ARTICLE

Structural-Morphological Insights into Optimization of Hydrothermally Synthesized MoSe₂ Nanoflowers for Improving Supercapacitor Application

Received 00th January 20xx, Accepted 00th January 20xx

Poonam Yadav,^a Rohit Yadav,^b Jitesh Pani,^b Ram Meher Singh,^{*a} Davender Singh,^c Kusum Kumari,^b Hitesh Borkar^b and Jitendra Gangwar^{**c}

DOI: 10.1039/x0xx00000x

The $MoSe_2$ nanoflowers (MNF) have temperature-independent optical properties with direct energy band gap (E_g) of 1.76 eV.

Experimental

Characterization

UV-visible absorption spectroscopy was conducted on a Double Beam UV-Vis Spectrophotometer (Motra's UVPlus) in diffuse-reflectance mode to evaluate the optical absorption and band-gap of $MoSe_2$ nanostructures.

constant, hv is the energy of incident photons, n = 2 or $\frac{1}{2}$ for direct or indirect band gap transitions and A is the characteristic of material with a constant value.

Fig. S1(b) displays the energy band-gap of MoSe₂ nanoflowers. The intercept on photon energy (hv) of the plot $(\alpha hv)^2$ versus hv illustrates the optical energy band-gap values about 1.76 eV for all MoSe₂ nanoflowers synthesized at different temperature. It is obvious that there is a very weak effect of process temperature on the optical properties of MoSe₂ nanoflowers.

Results and discussion

Optical Properties

Fig. S1(a) elucidates the UV-Vis spectra of MoSe₂ nanoflowers obtained at three different synthesis temperatures via hydrothermal methodology. It is well accepted that an optical emission and/or absorption corresponds to the emission or absorption of photons by the defects. The three characteristics absorptions peaks of MoSe₂ are obtained for wavelength ranging 600-800 nm due to interband electronic excitation of the material indicating the formation of refined 2H phase Mose₂. The three excitons are obtained as; A (783 nm, 797 nm and 787 nm), B (687 nm, 699 nm and 697 nm), C (600 nm, 610 nm and 609 nm) for MNF_200, MNF_210 and MNF_220, respectively. Intriguingly, a red-shift is observed in exciton peak positions as we increase the synthesis temperature whereas a blue-shift is identified with further enhancement in temperature.

The optical energy band-gap (E_g) is evaluated from UV-Vis absorbance spectra using Tauc equation (1);

$$(\alpha h\nu)^n = A(h\nu - E_g)$$
 .

Where, α is an absorption coefficient obtained using Beer-Lembert Law, ν is the incident photon frequency, h is Planck'

Fig. S1 (a) UV-Vis absorbance spectra; (b) Tauc plot depicting direct energy band gap of MNF_200, MNF_210, and MNF_220.

.(1)

^{a.} Department of Physics, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India. E-mail: dixitrammehar@cdlu.ac.in; Tel: +91-1666-239835

^{b.} Department of Physics, National Institute of Technology, Warangal, Telangana 506004, India.

^c Department of Physics, RPS Degree College, Balana, Mahendergarh, Haryana 123029, India. E-mail: njitendrag127@gmail.com; Tel: +91-1285-241432