Supporting information for the manuscript:

Exploring the reductive CO₂ fixation with amines and hydrosilanes using readily available Cu(II) NHC–phenolate catalyst precursors

Giammarco Meloni, ^{a,b} Luca Morgan, ^a David Cappelletti, ^a Matteo Bevilacqua, ^a Claudia Graiff, ^c Piermaria Pinter, ^d Andrea Biffis, ^{a,b} Cristina Tubaro, ^{*a,b} and Marco Baron ^{*a,b}

a. Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.

b. Consorzio Interuniversitario per la Reattività Chimica e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy.

c. Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.

d. Novaled GmbH, Elisabeth-Boer-Straße 9, 01099 Dresden, Germany.

* marco.baron@unipd.it

C O N T E N T S

1.	¹ H NMR spectra
2.	¹³ C NMR spectra
3.	³¹ P NMR spectra
4.	¹⁹ F NMR spectra
5.	2D NMR spectra
6.	ESI(+)-MS spectra15
7.	FT-IR spectra
8.	UV-Vis spectra
9.	SC–XRD data
10.	Catalysis
11.	Stoichiometric reactions NMR spectra
12.	Computational details41
13.	References

1. ¹H NMR spectra

Figure S1. ¹H NMR spectra of Ha¹Br in DMSO-d₆.

Figure S2. ¹H NMR spectra of Ha²Br in DMSO-d₆.

Figure S3. ¹H NMR spectra of **Ha³Br** in DMSO–d₆.

Figure S4. ¹H NMR spectra of $H_2a^4Br_2$ in DMSO-d₆.

Figure S5. ¹H NMR spectra of H_2L^1Br in DMSO–d₆.

Figure S6. ¹H NMR spectra of H_2L^2Br in DMSO-d₆.

Figure S7. ¹H NMR spectra of H_2L^3Br in DMSO–d₆.

Figure S8. ¹H NMR spectra of $H_4L^4Br_2$ in DMSO-d₆.

Figure S9. ¹H NMR spectra of $Ha^{1}PF_{6}$ in CD₃CN.

Figure S10. ¹H NMR spectra of $H_2L^1PF_6$ in CD₃CN.

Figure S11. ¹H NMR spectra of [CuBr(a¹)] in CDCl₃.

Figure S12. ¹H NMR spectra of [Cu(a¹)₂]PF₆ in CD₃CN.

2. ¹³C NMR spectra

Figure S13. ¹³C NMR spectra of **Ha¹Br** in DMSO–d₆.

Figure S14. ¹³C NMR spectra of Ha²Br in DMSO-d₆.

Figure S15. ¹³C NMR spectra of **Ha³Br** in DMSO–d₆.

Figure S16. ¹³C NMR spectra of $H_2a^4Br_2$ in DMSO-d₆.

Figure S17. ¹³C NMR spectra of H_2L^1Br in DMSO-d₆.

Figure S18. ¹³C NMR spectra of H_2L^2Br in DMSO-d₆.

Figure S19. ¹³C NMR spectra of H_2L^3Br in DMSO-d₆.

Figure S20. ¹³C NMR spectra of $H_4L^4Br_2$ in DMSO-d₆.

3. ³¹P NMR spectra

Figure S21. ³¹P NMR spectra of Ha¹PF₆ in CD₃CN.

Figure S22. ³¹P NMR spectra of $H_2L^1PF_6$ in CD₃CN.

Figure S23. ³¹P NMR spectra of $[Cu(a^1)_2]PF_6$ in CD₃CN.

4. ¹⁹F NMR spectra

Figure S24. ¹⁹F NMR spectra of Ha¹PF₆ in CD₃CN.

Figure S25. ¹⁹F NMR spectra of H_2L^3Br in DMSO-d₆.

Figure S26. ¹⁹F NMR spectra of $[Cu(a^1)_2]PF_6$ in CD₃CN.

5. 2D NMR spectra

Figure S27. 2D NMR HMBC ${}^{13}C{}^{-1}H$ spectra of $[Cu(a^1)_2]PF_6$ in CD₃CN.

6. ESI(+)–MS spectra

Figure S28. ESI–MS spectra of [Cu(L¹)₂].

Figure S29. ESI–MS spectra of $[Cu(L^2)_2]$.

Figure S30. ESI–MS spectra of [Cu(L³)₂].

Figure S31. ESI–MS spectra of [Cu(L⁴)].

Figure S32. ESI–MS spectra of [CuBr(a¹)].

Figure S33. ESI-MS spectra of [Cu(a¹)₂]PF₆.

7. FT-IR spectra

Figure S34. FT-IR spectra of Ha¹Br.

Figure S35. FT-IR spectra of [Cu(L¹)₂].

Figure S36. FT-IR spectra of [Cu(L²)₂].

Figure S37. FT-IR spectra of [Cu(L³)₂].

Figure S38. FT-IR spectra of [Cu(L⁴)].

8. UV-Vis spectra

Figure S39. UV-Vis absorption spectra of $[Cu(L^1)_2]$ in dichloromethane.

Figure S40. UV-Vis absorption spectra of $[Cu(L^2)_2]$ in dichloromethane.

Figure S41. UV-Vis absorption spectra of $[Cu(L^3)_2]$ in dichloromethane.

Figure S42. UV-Vis absorption spectra of $[Cu(L^4)]$ in dichloromethane.

Figure S43. UV-vis. absorption spectra of the reported copper(II) complexes in dichlorometane.

9. SC-XRD data

	[Cu(L ¹) ₂]	[CuBr(a ¹)]
Empirical formula	$C_{40}H_{42}CuN_4O_2$	C ₂₁ H ₂₄ BrCuN ₂ O
Formula weight	674.31	463.87
Temperature /K	200(2)	301(2)
Crystal system	monoclinic	monoclinic
Space group	P2 ₁	Cc
a/Å	10.9603(2)	15.9866(3)
b/Å	10.4001(2)	12.9150(3)
c/Å	14.9309(3)	10.0896(2)
α/°	90	90
β/°	98.830(2)	91.323(2)
γ/°	90	90
Volume/Å ³	1681.78(6)	2082.61(7)
Z	2	4
$\rho_{calc}g/cm^3$	1.332	1.479
μ/mm ⁻¹	0.691	3.807
F(000)	710.0	944.0
Crystal size/mm ³	0.18 x 0.17 x 0.15	0.12 x 0.11 x 0.10
Radiation	MoK α ($\lambda = 0.71073$)	CuKa ($\lambda = 1.54184$)
20 range for data collection/°	3.76 to 51.354	12.344 to 144.242
Index ranges	$-13 \le h \le 13, -12 \le k \le 12, -18 \le l \le 18$	$-19 \le h \le 19, -15 \le k \le 15, -12 \le l \le 12$
Reflections collected	73871	27598
Independent reflections	6396 [$R_{int} = 0.0665, R_{sigma} = 0.0260$]	4015 [$R_{int} = 0.0427, R_{sigma} = 0.0221$]
Data/restraints/paramet ers	6396/1/430	4015/2/239
Goodness-of-fit on F ²	1.035	1.000
Final R indexes [I>=2σ (I)]	$R_1 = 0.0259, wR_2 = 0.0655$	$R_1 = 0.0386, wR_2 = 0.1158$
Final R indexes [all data]	$R_1 = 0.0271, wR_2 = 0.0666$	$R_1 = 0.0404, wR_2 = 0.1189$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.33	0.69/-0.37
CCDC number	2371863	2371864

Table S1: Crystallographic details for complex $[Cu(L^1)_2]$ and $[CuBr(a^1)]$.

 $R_{I} = (\Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|); wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]\}^{1/2}; \text{ GOF } = \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/(n - p)\}^{1/2} \text{ where } n \text{ is the number of data and } p \text{ is the number of parameters refined.}$

Figure S44. ORTEP representation of the crystal packing of complex $[Cu(L^1)_2]$ (view along c axis).

10. Catalysis

The yield determination of the catalytic tests was conducted registering the ¹H NMR spectra of the reaction mixture in CDCl₃, after addition of 0.5 equivalents of an 2,5-dimethylfuran as internal standard. Using the benchmark substrate N-ethylaniline, the yields of *N*-ethylformaniline and *N*-methyl-*N*-ethylaniline were calculated using the integral of the signals at 8.35 and 2.90 ppm respectively (Fig. S45). The unreacted *N*-ethylaniline amount was estimated from the integral of the quartet at 3.15 ppm. The residual silane amount was instead calculated on the Si-H signal integral, at 4.20 ppm for the phenylsilane. The integrals values were referred to the CH proton signal of the internal standard 2,5-dimethylfuran, to have accurate estimations. In all the catalytic tests reported, no loss of matter was observed.

Figure S45. ¹H NMR spectrum in CDCl₃ of a generic catalytic reaction using *N*-ethylaniline as substrate, phenylsilane as reducing agent, and [BMMIM][NTf₂] as solvent.

¹*H* NMR chemical shifts for the quantification of the compounds:

N-ethylaniline (1a) ^[1] ¹H NMR (400 MHz, CDCl₃): δ = 7.24–7.10 (m, 2H), 6.76–6.64 (m, 1H), 6.64–6.52 (m, 2H), 3.49 (s, 1H), 3.13 (q, *J* = 7.1 Hz, 2H), 1.23 (t, *J* = 7.1 Hz, 3H) ppm.

N-ethylformanilide (3a) ^[2] ¹H NMR (500 MHz, CDCl₃): δ = 8.35 (s, 1H), 7.40 (t, J = 8.0 Hz, 2H), 7.29 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 7.5 Hz, 2H), 3.85 (q, J = 7.0 Hz, 2H), 1.15 (t, J = 7.0 Hz, 3H) ppm.

N-methyl-*N*-ethylaniline (2a) ^[3] ¹H NMR (600 MHz, CDCl₃): $\delta = 7.22$ (t, J = 7.8 Hz, 2H), 6.72 (d, J = 8.3 Hz, 2H), 6.68 (t, J = 7.2 Hz, 1H), 3.39 (q, J = 7.1 Hz, 2H), 2.89 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H) ppm.

N-methylaniline (1b) ^[1] ¹H NMR (400 MHz, CDCl₃): δ = 7.39–7.02 (m, 2H), 6.70 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.64–6.55 (m, 2H), 3.66 (s, 1H), 2.81 (s, 3H) ppm.

N-methylformanilide (3b) ^[2] ¹H NMR (400 MHz, CDCl₃): $\delta = 8.52$ (s, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.6 Hz, 1H), 7.21 (d, J = 7.2 Hz, 2H), 3.36 (s, 3H) ppm.

N,*N*-dimethyl-aniline (2b) ^[3] ¹H NMR (600 MHz, CDCl₃): $\delta = 7.27$ (t, J = 7.7 Hz, 2H), 6.76 (dd, J = 17.4, 7.9 Hz, 3H), 2.97 (s, 6H) ppm.

4-methoxy-*N***-methylaniline (1c)** ^[1] ¹H NMR (400 MHz, CDCl₃): $\delta = 6.80$ (d, J = 8.9 Hz, 2H), 6.58 (d, J = 8.9 Hz, 2H), 3.75 (s, 3H), 2.80 (s, 3H) ppm.

N-(4-methoxyphenyl)-*N*-methylformamide (3c) ^[4] ¹H NMR (400 MHz, CDCl₃): $\delta = 8.34$ (s, 1H), 7.10 (d, J = 9.2 Hz, 2H), 6.93 (d, J = 8.0 Hz, 2H), 3.82 (s, 3H), 3.27 (s, 3H) ppm.

4,4-*N,N***-dimethylaminoanisole (2c)** ^[5] ¹H NMR (400 MHz, CDCl₃): $\delta = 6.84$ (d, J = 8.6 Hz, 2H), 6.75 (d, J = 8.9 Hz, 2H), 2.86 (s, 6H), 3.76 (s, 3H) ppm.

Dibenzylamine (1d) ^[6] ¹H NMR (500 MHz, CDCl₃): δ = 7.26–7.22 (m, 4H), 7.19–7.14 (m, 4H), 3.72 (s, 4H) ppm.

N,*N*-dibenzylformamide (3d) ^[7] ¹H NMR (400 MHz, CDCl₃): δ = 8.35 (s, 1H), 7.35 – 7.22 (m, 6H), 7.14 (m, 4H), 4.36 (s, 2H), 4.19 (s, 2H) ppm.

N,*N*-dibenzyl-methylamine (2d) ^[8] ¹H NMR (400 MHz, CDCl₃): δ = 7.37-7.29 (m, 8H), 7.25-7.21 (m, 2H), 3.51 (s, 4H), 2.18 (s, 3H) ppm.

Table S2

Entry	Catalyst	Solvent	p / bar	t /h	Conv. /% ^a	2a /% ^a	3a /% a
1	-	Acetonitrile	5	5	0	0	0
2	H_2L^1Br	Acetonitrile	5	5	0	0	0
3	Cu(OAc) ₂ ·H ₂ O	Acetonitrile	5	5	0	0	0
4	$[Cu(L^1)_2]$	Acetonitrile	5	5	87	8	79
5	$[Cu(L^1)_2]$	Acetonitrile	3	5	65	7	58
6	$[Cu(L^1)_2]$	Toluene	3	5	0	0	0
7	$[Cu(L^1)_2]$	Methanol	3	5	0	0	0
8	$[Cu(L^1)_2]$	Acetone	3	5	12	2	10
9	$[Cu(L^1)_2]$	DMF	3	5	>99	23	77
10	$[Cu(L^1)_2]$	[BMMIM][NTf ₂]	3	5	>99	30	70
11	-	[BMMIM][NTf ₂]	3	16	0	0	0

Preliminary catalytic experiments in the N-methylation and N-formylation of *N*-ethylaniline with CO₂ and phenylsilane.

Reaction conditions: *N*-ethylaniline 0.40 mmol, PhSiH₃ (3 eq), catalyst load 1 mol%, 40 °C, 19 h, in 1 mL of solvent.

^a Yield determined by ¹H NMR using 2,5-dimethylfuran as an internal standard.

Table S3

Catalytic ex	xperiments in the N	N-methylation and	d N-formylation of	f <i>N</i> -ethylaniline w	ith CO_2 and
phenylsilan	e with different Cu(II) complexes			
Entry	Catalyst	Time /h	Conv. /% a	2a /% ^a	3a /% ^a

Linuy	Catalyst	1 mile /m	COIIV. / /0	La / /0	Ja / /0
1	[Cu(L ¹) ₂]	1	5	3	2
2	$[Cu(L^1)_2]$	3	21	15	6
3	$[Cu(L^1)_2]$	5	35	24	11
4	$[Cu(L^1)_2]$	7	43	29	14
5	$[Cu(L^1)_2]$	24	84	62	22
6	$[Cu(L^1)_2]$	30	89	64	25
7 ^b	$[Cu(L^1)_2]$	30 + 16	100	75	25
8	$[Cu(L^2)_2]$	1	6	5	1
9	$[Cu(L^2)_2]$	3	34	24	10
10	$[Cu(L^2)_2]$	5	65	49	16
11	$[Cu(L^2)_2]$	7	84	64	20
12	$[Cu(L^2)_2]$	24	100	81	19
13	$[Cu(L^3)_2]$	1	5	3	2
14	[Cu(L ³) ₂]	3	14	9	5
15	[Cu(L ³) ₂]	5	19	12	7
16	[Cu(L ³) ₂]	7	22	15	7
17	[Cu(L ³) ₂]	24	29	15	14
18	[Cu(L ⁴)]	1	1	1	0
19	[Cu(L ⁴)]	3	9	7	2
20	[Cu(L ⁴)]	5	17	14	3
21	[Cu(L ⁴)]	7	19	15	5
22	[Cu(L ⁴)]	24	20	15	5
23°	$[Cu(L^2)_2]$	1	21	19	2
24°	$[Cu(L^2)_2]$	3	41	37	4
25°	$[Cu(L^2)_2]$	5	48	43	5
26 ^C	$[Cu(L^2)_2]$	24	68	59	9

Reaction conditions: *N*-ethylaniline 0.40 mmol, PhSiH₃ (3 eq), catalyst load 1 mol%, $p(CO_2) = 1$ bar (balloon), 60 °C, in 1 mL of [BMMIM][NTf₂]. ^a Yield determined by ¹H NMR using 2,5-dimethylfuran as an internal standard. ^b Addition of 3 eq of phenylsilane. ^c T = 80 °C.

Figure S46a. Yield of *N*-methyl-*N*-ethylaniline (**2a**), N-ethylformanilide (**3a**), sum of the yields and residual phenylsilane against time for the reaction involving the four Cu(II) complexes (data of table S3). *N*-ethylaniline 0.40 mmol, PhSiH₃ (3 eq), catalyst load 1 mol%, $p(CO_2) = 1$ bar, 60 °C.

Figure S46b. Yield of *N*-methyl-*N*-ethylaniline (**2a**), N-ethylformanilide (**3a**), sum of the yields and residual phenylsilane against time for the reaction involving $[Cu(L^2)_2]$ (data of table S3). *N*-ethylaniline 0.40 mmol, PhSiH₃ (3 eq), catalyst load 1 mol%, $p(CO_2) = 1$ bar, 80 °C.

11. Stoichiometric reactions NMR spectra

Figure S47. ¹H NMR spectra of the reaction between $[Cu(L^1)_2]$ and PhSiH₃, in CD₃CN.

Figure S48. ¹³C NMR spectra of the reaction between $[Cu(L^1)_2]$ and PhSiH₃, in CD₃CN.

Figure S49. 2D NMR COSY ${}^{1}H-{}^{1}H$ spectra of the reaction between [Cu(L¹)₂] and PhSiH₃, in CD₃CN.

Figure S50. 2D NMR NOE ${}^{1}H{-}^{1}H$ spectra of the reaction between [Cu(L¹)₂] and PhSiH₃, in CD₃CN.

Figure S51. 2D NMR HSQC INEPT ${}^{13}C{-}^{1}H$ spectra of the reaction between [Cu(L¹)₂] and PhSiH₃, in CD₃CN.

Figure S52. 2D NMR HMBC ${}^{13}C{-}^{1}H$ spectra of the reaction between $[Cu(L^1)_2]$ and PhSiH₃, in CD₃CN.

Figure S53. 2D NMR HMBC 29 Si ${}^{-1}$ H (without J₁ suppression) spectra of the reaction between [Cu(L¹)₂] and PhSiH₃, in CD₃CN.

Figure S54. ¹H NMR spectra of the reaction between $[Cu(L^2)_2]$ and PhSiH₃, in CD₃CN.

Figure S55. ¹³C NMR spectra of the reaction between $[Cu(L^2)_2]$ and PhSiH₃, in CD₃CN.

Figure S56. 2D NMR COSY ${}^{1}H{-}^{1}H$ spectra of the reaction between [Cu(L²)₂] and PhSiH₃, in CD₃CN.

Figure S57. 2D NMR NOESY ${}^{1}H{-}^{1}H$ spectra of the reaction between $[Cu(L^{2})_{2}]$ and PhSiH₃, in CD₃CN.

Figure S58. 2D NMR HSQC INEPT ${}^{13}C{}^{-1}H$ spectra of the reaction between [Cu(L²)₂] and PhSiH₃, in CD₃CN.

Figure S59. 2D NMR HMBC ${}^{13}C{-}^{1}H$ spectra of the reaction between [Cu(L²)₂] and PhSiH₃, in CD₃CN.

Figure S60. 2D NMR HMBC 29 Si $-{}^{1}$ H (without J₁ suppression) spectra of the reaction between [Cu(L²)₂] and PhSiH₃, in CD₃CN.

Figure S61. ¹H NMR spectra of the reaction between $[Cu(L^3)_2]$ and PhSiH₃, in CD₃CN.

Figure S62. ¹³C NMR spectra of the reaction between $[Cu(L^3)_2]$ and PhSiH₃, in CD₃CN.

Figure S63. 2D NMR $COSY^{1}H^{-1}H$ spectra of the reaction between [Cu(L³)₂] and PhSiH₃, in CD₃CN.

Figure S64. 2D NMR NOE ${}^{1}H{-}^{1}H$ spectra of the reaction between [Cu(L³)₂] and PhSiH₃, in CD₃CN.

Figure S65. 2D NMR HSQC INEPT ${}^{13}C{}^{-1}H$ spectra of the reaction between [Cu(L³)₂] and PhSiH₃, in CD₃CN.

Figure S66. 2D NMR HMBC ${}^{13}C{-}^{1}H$ spectra of the reaction between [Cu(L³)₂] and PhSiH₃, in CD₃CN.

12. Computational details

Figure S67. Predicted absorption spectra of cis-[Cu(L¹)₂]^{Me} (top) and trans-[Cu(L¹)₂]^{Me} (bottom) and comparison with the experimental spectrum of [Cu(L¹)₂]. Calculations at the TDDFT ZORA PBE0 ZORA-Def2-TZVPP D3BJ level of theory with inclusion of solvent effects for DCM with the CPCM method.

XYZ coordinates of $[Cu(L^1)_2]^{Me}$ trans-isomer

С	8.083474000	3.714977000	8.931058000	С	2.993034000	6.564519000	10.731060000
С	9.684907000	2.129227000	8.924663000	С	2.672549000	5.210355000	10.566927000
Н	10.408884000	1.453227000	8.487980000	Н	3.418628000	4.547987000	10.126826000
С	9.348327000	2.357852000	10.217819000	С	1.438335000	4.728139000	10.993878000
Н	9.693338000	1.888383000	11.127923000	Н	1.198946000	3.673067000	10.868496000
С	8.966768000	2.973487000	6.705386000	С	0.512331000	5.588373000	11.587919000
Н	8.157943000	3.622220000	6.364591000	Н	-0.451903000	5.207234000	11.921413000
Н	8.790449000	1.953767000	6.342617000	С	0.828063000	6.934450000	11.759661000
С	10.295095000	3.488768000	6.216584000	Н	0.112642000	7.609315000	12.227453000
С	10.614165000	4.843272000	6.380722000	С	2.064898000	7.418692000	11.331288000
Н	9.867190000	5.504983000	6.820284000	Н	2.313642000	8.471584000	11.471003000
С	11.848223000	5.326601000	5.954580000	С	5.565300000	6.243536000	5.571264000
Н	12.086525000	6.381915000	6.080036000	С	6.890650000	5.750170000	5.670913000
С	12.775456000	4.467167000	5.361286000	С	7.525332000	5.442562000	4.441918000
Н	13.739566000	4.849162000	5.028418000	Н	8.562277000	5.112597000	4.485187000
С	12.461102000	3.120779000	5.189486000	С	6.873747000	5.557094000	3.225293000
Н	13.177485000	2.446528000	4.722279000	Н	7.409166000	5.298115000	2.310913000
С	11.224429000	2.635412000	5.617068000	С	5.538760000	5.982276000	3.145059000
Н	10.976783000	1.582265000	5.477316000	С	4.909778000	6.324513000	4.339240000
С	7.721301000	3.808082000	11.375312000	Н	3.869644000	6.648458000	4.312265000
С	6.395729000	4.300838000	11.275281000	Cu	6.643315000	5.025442000	8.472985000
С	5.760658000	4.608289000	12.504107000	Ν	8.368908000	3.333854000	10.205065000
Н	4.723551000	4.937724000	12.460640000	N	8.897063000	2.957729000	8.160360000
С	6.412030000	4.494131000	13.720892000	N	4.918141000	6.717921000	6.741696000
Н	5.876281000	4.752906000	14.635138000	N	4.390529000	7.094162000	8.786523000
С	7.747180000	4.069560000	13.801489000	0	5.771620000	4.477765000	10.145634000
С	8.376596000	3.727512000	12.607473000	0	7.514954000	5.572722000	6.800380000
Н	9.416856000	3.403990000	12.634664000	С	4.821423000	6.055716000	1.826588000
С	5.203605000	6.336555000	8.015644000	Н	5.364238000	6.684615000	1.108808000
С	3.939038000	7.694235000	6.729183000	Н	4.715126000	5.062512000	1.369681000
Н	3.593985000	8.163866000	5.819176000	Н	3.815484000	6.474899000	1.940331000
С	3.602745000	7.922886000	8.022402000	С	8.464334000	3.996837000	15.120101000
Н	2.879039000	8.599052000	8.459280000	Н	7.919875000	3.370765000	15.839082000
С	4.321534000	7.078651000	10.241548000	Н	9.469195000	3.574849000	15.007183000
Н	4.498839000	8.098267000	10.604116000	Н	8.573221000	4.990661000	15.575078000
Н	5.130054000	6.429310000	10.581921000				

XYZ coordinates of $[Cu(L^1)_2]^{Me}$ cis-isomer

С	7.705078000	3.923621000	9.015696000	С	9.394725000	7.699341000	8.679123000
С	8.725097000	1.921875000	9.126304000	Н	8.306632000	7.650155000	8.707463000
Н	8.909718000	0.883344000	8.881730000	С	10.066895000	8.553142000	9.549713000
С	9.299632000	2.730268000	10.057506000	Н	9.496431000	9.158024000	10.250922000
Н	10.068923000	2.528445000	10.790016000	С	11.459866000	8.613366000	9.539991000
С	6.862431000	2.210868000	7.452407000	Н	11.981737000	9.280752000	10.224273000
Н	5.833511000	2.449532000	7.743406000	С	12.180741000	7.815164000	8.653863000
Н	6.943437000	1.117603000	7.412796000	Н	13.268931000	7.857899000	8.638401000
С	7.170939000	2.816840000	6.106933000	С	11.506576000	6.964026000	7.779300000
С	8.467593000	2.773352000	5.585311000	Н	12.072663000	6.342783000	7.084015000
Н	9.266119000	2.300355000	6.157878000	С	4.641755000	6.596570000	6.158852000
С	8.749533000	3.347129000	4.347634000	С	4.052393000	6.291600000	7.418200000
Н	9.763337000	3.309654000	3.950868000	С	2.632583000	6.266829000	7.432022000
С	7.734123000	3.964553000	3.615749000	Н	2.166776000	6.060389000	8.394039000
Н	7.954722000	4.417336000	2.650368000	С	1.871509000	6.480006000	6.298227000
С	6.439045000	4.006139000	4.127777000	Н	0.783948000	6.438545000	6.372879000
Н	5.641534000	4.498634000	3.573968000	С	2.467167000	6.737235000	5.051315000
С	6.160773000	3.438888000	5.370248000	С	3.856361000	6.787982000	5.015336000
Н	5.153913000	3.511922000	5.781658000	Н	4.347523000	6.967574000	4.059087000
С	8.917906000	5.072599000	10.807328000	Cu	6.490695000	5.407999000	8.658253000
С	7.845436000	5.966635000	11.097727000	Ν	8.660901000	3.953830000	9.970530000
С	8.145856000	6.956688000	12.070649000	Ν	7.750946000	2.672668000	8.505171000
Н	7.329925000	7.620852000	12.351086000	Ν	6.053540000	6.703675000	6.048307000
С	9.410815000	7.105311000	12.611158000	Ν	8.155121000	6.361142000	6.341386000
Н	9.586776000	7.903930000	13.333773000	0	6.681351000	5.919058000	10.541271000
С	10.480573000	6.273596000	12.236647000	0	4.707744000	6.053775000	8.506591000
С	10.197496000	5.251430000	11.337103000	С	1.637044000	6.943830000	3.815930000
Н	11.000851000	4.588088000	11.014305000	Н	0.998248000	6.075216000	3.606828000
С	6.939305000	6.087449000	6.867629000	Н	0.973933000	7.813591000	3.917302000
С	6.716779000	7.379082000	5.039583000	Н	2.266358000	7.111201000	2.934408000
Н	6.202984000	7.971289000	4.295903000	С	11.871866000	6.504331000	12.752454000
С	8.043699000	7.160740000	5.227446000	Н	11.876200000	6.699268000	13.832265000
Н	8.905032000	7.516964000	4.677193000	Н	12.516564000	5.637622000	12.566763000
С	9.412397000	5.901958000	6.893992000	Н	12.341093000	7.369506000	12.262118000
Н	10.062646000	5.610921000	6.061322000				
Н	9.188293000	4.988403000	7.454610000				
С	10.110855000	6.896349000	7.786842000				

13. References

- [1] A. Mondal, A. K. Suresh, G. Sivakumar, E. Balaraman, Org. Lett. 2022, 24, 8990-8995.
- [2] X.-F. Li, X.-G. Zhang, F. Chen, X.-H. Zhang, J. Org. Chem. 2018, 83, 12815–12821.
- [3] Z. Guo, T. Pang, L. Yan, X. Wei, J. Chao, C. Xi, Green Chem. 2021, 23, 7534-7538.
- [4] G. Li, J. Chen, D.-Y. Zhu, Y. Chen, J.-B. Xia, Adv. Synth. Catal. 2018, 360, 2364–2369.
- [5] A. E. Wahba, M. T. Hamann, J. Org. Chem. 2012, 77, 4578–4585.
- [6] V. Kanaujiya, V. Tiwari, S. Baranwal, V. Srivastava, J. Kandasamy, Synlett 2023, 34, 970-974.
- [7] T. A. Gokhale, S. C. Gulhane, B. M. Bhanage, Eur. J. Org. Chem. 2023, 26, e202200997.
- [8] Z. Wang, S. Chen, C. Chen, Y. Yang, C. Wang, Angew. Chem. Int. Ed. 2023, 62, e202215963.