----------|---------|---------|
|          | (eV)   | (eV)   | (eV)   | (eV)   | (eV)     | (eV)    | (eV)    |
| 1        | -5.317 | -1.817 | -5.324 | -1.816 | 3.50     | 2.5661  | 2.4770  |
| 2        | -5.322 | -1.840 | -5.345 | -1.818 | 3.48     | 2.2487  | 2.1343  |
| 3        | -5.350 | -1.846 | -5.352 | -1.846 | 3.50     | 2.4147  | 2.3659  |
| 4        | -5.338 | -1.846 | -5.343 | -1.843 | 3.49     | 2.4507  | 2.3763  |



 Table S6: Excitation energies and oscillator strengths of 1.

| No. | Energy | Wavelength | Osc. Strength | Symmetry  | Major contribs    |
|-----|--------|------------|---------------|-----------|-------------------|
|     | (eV)   | (nm)       |               |           |                   |
| 1   | 1.7510 | 708.09     | 0.0           | Triplet-A | HOMO->L+1 (95%)   |
| 2   | 1.7565 | 705.87     | 0.0           | Triplet-A | H-1->LUMO (95%)   |
| 3   | 3.1724 | 390.82     | 0.2061        | Singlet-A | H-1->LUMO (24%),  |
|     |        |            |               |           | HOMO->L+1 (74%)   |
| 4   | 3.1873 | 388.99     | 0.0482        | Singlet-A | H-1->LUMO (72%),  |
|     |        |            |               |           | HOMO->L+1 (22%)   |
| 5   | 3.2571 | 380.66     | 0.0           | Triplet-A | H-12->L+1 (54%),  |
|     |        |            |               |           | HOMO->L+7 (31%)   |
| 6   | 3.2613 | 380.16     | 0.0           | Triplet-A | H-13->LUMO (54%), |
|     |        |            |               |           | H-1->L+6 (32%)    |
| 7   | 3.2839 | 377.56     | 0.0           | Triplet-A | HOMO->LUMO (97%)  |
| 8   | 3.2839 | 377.55     | 0.0           | Singlet-A | HOMO->LUMO (97%)  |
| 9   | 3.2935 | 376.45     | 0.0           | Triplet-A | H-1->L+1 (97%)    |
| 10  | 3.2936 | 376.45     | 0.0           | Singlet-A | H-1->L+1 (98%)    |
| 11  | 3.4449 | 359.91     | 0.0           | Triplet-A | H-8->L+1 (80%)    |
| 12  | 3.4518 | 359.19     | 0.0           | Triplet-A | H-9->LUMO (78%)   |
| 13  | 3.5308 | 351.15     | 0.0002        | Singlet-A | H-2->L+1 (90%)    |
| 14  | 3.5395 | 350.28     | 0.0003        | Singlet-A | H-2->LUMO (89%)   |
| 15  | 3.7990 | 326.36     | 0.001         | Singlet-A | H-3->L+1 (84%)    |
| 16  | 3.8239 | 324.23     | 0.0005        | Singlet-A | H-4->LUMO (15%),  |
|     |        |            |               |           | H-3->LUMO (74%)   |
|     |        |            |               |           |                   |

 Table S7: Excitation energies and oscillator strengths of 2.

| No. | Energy<br>(eV) | Wavelength (nm) | Osc. Strength | Symmetry  | Major contributors |
|-----|----------------|-----------------|---------------|-----------|--------------------|
| 1   | 1.7512         | 708.00          | 0.0           | Triplet-A | H-1->LUMO (97%)    |
| 2   | 1.7512         | 707.98          | 0.0           | Triplet-A | HOMO->L+1 (97%)    |
| 3   | 3.1737         | 390.67          | 0.1483        | Singlet-A | H-1->LUMO (45%),   |
|     |                |                 |               |           | HOMO->L+1 (53%)    |
| 4   | 3.1869         | 389.04          | 0.0868        | Singlet-A | H-1->LUMO (53%),   |
|     |                |                 |               |           | HOMO->L+1 (45%)    |
| 5   | 3.2306         | 383.78          | 0.0           | Triplet-A | HOMO->LUMO (100%)  |
| 6   | 3.2307         | 383.77          | 0.0001        | Singlet-A | HOMO->LUMO (100%)  |
| 7   | 3.2547         | 380.93          | 0.0           | Triplet-A | H-14->LUMO (56%),  |
|     |                |                 |               |           | H-1->L+6 (23%)     |
| 8   | 3.2554         | 380.86          | 0.0           | Triplet-A | H-13->L+1 (56%),   |
|     |                |                 |               |           | HOMO->L+7 (21%)    |
| 9   | 3.2752         | 378.55          | 0.0           | Triplet-A | H-1->L+1 (100%)    |
| 10  | 3.2753         | 378.55          | 0.0           | Singlet-A | H-1->L+1 (100%)    |
| 11  | 3.4422         | 360.19          | 0.0           | Triplet-A | H-11->LUMO (83%)   |
| 12  | 3.4425         | 360.16          | 0.0           | Triplet-A | H-10->L+1 (83%)    |
| 13  | 3.4796         | 356.32          | 0.0001        | Singlet-A | H-2->LUMO (92%)    |
| 14  | 3.4941         | 354.84          | 0.0001        | Singlet-A | H-2->L+1 (93%)     |
| 15  | 3.5934         | 345.03          | 0.0           | Singlet-A | H-3->LUMO (99%)    |
| 16  | 3.6117         | 343.28          | 0.0           | Singlet-A | H-3->L+1 (100%)    |

 Table S8: Excitation energies and oscillator strengths of 3.

| No. | Energy<br>(eV) | Wavelength (nm) | Osc. Strength | Symmetry  | Major contributors                                                          |
|-----|----------------|-----------------|---------------|-----------|-----------------------------------------------------------------------------|
| 1   | 1.7519         | 707.72          | 0.0           | Triplet-A | H-1->L+1 (38%),<br>HOMO->L+1 (47%)                                          |
| 2   | 1.7519         | 707.71          | 0.0           | Triplet-A | H-1->LUMO (47%),<br>HOMO->LUMO (37%)                                        |
| 3   | 3.1755         | 390.43          | 0.1772        | Singlet-A | H-1->LUMO (10%),<br>H-1->L+1 (37%),<br>HOMO->LUMO (40%),<br>HOMO->L+1 (11%) |
| 4   | 3.1881         | 388.89          | 0.064         | Singlet-A | H-1->LUMO (41%),<br>HOMO->L+1 (44%)                                         |
| 5   | 3.2166         | 385.45          | 0.0           | Triplet-A | H-2->LUMO (90%)                                                             |
| 6   | 3.2169         | 385.41          | 0.0           | Triplet-A | H-2->L+1 (90%)                                                              |
| 7   | 3.2177         | 385.32          | 0.0008        | Singlet-A | H-2->LUMO (85%),<br>H-2->L+1 (14%)                                          |
| 8   | 3.2177         | 385.32          | 0.0009        | Singlet-A | H-2->LUMO (14%),<br>H-2->L+1 (85%)                                          |
| 9   | 3.2576         | 380.60          | 0.0           | Triplet-A | H-13->L+1 (47%)                                                             |
| 10  | 3.2576         | 380.60          | 0.0           | Triplet-A | H-14->LUMO (46%)                                                            |
| 11  | 3.2665         | 379.57          | 0.0           | Triplet-A | H-1->LUMO (36%),<br>HOMO->LUMO (48%)                                        |
| 12  | 3.2668         | 379.57          | 0.0           | Singlet-A | H-1->LUMO (40%),<br>HOMO->LUMO (46%)                                        |
| 13  | 3.2668         | 379.53          | 0.0           | Triplet-A | H-1->L+1 (46%),<br>HOMO->L+1 (39%)                                          |
| 14  | 3.2668         | 379.52          | 0.0           | Singlet-A | H-1->L+1 (50%),<br>HOMO->L+1 (36%)                                          |
| 15  | 3.3598         | 369.03          | 0.0           | Singlet-A | H-3->LUMO (86%),<br>H-3->L+1 (14%)                                          |
| 16  | 3.3605         | 368.95          | 0.0001        | Singlet-A | H-3->LUMO (14%),<br>H-3->L+1 (86%)                                          |

 Table S9: Excitation energies and oscillator strengths of 4.

| No. | Energy | Wavelength | Osc. Strength | Symmetry  | Major contributors |
|-----|--------|------------|---------------|-----------|--------------------|
| 1   | (ev)   | (nm)       |               | T. 1 / A  |                    |
| 1   | 1.7496 | 708.66     | 0.0           | Triplet-A | H-1->LUMO (46%),   |
|     |        |            |               |           | HOMO->LUMO (50%)   |
| 2   | 1.7507 | 708.21     | 0.0           | Triplet-A | H-1->L+1 (50%),    |
|     |        |            |               |           | HOMO->L+1 (45%)    |
| 3   | 3.1605 | 392.29     | 0.1086        | Singlet-A | H-1->LUMO (24%),   |
|     |        |            |               |           | H-1->L+1 (18%),    |
|     |        |            |               |           | HOMO->LUMO (40%),  |
|     |        |            |               |           | HOMO->L+1 (16%)    |
| 4   | 3.1754 | 390.45     | 0.126         | Singlet-A | H-1->LUMO (16%),   |
|     |        |            |               |           | H-1->L+1 (26%),    |
|     |        |            |               |           | HOMO->LUMO (19%),  |
|     |        |            |               |           | HOMO->L+1 (37%)    |
| 5   | 3.2224 | 384.75     | 0.0           | Triplet-A | H-1->LUMO (50%),   |
|     |        |            |               |           | HOMO->LUMO (49%)   |
| 6   | 3.2231 | 384.67     | 0.0008        | Singlet-A | H-1->LUMO (60%),   |
|     |        |            |               |           | HOMO->LUMO (39%)   |
| 7   | 3.2248 | 384.47     | 0.0           | Triplet-A | H-1->L+1 (46%),    |
|     |        |            |               |           | HOMO->L+1 (53%)    |
| 8   | 3.2253 | 384.41     | 0.0006        | Singlet-A | H-1->L+1 (55%),    |
|     |        |            |               |           | HOMO->L+1 (45%)    |
| 9   | 3.2508 | 381.40     | 0.0           | Triplet-A | H-12->LUMO (54%)   |
| 10  | 3.2541 | 381.01     | 0.0           | Triplet-A | H-13->L+1 (55%)    |
| 11  | 3.3448 | 370.68     | 0.0           | Triplet-A | H-2->LUMO (93%)    |
| 12  | 3.3567 | 369.37     | 0.0005        | Singlet-A | H-2->LUMO (95%)    |
| 13  | 3.3597 | 369.04     | 0.0           | Triplet-A | H-2->L+1 (92%)     |
| 14  | 3.3736 | 367.52     | 0.0004        | Singlet-A | H-2->L+1 (95%)     |
| 15  | 3.6494 | 339.74     | 0.0004        | Singlet-A | H-4->LUMO (17%),   |
|     |        |            |               |           | H-3->LUMO (77%)    |
| 16  | 3.6518 | 339.52     | 0.0006        | Singlet-A | H-4->L+1 (85%),    |
|     |        |            |               |           | H-3->L+1 (11%)     |

| Zn | -0.006293957 | -0.235042060 | -0.267425038 |
|----|--------------|--------------|--------------|
| Cl | 0.966302110  | -1.745140168 | 1.063704057  |
| Cl | -1.105304035 | -1.057232118 | -2.037518166 |
| S  | -1.484881066 | 1.022315030  | 1.125684064  |
| S  | 1.586547160  | 1.226813043  | -1.271872110 |
| Ν  | -3.710574222 | 0.649850003  | -0.411194049 |
| Ν  | -2.871479163 | 2.644831150  | -0.600730062 |
| Ν  | 3.717918313  | 0.601585001  | 0.322100004  |
| Ν  | 2.774929245  | 2.473572136  | 0.916623045  |
| С  | -5.888233356 | -1.884179178 | -0.988306088 |
| С  | -2.702731153 | 1.448119064  | 0.008346981  |
| С  | -4.507905279 | 1.336070057  | -1.307196115 |
| С  | -3.987401245 | 2.583455146  | -1.426416124 |
| С  | -2.010513102 | 3.832059232  | -0.435916051 |
| С  | -2.811555158 | 4.990641319  | 0.168278993  |
| С  | -1.334183048 | 4.192500261  | -1.762471147 |
| С  | -3.889004239 | -0.748075096 | 0.046068984  |
| С  | -5.337692322 | -1.159871126 | 0.092312987  |
| С  | -6.130259397 | -0.826337098 | 1.217838070  |
| С  | -5.631197361 | -0.073016046 | 2.330183146  |
| С  | -6.430664431 | 0.226849976  | 3.403413224  |
| С  | -7.787450503 | -0.201194055 | 3.446722228  |
| С  | -8.307813564 | -0.921632105 | 2.405572156  |
| С  | -7.509576513 | -1.253820133 | 1.266992074  |
| С  | -8.037988519 | -1.985204184 | 0.198626995  |
| С  | -7.271844481 | -2.308545205 | -0.924100087 |
| С  | -7.833490511 | -3.047296261 | -2.012471164 |
| С  | -7.087451451 | -3.351004282 | -3.118278245 |
| С  | -5.729937391 | -2.928090254 | -3.194870249 |
| С  | -5.149069330 | -2.222997199 | -2.172602173 |
| С  | 2.701555237  | 1.446232060  | 0.020955982  |
| С  | 4.000796330  | -0.664590093 | -0.403410048 |
| С  | 5.419129420  | -1.146540130 | -0.201377034 |
| С  | 6.458996528  | -0.607322092 | -0.998853094 |
| С  | 7.809095599  | -1.096542124 | -0.835578078 |
| С  | 8.067387649  | -2.089114196 | 0.114480989  |
| С  | 7.057091547  | -2.619032235 | 0.921228046  |
| С  | 5.699076461  | -2.139736202 | 0.770116037  |
| С  | 4.698775380  | -2.701513241 | 1.632860096  |
| С  | 5.019996405  | -3.661193306 | 2.557965165  |
| С  | 6.355938518  | -4.134196342 | 2.694663174  |
| С  | 7.343772581  | -3.624889307 | 1.896752117  |
| С  | 8.855887680  | -0.556643088 | -1.646200136 |
| С  | 8.601899640  | 0.421104983  | -2.569721203 |
| С  | 7.276287559  | 0.913604020  | -2.731665216 |
| С  | 6.244352499  | 0.419768984  | -1.975529163 |
| С  | 4.419872363  | 1.083526031  | 1.412032081  |
| С  | 3.837553319  | 2.252296119  | 1.780134110  |
| С  | 1.898449183  | 3.660662219  | 0.928108049  |
| С  | 1.248153137  | 3.839720231  | 2.302829149  |
| С  | 2.676411237  | 4.897555310  | 0.464014014  |
| Η  | -5.365253355 | 0.878110022  | -1.770692148 |
| Н  | -4.309270264 | 3.420905205  | -2.022389163 |
| Н  | -1.251485043 | 3.510937210  | 0.280747001  |
| Η  | -3.600702214 | 5.333864360  | -0.509154056 |
| Н  | -2.146930108 | 5.838978385  | 0.357763006  |

| Н | -3.273435190 | 4.697353295  | 1.115064064  |
|---|--------------|--------------|--------------|
| Η | -0.744759007 | 3.353145196  | -2.139604172 |
| Н | -0.663539004 | 5.044595321  | -1.613329138 |
| Η | -2.067431106 | 4.478512282  | -2.524055201 |
| Н | -3.422759204 | -0.801983102 | 1.029714055  |
| Η | -3.289445193 | -1.380517142 | -0.607875061 |
| Η | -4.602863289 | 0.271129978  | 2.330317150  |
| Η | -6.023666377 | 0.796614017  | 4.233792284  |
| Η | -8.402580584 | 0.044881963  | 4.307226291  |
| Η | -9.341743621 | -1.256551132 | 2.424310153  |
| Η | -9.075815596 | -2.308416208 | 0.241291998  |
| Η | -8.871813586 | -3.360410281 | -1.939080159 |
| Η | -7.523583517 | -3.912710321 | -3.939080303 |
| Η | -5.143110329 | -3.170342270 | -4.075902314 |
| Η | -4.112522253 | -1.920221181 | -2.275092181 |
| Η | 3.789493315  | -0.466934078 | -1.454739124 |
| Η | 3.259986277  | -1.393744144 | -0.075137025 |
| Η | 9.084593694  | -2.456467222 | 0.231799997  |
| Η | 3.667522308  | -2.372424218 | 1.563408091  |
| Η | 4.239870345  | -4.068796337 | 3.193922212  |
| Η | 6.583992534  | -4.898238399 | 3.432101230  |
| Η | 8.369090649  | -3.973834331 | 1.988927126  |
| Η | 9.862638770  | -0.943194114 | -1.509936127 |
| Η | 9.404565745  | 0.823525013  | -3.180536250 |
| Η | 7.080979560  | 1.69000074   | -3.465768270 |
| Η | 5.248585419  | 0.822696015  | -2.122305172 |
| Η | 5.262699423  | 0.553748997  | 1.821887110  |
| Η | 4.083699339  | 2.934299165  | 2.576691166  |
| Η | 1.126754124  | 3.426542202  | 0.191217995  |
| Η | 0.683230091  | 2.948495170  | 2.586360165  |
| Η | 0.556895088  | 4.687545292  | 2.271252142  |
| Η | 1.990169190  | 4.052077246  | 3.079949202  |
| Н | 3.486370294  | 5.145327327  | 1.158451063  |
| Η | 2.005706189  | 5.760735348  | 0.411967010  |
| Н | 3.108406269  | 4.737896295  | -0.527678057 |

| Br | 0.573248000   | -0.154711000 | -2.279053000 |
|----|---------------|--------------|--------------|
| Br | 0.619886000   | 0.468473000  | 1.920045000  |
| Zn | 0.689445000   | -1.204220000 | 0.019074000  |
| S  | -1.149907000  | -2.886911000 | 0.131970000  |
| S  | 2.755457000   | -2.572328000 | 0.365833000  |
| Ν  | 4.205194000   | -0.379399000 | 1.214807000  |
| Ν  | -2.907045000  | -1.229351000 | -1.210224000 |
| Ν  | 3.757920000   | -1.782739000 | 2.822648000  |
| Ν  | -2.258886000  | -2.935127000 | -2.404298000 |
| Ν  | -10.940994000 | 2.277763000  | 1.309453000  |
| С  | -5.401441000  | 0.159430000  | 0.450492000  |
| С  | -2.113030000  | -2.332991000 | -1.192501000 |
| С  | -6.577039000  | 1.000536000  | 0.453619000  |
| С  | 3.577271000   | -1.553457000 | 1.493581000  |
| С  | -4.183448000  | 1.883618000  | -0.813873000 |
| С  | -4.214289000  | 0.623096000  | -0.167508000 |
| С  | -6.524181000  | 2.254862000  | -0.162021000 |
| С  | -5.368004000  | 2.715422000  | -0.798358000 |
| С  | 4.758450000   | 0.136150000  | 2.372577000  |
| С  | 4.485345000   | -0.739786000 | 3.372155000  |
| С  | 4.984520000   | 2.685116000  | -0.003308000 |
| С  | 6.530627000   | 0.918459000  | -0.740274000 |
| С  | -7.776254000  | 0.540614000  | 1.083393000  |
| С  | -1.525597000  | -4.137294000 | -2.856537000 |
| С  | -5.507468000  | -1.123403000 | 1.080805000  |
| С  | 4.163591000   | 0.289218000  | -0.106749000 |
| С  | -2.967754000  | -0.229086000 | -0.117473000 |
| С  | -3.031642000  | 2.386235000  | -1.507462000 |
| С  | 5.253268000   | 1.321800000  | -0.280587000 |
| С  | -5.338177000  | 3.993235000  | -1.440112000 |
| С  | -3.534487000  | -1.130572000 | -2.438548000 |
| С  | -3.135160000  | -2.194604000 | -3.180441000 |
| С  | -7.825400000  | -0.692187000 | 1.676859000  |
| С  | 7.552720000   | 1.915257000  | -0.965749000 |
| С  | 3.731152000   | 3.150748000  | 0.518483000  |
| С  | 6.017543000   | 3.671519000  | -0.238102000 |
| С  | -6.675983000  | -1.531708000 | 1.671244000  |
| С  | 6.875608000   | -0.449213000 | -0.995316000 |
| С  | -0.634600000  | -3.790956000 | -4.054193000 |
| С  | 3.182600000   | -2.915296000 | 3.580917000  |

| С | -4.212859000  | 4.434927000  | -2.081332000 |
|---|---------------|--------------|--------------|
| С | -2.500409000  | -5.286079000 | -3.133884000 |
| С | -3.049908000  | 3.614260000  | -2.117142000 |
| С | 5.746821000   | 5.050241000  | 0.028601000  |
| С | 8.839088000   | 1.508232000  | -1.439112000 |
| С | 7.264462000   | 3.260290000  | -0.716642000 |
| С | 9.121005000   | 0.189699000  | -1.673810000 |
| С | 4.531964000   | 5.448625000  | 0.516023000  |
| С | 3.517479000   | 4.481981000  | 0.767808000  |
| С | 8.122867000   | -0.798859000 | -1.444678000 |
| С | 4.295819000   | -3.761847000 | 4.205371000  |
| С | 2.162448000   | -2.401629000 | 4.602314000  |
| С | -11.930337000 | 1.959746000  | 1.825260000  |
| С | -13.177159000 | 1.562129000  | 2.475089000  |
| Η | -7.411270000  | 2.884006000  | -0.149637000 |
| Η | 5.291086000   | 1.071603000  | 2.377978000  |
| Η | 4.739715000   | -0.705580000 | 4.418265000  |
| Η | -8.647095000  | 1.191011000  | 1.077091000  |
| Η | -0.893703000  | -4.400810000 | -2.005220000 |
| Η | -4.654922000  | -1.793395000 | 1.087212000  |
| Η | 3.173654000   | 0.732396000  | -0.223948000 |
| Η | 4.229420000   | -0.498072000 | -0.857563000 |
| Η | -2.064584000  | 0.380315000  | -0.174541000 |
| Η | -2.895176000  | -0.784578000 | 0.817272000  |
| Η | -2.127544000  | 1.790144000  | -1.571960000 |
| Η | -6.236768000  | 4.604000000  | -1.408489000 |
| Η | -4.201570000  | -0.317974000 | -2.668914000 |
| Η | -3.393576000  | -2.480355000 | -4.186621000 |
| Η | -8.739892000  | -1.034906000 | 2.152689000  |
| Η | 2.933764000   | 2.449366000  | 0.739564000  |
| Η | -6.725675000  | -2.510048000 | 2.141229000  |
| Η | 6.143274000   | -1.229843000 | -0.823160000 |
| Η | -1.229067000  | -3.542423000 | -4.940441000 |
| Η | -0.009862000  | -4.653857000 | -4.304414000 |
| Η | 0.012586000   | -2.941276000 | -3.820652000 |
| Η | 2.663359000   | -3.507256000 | 2.823900000  |
| Η | -4.201511000  | 5.406236000  | -2.566975000 |
| Η | -3.104271000  | -5.512706000 | -2.250423000 |
| Η | -1.939546000  | -6.185125000 | -3.406168000 |
| Η | -3.175613000  | -5.051376000 | -3.964126000 |
| Η | -2.162489000  | 3.964426000  | -2.635921000 |
| Η | 6.534141000   | 5.774657000  | -0.163139000 |
| Η | 9.590947000   | 2.274972000  | -1.607251000 |

| Η | 8.034823000   | 4.007458000  | -0.894463000 |
|---|---------------|--------------|--------------|
| Н | 10.101309000  | -0.108164000 | -2.033424000 |
| Н | 4.336996000   | 6.498230000  | 0.716081000  |
| Н | 2.558737000   | 4.801562000  | 1.164817000  |
| Η | 8.353743000   | -1.844012000 | -1.629218000 |
| Η | 4.860091000   | -3.198367000 | 4.956457000  |
| Н | 4.994800000   | -4.118892000 | 3.443796000  |
| Н | 3.857786000   | -4.631579000 | 4.703897000  |
| Η | 1.662724000   | -3.251547000 | 5.077014000  |
| Η | 1.410228000   | -1.775515000 | 4.116045000  |
| Η | 2.644100000   | -1.814201000 | 5.391471000  |
| Η | -13.030048000 | 1.478485000  | 3.555975000  |
| Η | -13.510866000 | 0.594264000  | 2.090911000  |
| Н | -13.957501000 | 2.304570000  | 2.283196000  |
|   |               |              |              |

| Ι  | -0.177334000  | 0.494377000  | 2.301611000  |
|----|---------------|--------------|--------------|
| Ι  | 0.178317000   | 0.492117000  | -2.301760000 |
| Zn | 0.000121000   | -0.969987000 | 0.000632000  |
| S  | 1.949324000   | -2.547733000 | 0.059335000  |
| S  | -1.949681000  | -2.546919000 | -0.056924000 |
| Ν  | 3.721961000   | -0.692717000 | -0.972238000 |
| Ν  | 3.291266000   | -2.327503000 | -2.349874000 |
| Ν  | -3.291194000  | -2.324773000 | 2.352337000  |
| Ν  | -3.721173000  | -0.690392000 | 0.974007000  |
| С  | 5.962321000   | 0.446850000  | 1.129102000  |
| С  | -2.994422000  | -1.831541000 | 1.118576000  |
| С  | 2.994605000   | -1.833541000 | -1.116378000 |
| С  | 4.457485000   | -0.464016000 | -2.120816000 |
| С  | 4.194903000   | -1.484480000 | -2.975586000 |
| С  | 2.693549000   | -3.538450000 | -2.954201000 |
| С  | 3.767468000   | -4.606773000 | -3.181076000 |
| С  | 1.923413000   | -3.169679000 | -4.225899000 |
| С  | 3.626473000   | 0.220769000  | 0.189944000  |
| С  | 4.887911000   | 1.024562000  | 0.409194000  |
| С  | 4.983609000   | 2.347106000  | -0.089739000 |
| С  | 6.180098000   | 3.118064000  | 0.175037000  |
| С  | 7.222838000   | 2.540366000  | 0.903873000  |
| С  | 7.151485000   | 1.228320000  | 1.381227000  |
| С  | 5.936961000   | -0.896611000 | 1.628120000  |
| С  | 6.997112000   | -1.418531000 | 2.323842000  |
| С  | 8.162398000   | -0.640310000 | 2.573952000  |
| С  | 8.232874000   | 0.646716000  | 2.113730000  |
| С  | 6.278304000   | 4.456833000  | -0.318502000 |
| С  | 5.264983000   | 5.016518000  | -1.047767000 |
| С  | 4.091416000   | 4.260030000  | -1.325849000 |
| C  | 3.952788000   | 2.976010000  | -0.865786000 |
| C  | -4.194259000  | -1.480942000 | 2.977802000  |
| C  | -4.456403000  | -0.460745000 | 2.122589000  |
| C  | -3.625430000  | 0.222694000  | -0.188447000 |
| C  | -4.88/////000 | 1.024538000  | -0.409685000 |
| C  | -4.985820000  | 2.347463000  | 0.087771000  |
| C  | -3.956539000  | 2.978787000  | 0.863912000  |
| C  | -4.09/448000  | 4.263081000  | 1.322514000  |
| C  | -5.2/1961000  | 5.017485000  | 1.0427/6000  |
| C  | -6.2838/5000  | 4.455481000  | 0.313344000  |
| C  | -6.183268000  | 3.116349000  | -0.178/22000 |
| C  | -7.224587000  | 2.536331000  | -0.907745000 |
| C  | -/.1508/3000  | 1.223921000  | -1.383/3/000 |
| C  | -8.230/94000  | 0.639955000  | -2.11052/000 |
| C  | -8.13/938000  | -0.64/393000 | -2.5/54/8000 |
| C  | -0.991655000  | -1.42356/000 | -2.323/48000 |
| C  | -5.932861000  | -0.899370000 | -1.62/6/0000 |

| С | -5.960725000 | 0.444511000  | -1.129910000 |
|---|--------------|--------------|--------------|
| С | -2.693892000 | -3.535606000 | 2.957309000  |
| С | -1.922612000 | -3.166259000 | 4.228161000  |
| С | -3.768393000 | -4.602970000 | 3.185892000  |
| Η | 5.094678000  | 0.397833000  | -2.222681000 |
| Η | 4.565701000  | -1.675570000 | -3.968665000 |
| Η | 1.988373000  | -3.893715000 | -2.199348000 |
| Η | 4.514801000  | -4.279032000 | -3.911996000 |
| Η | 3.301980000  | -5.518431000 | -3.567032000 |
| Η | 4.281162000  | -4.852677000 | -2.247506000 |
| Η | 1.193157000  | -2.382259000 | -4.021485000 |
| Η | 1.394409000  | -4.051784000 | -4.598870000 |
| Η | 2.594601000  | -2.824014000 | -5.019801000 |
| Η | 3.388599000  | -0.400389000 | 1.053454000  |
| Η | 2.759495000  | 0.864114000  | 0.034380000  |
| Η | 8.117670000  | 3.126624000  | 1.101031000  |
| Η | 5.068470000  | -1.521267000 | 1.451825000  |
| Η | 6.947902000  | -2.439606000 | 2.690823000  |
| Η | 8.989554000  | -1.072296000 | 3.129390000  |
| Η | 9.115736000  | 1.254005000  | 2.295993000  |
| Η | 7.182958000  | 5.018860000  | -0.101274000 |
| Η | 5.350342000  | 6.033766000  | -1.418245000 |
| Η | 3.292529000  | 4.705916000  | -1.910728000 |
| Η | 3.044983000  | 2.435037000  | -1.109293000 |
| Η | -4.565033000 | -1.671393000 | 3.971013000  |
| Η | -5.093205000 | 0.401442000  | 2.224083000  |
| Η | -3.385572000 | -0.398545000 | -1.051345000 |
| Η | -2.759550000 | 0.867292000  | -0.031997000 |
| Η | -3.048074000 | 2.439463000  | 1.108608000  |
| Η | -3.299665000 | 4.710823000  | 1.907483000  |
| Η | -5.359150000 | 6.034988000  | 1.412126000  |
| Η | -7.189222000 | 5.015902000  | 0.094852000  |
| Η | -8.120156000 | 3.121033000  | -1.106166000 |
| Η | -9.114449000 | 1.245706000  | -2.300059000 |
| Η | -8.984005000 | -1.081180000 | -3.131165000 |
| Η | -6.940558000 | -2.444891000 | -2.689775000 |
| Η | -5.063513000 | -1.522498000 | -1.450186000 |
| Η | -1.989492000 | -3.892032000 | 2.202282000  |
| Η | -1.192096000 | -2.379372000 | 4.022623000  |
| Η | -1.393788000 | -4.048357000 | 4.601403000  |
| Н | -2.593048000 | -2.819642000 | 5.022282000  |
| Н | -4.514997000 | -4.274064000 | 3.917033000  |
| Н | -3.303271000 | -5.514598000 | 3.572365000  |
| Η | -4.282910000 | -4.849376000 | 2.252908000  |

| Se | -2.127354095 | -2.446806208 | -0.063762918 |
|----|--------------|--------------|--------------|
| Se | 2.087287207  | -2.368187148 | 0.541069127  |
| Zn | -0.060016967 | -0.798683063 | 0.460583120  |
| Cl | -0.616422019 | 0.168288998  | 2.484033266  |
| Cl | 0.271206039  | 0.661356047  | -1.314567009 |
| Ν  | 3.645793296  | -0.285409982 | -0.787562969 |
| Ν  | -3.883053249 | -0.276097074 | 0.782315145  |
| Ν  | 3.178407280  | -1.915885103 | -2.154065068 |
| Ν  | -3.825358223 | -1.868757186 | 2.266672251  |
| Ν  | 0.871869165  | -6.172255433 | -2.543933099 |
| С  | 3.008641260  | -1.479391074 | -0.882214977 |
| С  | -3.335805195 | -1.485741153 | 1.060764165  |
| С  | -5.631540374 | 1.663804043  | -1.319895009 |
| С  | -4.431711312 | 1.753136063  | -0.572440955 |
| С  | -4.034642301 | 2.983015159  | 0.009649087  |
| С  | -6.428261491 | 2.852372118  | -1.528332021 |
| С  | 4.198989329  | 0.039266048  | -2.012109059 |
| С  | -3.550580233 | 0.535799987  | -0.416284943 |
| С  | -4.842809373 | 4.163070232  | -0.208979929 |
| С  | -6.116099408 | 0.439638950  | -1.887398047 |
| С  | -6.007042433 | 4.065448211  | -0.976086984 |
| С  | -7.633681543 | 2.766208097  | -2.292793080 |
| С  | 3.912366319  | -0.979630026 | -2.862058120 |
| С  | -2.865782215 | 3.121569183  | 0.829893148  |
| С  | 3.602528277  | 0.596423083  | 0.403389115  |
| С  | -7.281098521 | 0.397819932  | -2.609134102 |
| С  | 4.404399310  | 2.951664259  | -0.083601920 |
| С  | 4.685310343  | 1.650765169  | 0.403215116  |
| С  | 6.982225508  | 2.361564252  | 0.976468155  |
| С  | 5.967539457  | 1.334127162  | 0.915118155  |
| С  | -8.052532585 | 1.575270006  | -2.821045116 |
| С  | -3.439755181 | -3.089269273 | 3.009188303  |
| C  | -2.521568206 | 4.333207274  | 1.371817187  |
| C  | -4.6/3186300 | -0.884808126 | 2.748264283  |
| C  | -4.43968/35/ | 5.40/906311  | 0.36/969113  |
| C  | 3.144/40214  | 3.319922273  | -0.665254962 |
| C  | -4.706308313 | 0.108817944  | 1.824658215  |
| C  | -3.310568277 | 5.494577342  | 1.136253167  |
| C  | 2.595539253  | -3.149144202 | -2.736225109 |
| C  | 5.430481383  | 3.970174346  | -0.011416914 |
| C  | 0.0821/14//  | 5.648543340  | 0.520233124  |
| C  | 6.324189471  | 0.026160074  | 1.380611187  |
| C  | -2.696083131 | -2./09639234 | 4.293/13395  |
| C  | -4.664224260 | -3.9/6644352 | 3.250869320  |
| C  | 5.14811/335  | 5.28/956439  | -0.490110949 |
| C  | 7.575926556  | -0.238926930 | 1.8/3/40220  |
| C  | 8.273437575  | 2.043975245  | 1.502130196  |

| С | 8.566823655  | 0.780858156  | 1.939951227  |
|---|--------------|--------------|--------------|
| С | 2.920539180  | 4.594277362  | -1.119204992 |
| С | 3.928260242  | 5.595923464  | -1.027964986 |
| С | 3.692099343  | -4.059870254 | -3.291587149 |
| С | 1.525521169  | -2.788266189 | -3.770296187 |
| С | 0.460500136  | -6.087243426 | -1.461596018 |
| С | -0.046900902 | -5.970186455 | -0.097846921 |
| Η | 4.740670359  | 0.957160123  | -2.163348070 |
| Η | -3.621310233 | -0.127510060 | -1.278162006 |
| Η | -2.499289161 | 0.819741020  | -0.347499939 |
| Н | -5.561264365 | -0.479591110 | -1.737262037 |
| Η | -6.607293531 | 4.957534270  | -1.141305995 |
| Η | -8.212962617 | 3.673752159  | -2.442115089 |
| Н | 4.163736339  | -1.115873033 | -3.900543192 |
| Н | -2.242201163 | 2.262318128  | 1.051471161  |
| Н | 3.674764295  | -0.052864965 | 1.275942176  |
| Н | 2.608207200  | 1.043694103  | 0.432575118  |
| Н | -7.621770504 | -0.545888137 | -3.025229131 |
| Н | -8.970135619 | 1.521399990  | -3.399243159 |
| Н | -2.749846127 | -3.604659300 | 2.336954255  |
| Н | -1.633361143 | 4.403853289  | 1.992253228  |
| Н | -5.170531330 | -0.970071138 | 3.699881354  |
| Н | -5.056790412 | 6.283660368  | 0.184199100  |
| Н | 2.351647163  | 2.586663209  | -0.769658971 |
| Н | -5.233082362 | 1.047319004  | 1.813522215  |
| Η | -3.014123267 | 6.444199410  | 1.572115200  |
| Η | 2.116811222  | -3.649382245 | -1.893837049 |
| Η | 7.447121532  | 4.420078403  | 0.574705130  |
| Η | 5.598285447  | -0.777937991 | 1.335757181  |
| Η | -1.857512079 | -2.044889176 | 4.070138378  |
| Η | -2.314577096 | -3.615413293 | 4.775042432  |
| Η | -3.357826187 | -2.206825209 | 5.007529445  |
| Η | -5.396006332 | -3.488587324 | 3.903701370  |
| Н | -4.352524223 | -4.904331414 | 3.739823357  |
| Н | -5.157948289 | -4.233464374 | 2.309373251  |
| Η | 5.930665381  | 6.039025483  | -0.419164944 |
| Н | 7.816432588  | -1.240442998 | 2.218446248  |
| Η | 9.019722649  | 2.833158311  | 1.543745198  |
| Н | 9.551074711  | 0.550446153  | 2.336709257  |
| Н | 1.957897109  | 4.840709365  | -1.557148025 |
| Η | 3.724619216  | 6.599392491  | -1.390120015 |
| Η | 3.237281324  | -5.004484326 | -3.600125172 |
| Η | 4.449644399  | -4.273578259 | -2.531874097 |
| Н | 4.188382373  | -3.617712214 | -4.162755213 |
| Η | 1.964428199  | -2.312835150 | -4.654594250 |
| Η | 0.786683111  | -2.104767148 | -3.343027152 |
| Η | 1.019741149  | -3.703671258 | -4.088291206 |
| Η | -0.923964972 | -5.315800418 | -0.075340919 |
| Η | 0.722405147  | -5.529693386 | 0.542590125  |
| Η | -0.320919910 | -6.955702509 | 0.289251107  |