Electronic Supplementary Information

Metal-organic frameworks (MOFs) of MIL-101-supported iridium(III) complex as an efficient photocatalyst in the three-component alkoxycyanomethylation of alkenes

Xintao Deng, Mi Zhou, Xuebing Ma*

College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R.

China

Corresponding author's email: zcj123@swu.edu.cn

1. Particle size distribution

Fig.S1 Particle size distributions of MIL-101-S (a) MIL-101-SSH (b) and MIL-101-DSH (C).

2. Porous structure

 Table S1 Specific surface areas, pore sizes, and pore volumes of various MIL-101 and Ir@MIL-101

 101

Sample	$S_{BET}\left(m^2g^{1}\right)$	Pore size (nm)	Pore volume (cm ³ g ⁻¹)		
MIL-101-S	1362	3.1	0.80		
MIL-101-SSH	1078	3.1	0.71		
MIL-101-DSH	1174	3.1	0.74		
Ir@MIL-101-S	962	1.9	0.59		
Ir@MIL-101-SSH	847	1.8	0.47		
Ir@MIL-101-DSH	798	1.9	0.47		

3. Content of chloromethyl in various chloromethylated MIL-101

Table S2 Chloromethyl content of various chloromethylated MIL-101						
Entry	AgNO ₃ ^[a] (mL)	Chloromethyl content ^[b] (mmol g ⁻¹)				
MIL-101-S	8.4	0.84				
MIL-101-SSH	9.2	0.92				
MIL-101-DSH	12.1	1.21				

^[a] Titration volume, ^[b] Calculated by titration volume of consumed AgNO_{3.}

4. Emission lifetime

The fluorescent lifetimes of all samples were determined by using time-correlated single-photon counting (TCSPC) in solid state. Their average emission lifetimes were calculated according to the following equation where τ is measured fluorescence lifetime and B is amplitude. Fluorescence lifetimes including τ_1 , τ_2 , and τ_3 are derived from first, second and third order fitting. Similarly, B₁, B₂, and B₃ are also obtained

$$\tau_{ave} = \frac{B_1 \tau_1^2 + B_2 \tau_2^2 + B_3 \tau_3^2}{B_1 \tau_1 + B_2 \tau_2 + B_3 \tau_3}$$

 Table S3 Fluorescence decay curve detailed fitting parameters of various Ir@MIL-101 and fac-Ir(ppy)3

Sample	$\tau_1(ns)$	$B_1/Rel_1(\%)$	$\tau_2(ns)$	$B_2/Rel_2(\%)$	$\tau_3(ns)$	B ₃ /Rel ₃ (%)	τ_{avg}	χ^2
<i>fac</i> -Ir(ppy) ₃	44.41	133.9/-	245.62	774.5/-	555.24	550.6/-	431.80	1.08
Ir@MIL-101(Cr)-S	2.30	2903.43/15.42	5.88	3723.20/64.95	18.90	350.28/19.64	7.80	1.06
Ir@MIL-101(Cr)-SSH	2.05	2874.95/13.09	7.52	3971.72/67.33	20.73	420.28/19.58	9.53	1.19
Ir@MIL-101(Cr)-DSH	2.22	4132.62/15.58	9.25	3110.46/48.8	30.21	693.37/35.56	15.61	1.15

5. Uv-Vis DRS

Fig. S2 UV-Vis DRS spectra of *fac*-Ir(ppy)₃ and MIL-101-DSH

6. Quantum yield

Based on the fluorescence intensities in fluorescence spectra, the photoluminescence quantum yields were determined by FLS1000 steady state/transient state fluorescence spectrometer.

Fig.S3 Photoluminescence quantum yields (PLQY) of *fac*-Ir(ppy)₃, Ir@MIL-101-S Ir@MIL-101-SSH and Ir@MIL-101-DSH

7. Kinetics of reaction process

Fig.S4 HPLC spectrum of the reaction mixture in the Ir@MIL-101-DSH-promoted reductive cross-coupling reaction of styrene, bromoacetonitrile and methanol at 24 h (rate: 0.8 mL min⁻¹, $V_{\rm H2O}/V_{\rm HCN}$ =60:40, C18 column).

Fig.S5 Standard curve for product quantification

Table S4 Yields of γ -alkoxynitrile in the reaction of styrene, bromoacetonitrileandand methanol during the whole processes

Sample	Reaction time (h)							
	3	6	9	12	15	18	21	24
<i>fac</i> -Ir(ppy ₃)	13	34	47	59	73	79	87	87
Ir@MIL-101-S	6	18	27	35	42	48	53	54
Ir@MIL-101-SSH	6	25	32	41	53	59	65	67
Ir@MIL-101(Cr)-DSH	6	27	39	50	61	73	84	86

Reaction conditions: Ir@MIL-101 (0.5 mol% of Ir), styrene (52.5 mg, 0.5 mmol), bromoacetonitrile (120.0 mg, 1.0 mmol), NaHCO₃ (84.0 mg, 1.0 mmol), white light (24W)

8. XPS of 10th-reused Ir@MIL-101-DSH

Fig.S6 XPS spectrum of 10th-reused Ir@MIL-101-DSH

Ir@MIL-101-DSH

8. ¹H NMR spectra of products

