Supporting information

Tipping the balance between *twist* and *chair* ligand conformers in multinuclear ethylzinc cyclophosphazenates.

Ramamoorthy Boomishankar, Philip I. Richards and Alexander Steiner *

Experimental

General methods. All manipulations were performed under a dry N₂ nitrogen atmosphere. Solvents were dried over potassium (thf, hexane) and sodium (toluene). Phosphazene ligand precursors were prepared as reported previously.^{S1} Diethylzinc (1.0 M in hexane) was purchased from Aldrich and used as received. NMR spectra were recorded on a Bruker AMX 400 spectrometer (¹H NMR: 400.13 MHz, $^{13}C{^{1}H}$ NMR: 100.62 MHz, $^{31}P{^{1}H}$ NMR: 161.97 MHz) at room temperature in toluene-d₈ using SiMe₄ (¹H, ^{13}C) and 85% H₃PO₄ (³¹P) as external standards.

Synthesis of 5. To a suspension of 1 (1.00 g, 3.17 mmol) in thf (20 mL) was added Et₂Zn solution (19.35 mL, 19.35 mmol). The reaction mixture was refluxed for 15 minutes resulting in a clear solution that was filtered after left to cool under stirring for 1 h. Storing the solution at -20 °C yielded colourless crystals. Yield 2.39 g (86 %). m.p. 190 °C (dec.). ¹H NMR: δ 0.39 [m, 24H, ZnCH₂CH₃], 1.29 [m, 36H, ZnCH₂CH₃], 2.52 [br, 36H, NCH₃]. ¹³C{¹H} NMR: δ 11.8 [m, ZnCH₂CH₃], 32.2 [m, ZnCH₂CH₃], 32.1 [br, NCH₃]. ³¹P{¹H} NMR: δ 44.9 [d, 1P, ²J 8.5 = Hz], 37.7 [dd, 1P, ²J = 8.5 and 28.8 Hz] and 26.8 [d, 1P, ²J = 28.8 Hz].

Synthesis of 6. To a suspension of 2 (1.00 g, 2.50 mmol) in hexane (20 mL) was added Et₂Zn solution (15.27 mL, 15.27 mmol). The reaction mixture was refluxed for 15 minutes resulting in a clear solution that was filtered after left to cool under stirring for 1 h. Storing the solution at room temperature yielded colourless crystals. Yield 1.71 g (76 %). m.p. 118 °C (dec.). ¹H NMR: δ 0.67 [m, 20H, ZnCH₂CH₃], 1.28 [m, 30H, ZnCH₂CH₃], 1.28 - 1.49 [m, 18H, NCH₂CH₃], 3.13 [m, 12H, NCH₂CH₃]. ¹³C{¹H} NMR: δ 12.7 [m, ZnCH₂CH₃], 18.0 [br, NCH₂CH₃], 30.3 [m, ZnCH₂CH₃], 40.5 [br, NCH₂CH₃]. ³¹P{¹H} NMR: δ 44.7 [1P], 39.5 [2P].

Synthesis of 7. To a suspension of 3 (1.00 g, 2.07 mmol) in hexane (20 mL) was added Et₂Zn solution (12.61 mL, 12.61 mmol). The reaction mixture was refluxed for 2 h resulting in a clear solution that was filtered after left to cool under stirring for 1 h. Storing the solution at -20 °C yielded colourless crystals. Yield 0.50 g (82 %). m.p. 142 °C (dec.). ¹H NMR: δ 0.65 [m, 20H, ZnCH₂CH₃], 0.75 [m, 36H, NCH₂CH₂CH₃], 1.10 [m, 30H, ZnCH₂CH₃], 1.34 [m, 24H, NCH₂CH₂CH₃], 2.90 [m, 24H, NCH₂CH₂CH₃]. ¹³C{¹H} NMR: δ 11.9 [m, ZnCH₂CH₃], 12.0 [br, NCH₂CH₂CH₃], 30.3 [m, ZnCH₂CH₃), 30.5 [br, NCH₂CH₂CH₃), 42.0 [br, NCH₂CH₂CH₃). ³¹P{¹H} NMR: δ 45.2 [1P], 38.9 [2P].

Synthesis of 9. To a suspension of **4** (0.30 g, 0.53 mmol) in hexane (15 mL) was added Et₂Zn solution (3.7 mL, 3.7 mmol). The reaction mixture was refluxed for 15 minutes resulting in a clear solution that was filtered after left to cool under stirring for 1 h. The filtrate was concentrated (3 ml) and stored at -20 °C. Colourless crystals formed after 2 days. Yield: 0.25 g (42%); m.p. 186 °C (dec.); ¹H NMR: δ 0.32 [q, 12 H, CH₃CH₂Zn, ³J = 8.2 Hz], 0.88 [d, 36H, N(CH₂CH(CH₃)₂), ³J = 6.4 Hz], 1.14 [t, 18 H, CH₃CH₂Zn, ³J = 8.2 Hz], 1.52-1.58 [m, 6H, (CH₂CH(CH₃)₂)], 2.68 - 2.72 [m, 12H, N(CH₂CH(CH₃)₂)].

¹³C{¹H} NMR: δ 1.2 [s, CH_3CH_2Zn], 12.5 [s, CH_3], 21.3 [s, CH_3CH_2Zn], 32.5 [s, CH_2], 52.6 [s, CH]. ³¹P{¹H} NMR: δ 42.6.

Synthesis of 10. To a suspension of 4 (0.30 g, 0.53 mmol) in hexane (15 mL) was added Et₂Zn solution (3.7 mL, 3.7 mmol). The reaction mixture was refluxed for 2 days and then filtered. The filtrate was concentrated (3 ml) and stored at -20 °C. Colourless crystals formed after 2 days. Yield: 0.41 g (77%); m.p. 208 °C (dec.); ¹H NMR: δ 0.6-0.8 [m, 16 H, CH₃CH₂Zn], 0.9-1.2 [m, 36H, N(CH₂CH(CH₃)₂)], 1.55 [m, 12 H, CH₃CH₂Zn], 1.76 - 1.82 [m, 4H, N(CH₂CH(CH₃)₂)], 1.91 - 1.97 [m, 2H, N(CH₂CH(CH₃)₂)], 2.93 - 3.07 [m, 8H, N(CH₂CH(CH₃)₂)], 3.17 - 3.25 [m, 4H, N(CH₂CH(CH₃)₂)]. ¹³C{¹H} NMR: δ -0.7 - 1.3 [m, CH₃CH₂Zn], 11.4 - 12.9 [m, CH₃], 20.5 - 21.7 [m, CH₃CH₂Zn], 30.7 - 31.7 [m, CH₂], 50.8 - 53.5 [m, CH]. ³¹P{¹H} NMR: δ 41.4 [d, 2P, ²J = 9.9 Hz], 43.3 [t, 1P, ²J = 9.9 Hz].

S1 J. F. Bickley, R. Bonar-Law, G. T. Lawson, P. I. Richards, F. Rivals, A. Steiner and S. Zacchini, *Dalton Trans.*, 2003, 1235.

Fig. S1 ³¹P{¹H} NMR of crystals of 5 redissolved in hexane.

Fig. S2 ³¹P{¹H} NMR spectra of (a) reaction solution of **6a** prior to crystallisation, (b) crystals of **6** redissolved in hexane, (c) crystals of **6** redissolved in hexane and treated with one equivalent Et_2Zn .

Fig. S4 $^{31}P\{^{1}H\}$ NMR of redissolved crystals of 10.

Fig. S5 ¹H NMR (top) and ¹³C NMR (bottom) of redissolved crystals of 9.

Fig. S6 1 H NMR (top) and 13 C NMR (bottom) of redissolved crystals of 10.

X-ray crystallography

Reflections were collected on a Bruker Smart Apex diffractometer at 150 K and a Stoe IPDS at 200 K, respectively, using monochromated MoK_a radiation ($\lambda = 0.71073$ Å). All structures were refined against F^2 with full-matrix least-squares using the SHELX programme.^{S2} Crystallographic data are listed in Table S1. The crystal structures of **10** contains one molecule of hexane per formula unit. A pseudo-merohedral twin refinement was carried out for **10**. Non-hydrogen atoms were refined anisotropically. H-atoms were fixed in geometrical positions. Disorder was encountered in some alkyl groups and in the hexane molecule. Disordered atom positions were split on two positions and refined with restraints.^{S1} Crystal of **8** diffracted weakly which is reflected in the high R_{sigma} . It gives nonetheless an adequate model that confirms the connectivity of atoms in the structure. The coverage for crystals is only 91.7 % ; the missing cusp of data due to rotation about one axis in conjunction with low Laue symmetry.

Crystallographic data can be obtained free of charge from The Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk); deposition numbers are as follows: **5**, CCDC 2383655 ; **6**, CCDC 2383657 ; **7**, CCDC 2383658 ; **8**, CCDC 2383656 ; **9**, CCDC 2383654 ; **10**, CCDC 2383659.

S2 G. M. Sheldrick, Acta Crystallogr., Sect. A, 2015, 71, 3.

	5	6	7
formula	C ₃₆ H ₉₆ N ₁₈ P ₆ Zn ₁₂	C ₄₄ H ₁₁₀ N ₁₈ P ₆ Zn ₁₁	C ₅₆ H ₁₃₄ N ₁₈ P ₆ Zn ₁₁
MW	1751.56	1796.38	1964.69
spacegroup	P-1	<i>P</i> -1	$P2_1/n$
a/Å	11.922(3)	12.380(3)	13.2503(18)
b/Å	12.490(3)	14.952(3)	28.806(5)
c/Å	25.336(7)	20.629(4)	22.918(3)
α/°	91.175(4)	79.43(3)	90
β/°	99.758(4)	89.22(3)	96.989(16)
γ/°	118.034(4)	79.88(3)	90
V/Å3	3259.9(15)	3694.7(14)	8683(2)
Z	2	2	4
<i>T</i> /K	150(2)	200(2)	200(2)
$d/g \text{ cm}^{-3}$	1.784	1.615	1.503
μ/mm-1	4.516	3.673	3.133
$\theta(\max)$	24.4	24.3	24.2
R _{int}	0.040	0.078	0.100
R _{sigma}	0.102	0.097	0.100
refl(unique)	10536	11004	13259
refl(> $2\sigma(I)$)	5851	6921	7383
parameters	676	735	812
restraints	1200	1856	2139
<i>R</i> 1(>2σ(<i>I</i>))	0.069	0.059	0.067
wR2(all)	0.210	0.148	0.1703

 Table S1 Crystallographic data.

	8	9	10
formula	$\begin{array}{c} C_{60}H_{144}N_{18}P_6Zn_{12} \cdot \\ C_{54}H_{136}N_{18}O_3P_6Zn_{13} \end{array}$	$C_{36}H_{84}N_9P_3Zn_6$	$\begin{array}{c} C_{64}H_{148}N_{18}P_6Zn_{10}\cdot\\ C_6H_{14}\end{array}$
MW	4233.63	1128.25	2095.69
spacegroup	C2	<i>P</i> -1	$P2_1/n$
a/Å	26.800(5)	11.703(2)	13.385(4)
b/Å	13.633(2)	12.007(3)	37.277(10)
c/Å	25.325(4)	20.205(4)	20.034(6)
α/°	90	100.408(3)	90
β°	107.425(5)	95.061(4)	90.025(5)
γ ['] °	90	112.248(3)	90
V/Å ³	8828(2)	2545.8(9)	9996(5)
Ζ	2	2	4
<i>T</i> /K	150(2)	150(2)	150(2)
d/g cm ⁻³	1.593	1.472	1.393
μ/mm-1	3.483	2.909	2.494
$\theta(\max)$	24.4	25.0	28.0
R _{int}	0.115	0.053	0.060
R _{sigma}	0.297	0.030	0.083
refl(unique)	13852	8713	22777
refl(> $2\sigma(I)$)	5190	7498	18673
parameter	881	491	983
restraints	2037	0	91
R1(>2σ(<i>I</i>))	0.082	0.047	0.050
wR2(all)	0.218	0.131	0.116

 Table S1 Crystallographic data (continued).

Fig. S7 Core structure of complex **5** with 30 % probability ellipsoids (methyl substituents and Zn bound ethyl groups are omitted for clarity). Selected bond lengths (Å) and angles (°):

					1.599(10			2.167(10
P11	N11	1.626(8)	P22	N26)	Zn5	N19)
					1.723(10			
P11	N13	1.630(8)	P22	N27)	Zn6	N17	1.893(9)
		1.622(10			ŕ			
P11	N14)	P23	N21	1.659(9)	Zn7	N18	1.949(9)
P11	N15	1.640(9)	P23	N22	1.641(9)	Zn7	N21	2.043(9)
P12	N12	1.615(8)	P23	N28	1.572(9)	Zn8	N16	2.016(8)
P12	N13	1.619(9)	P23	N29	1.651(9)	Zn8	N23	2.073(8)
P12	N16	1.602(8)	Zn1	N11	2.072(8)	Zn8	N24	2.333(9)
								2.051(10
P12	N17	1.700(8)	Zn1	N28	1.953(8)	Zn9	N14)
P13	N11	1.666(9)	Zn2	N13	2.065(9)	Zn9	N22	2.014(8)
P13	N12	1.644(7)	Zn2	N14	2.400(9)	Zn10	N25	2.193(9)
					2.038(10			2.076(13
P13	N18	1.592(9)	Zn2	N26)	Zn10	N27)
								2.049(10
P13	N19	1.657(9)	Zn3	N12	2.014(7)	Zn10	N29)
P21	N21	1.635(9)	Zn3	N24	2.049(8)	Zn11	N21	2.466(7)
					2.190(10			2.112(10
P21	N23	1.645(9)	Zn4	N15)	Zn11	N25)
								2.158(10
P21	N24	1.629(9)	Zn4	N17	2.124(8)	Zn11	N29)
P21	N25	1.626(8)	Zn4	N19	2.059(9)	Zn12	N27	1.902(9)
P22	N22	1.621(8)	Zn5	N11	2.392(7)			
					2.079(10			
P22	N23	1.637(8)	Zn5	N15				

			120.0(5				116.3(5				111.7(5
P11	N11	P13)	N16	P12	N13)	N25	P21	N23)
			119.6(4				110.5(4				116.7(4
P12	N12	P13)	N12	P12	N17)	N25	P21	N24)
			122.2(5				101.7(4				105.5(4
P12	N13	P11)	N13	P12	N17)	N26	P22	N22)
			119.9(5				109.8(4				112.8(4
P21	N21	P23)	N16	P12	N17)	N22	P22	N23)
			119.2(5				108.4(4				116.6(5
P22	N22	P23)	N12	P13	N11)	N26	P22	N23)
			119.5(5				113.9(5				109.7(5
P22	N23	P21)	N18	P13	N11)	N22	P22	N27)
			113.4(5				100.3(5				100.9(4
N14	P11	N11)	N19	P13	N11)	N23	P22	N27)
			110.5(4				107.3(4				111.3(6
N11	P11	N13)	N18	P13	N12)	N26	P22	N27)
			102.8(5				113.9(4				108.2(4
N14	P11	N13)	N12	P13	N19)	N22	P23	N21)

			100.7(5				113.0(5				112.8(5
N11	P11	N15)	N18	P13	N19)	N28	P23	N21)
			112.6(5				112.5(5				101.0(4
N13	P11	N15)	N24	P21	N21)	N29	P23	N21)
			117.0(5				101.7(4				108.1(5
N14	P11	N15)	N25	P21	N21)	N28	P23	N22)
			107.3(4				111.7(4				113.3(5
N16	P12	N12)	N21	P21	N23)	N22	P23	N29)
			111.2(4				102.8(4				113.3(5
N12	P12	N13)	N24	P21	N23)	N28	P23	N29)

Fig. S8 Core structure of complex **6** with 30 % probability ellipsoids (ethyl substituents and Zn bound ethyl groups are omitted for clarity, Zn atoms in red are part of EtZn moieties). Selected bond lengths (Å) and angles (°):

106.7(3) 100.0(3

		1.671(5			1.588(6			2.177(6	7
P11	N11)	P22	N27)	Zn5	N15)	
		1.661(6			1.639(6			2.001(7	
P11	N13)	P22	N21)	Zn5	N19)	
		1.637(6			1.640(7			2.123(6	
P11	N14)	P23	N23)	Zn6	N12)	
		1.649(7			1.645(7			2.126(6	
P11	N15)	P23	N28)	Zn6	N15)	
		1.682(6			1.600(7			2.417(7	
P12	N11)	P23	N29)	Zn6	N19)	
		1.641(6			1.671(7			2.120(6	
P12	N12)	P23	N22)	Zn7	N14)	
		1.647(6			2.184(6			2.183(6	
P12	N16)	Zn1	N11)	Zn7	N21)	
		1.604(6			1.968(6			2.242(6	
P12	N17)	Zn1	N17)	Zn7	N24)	
		1.673(6			2.114(6			2.059(6	
P13	N12)	Znl	N25)	Zn8	N22)	
		1.665(6			2.002(6			2.064(6	
P13	N13)	Znl	N27)	Zn8	N25)	
	2110	1.604(7			2.276(6	7.0	2.42.2	2.184(6	
P13	N18)	Zn2	NII)	Zn9	N23)	
D12	N10	1.621(7	7.2	N114	2.153(6	7.0	120	1.955(8	
P13	N19)	Zn2	N14)	Zn9	N29)	
D21	NOT	1.641(6	7.2	N124	2.091(6	7.10	NOC	2.082(6	
P21	NZ1)	Zn2	IN24)	Zniu	IN20)	
D21	N122	1.629(6	72	N16	2.139(0	7-10	NIDO	2.011(/	
P21	N23)	Zn3	IN I O)	Zniu	IN28) 2 178(6	
D21	N24	1.052(0	7n2	N19	2.000(0	7n11	N122	2.178(0	
F 2 1	11/24) 1.681(6	2115	1110) 2 177(6		INZZ) 2 172(6	
P21	N25)	Zn4	N13	2.177(0	7n11	N26	2.172(0	
1 2 1	1423) 1.702(6	2114	1113) 2.151(6		1120	2.345(7	
P22	N22)	Zn4	N16)	Zn11	N28)	
1	1,22	, 1.627(6		1110	2.412(7		1,20	,	
P22	N26)	Zn4	N18)				
		,			/	1			-
			12 1/2	1		1	02.9/2		
D11	N11	D12	112.1(3	N12	D12	J16)	02.8(3	N21	DJJ
P12	N12	P13 1	16 0(4	N17	P12 1	$\frac{10}{116}$ 1	17 8(3	N26	P22
114	1112	113 1	110.0(+	1 1 1 1 /	114 1	10 1	1/.0(5	11120	1 44

)))
P11	N13	P13)	N13	P13	N12	104.9(3	N27	P22	N22)
P22	N21	P21)	N18	P13	N12	107.4(3)	N27	P22	N26))
P23	N22	P22	116.6(4)	N19	P13	N12	107.6(4)	N23	P23	N22	109.2(3)
P21	N23	P23	115.5(4)	N18	P13	N13	109.3(4)	N28	P23	N22	100.5(4)
N13	P11	N11	107.8(3)	N19	P13	N13	107.4(3)	N29	P23	N22	112.5(4)
N14	P11	N11	100.0(3)	N18	P13	N19	119.4(4)	N29	P23	N23	99.9(4)
N15	P11	N11	116.6(3)	N23	P21	N21	109.9(3)	N23	P23	N28	120.1(4)
N14	P11	N13	114.1(3)	N24	P21	N21	103.2(3)	N29	P23	N28	115.1(4)
N15	P11	N13	103.4(3)	N23	P21	N24	113.3(3)	N17	Zn1	N11	73.5(2)
N14	P11	N15	115.1(3	N21	P21	N25	103.8(3	N25	Znl	N11	104.9(2
N12	P12	N11	109.2(3	N23	P21	N25	111.1(3	N27	Zn1	N11	127.2(2
N16	P12	N11	113.2(3	N24	P21	N25	114.7(3	N17	Znl	N25	118.5(2
N17	P12	N11	98.5(3)	N26	P22	N21	115.7(3	N27	Znl	N25	99.3(2)
N17	P12	N12	115.6(3	N27	P22	N21	105.9(3	N17	Znl	N27	131.4(3

Fig. S9 Core structure of complex **6** with 30 % probability ellipsoids (propyl substituents and Zn bound ethyl groups are omitted for clarity, Zn atoms in red are part of EtZn moieties). Selected bond lengths (Å) and angles (°):

98.6(4) 111.0(4

116.8(4

		1.670(7			1.646(7			2.193(7	
P11	N11)	P22	N26)	Zn5	N15)	
		1.627(8			1.602(7			2.008(7	
P11	N13)	P22	N27)	Zn5	N19)	
		1.650(7			1.677(8			2.140(7	
P11	N14)	P23	N22)	Zn6	N12)	
		1.614(8			1.656(9			2.130(7	
P11	N15)	P23	N23)	Zn6	N15)	
		1.690(6			1.630(8			2.411(8	
P12	N11)	P23	N28)	Zn6	N19)	
		1.645(7			1.592(8			2.162(7	
P12	N12)	P23	N29)	Zn7	N14)	
		1.654(7			2.171(7			2.150(7	
P12	N16)	Zn1	N11)	Zn7	N21		
		1.578(7			1.972(6			2.257(7	
P12	N17)	Zn1	N17)	Zn7	N24)	
		1.649(7			2.107(7			2.086(7	
P13	N12) `	Zn1	N25) `	Zn8	N22		
		1.687(7			1.977(7			2.041(7	
P13	N13) `	Zn1	N27) `	Zn8	N25		
		1.626(8			2.319(7			2.103(7	
P13	N18)	Zn2	N11)	Zn9	N26)	
		1.621(8			2.141(7			1.966(8	
P13	N19) `	Zn2	N14) `	Zn9	N28		
		1.624(7			2.092(8			2.175(8	
P21	N21) `	Zn2	N24) `	Zn10	N23		
		1.610(8			2.126(7			1.944(9	
P21	N23)	Zn3	N16)	Zn10	N29)	
		1.632(7			2.014(7			2.125(7	
P21	N24)	Zn3	N18)	Zn11	N22)	
		1.686(6			2.185(7			2.132(8	
P21	N25)	Zn4	N13)	Zn11	N26)	
		1.645(7			2.135(7			<i>,</i>	
P22	N21) `	Zn4	N16) `				
		1.691(8			2.413(8				
P22	N22)	Zn4	N18)				
		,	•		/	1			
								1	
D11	2711	DIA	111.9(4	1	D10 3	1	02.7(4	NOC DOD	2100
PII	NII	P12)	1.5.5/4	NI2	P12 1	N16)	17.2/1	N26 P22	N22
DIA	2110	D10	115.7(4	1	D10 3	1	17.3(4	N07 D00	2100
P12	NI2	P13)	1	NI7	P12 1	N16)	04.044	N27 P22	N22
P11	N13	P13	115.8(5	N18	P13 1	NI2 1	.06.8(4	N21 P22	N26

)))
P21	N21	P22)	N19	P13	N12	108.8(4	N27	P22	N26)
P23	N22	P22)	N12	P13	N13	104.8(4)	N23	P23	N22	108.3(4
P21	N23	P23) 107.9(2	N18	P13	N13	109.9(4)	N28	P23	N22	102.4(4)
N13	P11	N11	107.8(3	N19	P13	N13	106./(4)	N29	P23	N22)
N14	P11	N11	100.4(5)	N19	P13	N18) 111.0(4	N28	P23	N23)
N15	P11	N11) 102 4(4	N23	P21	N21) 102 5(4	N29	P23	N23	99.2(4) 116.0(4
N15	P11	N13) 114 6(4	N21	P21	N24)	N29	P23	N28)
N13	P11	N14)	N23	P21	N24)	N17	Zn1	N11	73.5(2)
N15	P11	N14)	N21	P21	N25)	N25	Zn1	N11)
N12	P12	N11)	N23	P21	N25)	N27	Zn1	N11)
N16	P12	N11)	N24	P21	N25)	N17	Zn1	N25)
N17	P12	N11	98.8(3) 115.4(4	N27	P22	N21)	N27	Zn1	N25)
N17	P12	N12)	N21	P22	N22)	N17	Zn1	N27)

Fig. S10 Core structure of complex **8a** with 30 % probability ellipsoids (propyl substituents and Zn bound ethyl groups are omitted for clarity, Zn atoms in red are part of EtZn moieties). Selected bond lengths (Å) and angles (°):

-								
		1.63(2			1.68(2			2.14(3
P1	N1)	P3	N3)	Zn3	N3)
		1.65(2			1.60(2			2.00(3
P1	N3)	P3	N8)	Zn3	N8a)
		1.64(2			1.65(2			2.17(2
P1	N4)	P3	N9)	Zn4	N5)
		1.61(2			2.06(2			2.17(2
P1	N5)	Zn1	N1)	Zn4	N7)
		1.66(2			2.31(2			2.05(3
P2	N1)	Znl	N4)	Zn4	N9)
		1.61(3			2.11(2			2.33(2
P2	N2)	Zn1	N6a)	Zn5	N3)
		1.62(2			2.06(2			2.16(2
P2	N6)	Zn2	N2)	Zn5	N5)
		1.66(2			2.08(2			2.15(2
P2	N7)	Zn2	N4a)	Zn5	N9)
		1.68(3			2.30(2			1.98(2
P3	N2)	Zn2	N6)	Zn6	N7)

			130.5(15				110.5(12				
P11	N11	P12)	N11	P12	N12)	N19	P13	N12	99.2(11)
			127.8(14				118.3(12				114.1(12
P12	N12	P13)	N16	P12	N11)	N19	P13	N13)
			123.7(14				103.7(12				114.0(11
P11	N13	P13)	N16	P12	N12)	N19	P13	N18)
			113.7(13				107.5(13			Zn11	112.8(12
N11	P11	N13)	N16	P12	N17)	Zn11	01	а)
			102.9(12				104.5(13				
N11	P11	N14)	N17	P12	N11)	Zn12	02	Zn11	111.9(8)
			112.0(12				112.6(14				
N11	P11	N15)	N17	P12	N12)	01	Zn11	02	127.3(8)
			113.2(12				112.9(11				128.8(10
N14	P11	N13)	N12	P13	N13)	02	Zn12	O2a)
			113.1(13				115.7(12				
N14	P11	N15)	N18	P13	N12)				
			102.4(12				101.7(11				
N15	P11	N13)	N18	P13	N13)				

Fig. S11 Core structure of complex **8b** with 30 % probability ellipsoids (propyl substituents and Zn bound ethyl groups are omitted for clarity, Zn atoms in red are part of EtZn moieties). Selected bond lengths (Å) and angles (°):

99.2(11) 114.1(12) 114.0(11) 112.8(12)

111.9(8) 127.3(8) 128.8(10)

									_	
P11	N11	1.59(2)	Zn11	N14a	2.04(2)	Zn14	N12	2.22(2)		
P11	N13	1.65(2) 1.61(2	Zn11	N16	2.09(2)	Zn14	N16	2.24(2)		
P11	N14)	Zn11	01)	Zn14	02)		
P11	N15)	Zn11	02)	Zn15	N13	2.16(2)		
P12	N11)	Zn12	N18a	2.05(2)	Zn15	N18	2.23(2)		
P12	N12)	Zn12	N18	2.05(2)	Zn15	O2a)		
P12	N16) 1.59(2)	Zn12	02)	Zn16	N13	2.48(2)		
P12	N17)	Zn12	O2a)	Zn16	N15	1.88(2)		
P13	N12)	Zn13	N11	2.17(2)	Zn17	N12	2.28(2)		
P13	N13)	Zn13	N14	2.30(2) 1.984(14	Zn17	N19	1.94(2)		
P13	N18) 1.63(2	Zn13	01) 1.984(14					
P13	N19)	Zn13	Ola)					
			130.5(15				110.5(12			
P11	N11	P12)	N11	P12	N12)	N19	P13	N12
P12	N12	P13)	N16	P12	N11)	N19	P13	N13
P11	N13	P13)	N16	P12	N12)	N19	P13	N18 Zn11
N11	P11	N13)	N16	P12	N17)	Zn11	01	а
N11	P11	N14)	N17	P12	N11)	Zn12	02	Zn1
N11	P11	N15)	N17	P12	N12)	01	Zn11	02
N14	P11	N13)	N12	P13	N13)	02	Zn12	O2a
N14	P11	N15)	N18	P13	N12)			
N15	P11	N13	102.4(12	N18	P13	N13	101.7(11			

		1
))	
,	,	

Fig. S12 Unit cell of co-crystal 8 viewed along the b-axis.

Fig. S13 Core structure of complex **6** with 30 % probability ellipsoids (isopropyl substituents and Zn bound ethyl groups are omitted for clarity). Selected bond lengths (Å) and angles (°):

		1.671(3			1.656(3			2.306(3
P1	N1)	P3	N3)	Zn3	N9)
		1.649(3			1.625(3			2.122(3
P1	N3)	P3	N8)	Zn4	N5)
		1.599(3			1.628(3			2.057(3
P1	N4)	P3	N9)	Zn4	N9)
		1.653(3			2.231(3			2.136(3
P1	N5)	Zn1	N1)	Zn5	N3)
		1.670(3			1.920(3			2.235(3
P2	N1)	Zn1	N4)	Zn5	N6)
		1.653(3			2.248(3			2.296(3
P2	N2)	Zn2	N1)	Zn5	N8)
		1.655(3			1.920(3			2.091(3
P2	N6)	Zn2	N7)	Zn6	N6)
		1.606(3			2.132(3			2.069(3
P2	N7)	Zn3	N2)	Zn6	N8)
		1.660(3			2.179(3			
P3	N2)	Zn3	N5)			

											72.80(12
P2	N1	P1	114.58(17)	N7	P2	N1	98.80(16)	N7	Zn2	N1)
											98.23(11
P2	N2	P3	115.58(18)	N7	P2	N2	115.22(16)	N2	Zn3	N5)
		~ •									72.03(11
P1	N3	P3	115.81(19)	N2	P2	N6	101.72(15)	N2	Zn3	N9)
2.22						276	115 25(10)		7.0		83.27(11
N3	PI	NI	108.78(16)	N7	P2	N6	117.35(16)	N5	Zn3	N9)
24	D1	N1	00.25(1()	112	D2	NO	107 24(15)	NO	7.4	NE	91.00(12
N4	PI	INI	99.25(16)	N3	P3	N2	107.34(15)	N9	Zn4	NO)
N5	D1	N1	114 81(16)	NIQ	D2	N/2	107 85(16)	NI2	7.5	N6	97.03(11
113	F I	181	114.81(10)	110	F 3	INZ	107.85(10)	113	ZIIJ	INO) 72.21(11
NA	D 1	N3	11/ 80(16)	NO	D3	N2	105 28(15)	NI3	7n5	N8)
117	11	145	114.09(10)	117	15	142	105.20(15)	113	LIIJ	140) 81 72(11
N3	P1	N5	102 24(15)	N8	P3	N3	105 87(16)	N6	Zn5	N8)
	11	110	102.24(15)	110	15	145	105.07(10)	110	2115	110	90.90(12
N4	P1	N5	117.16(16)	N9	P3	N3	107.59(15)	N8	Zn6	N6)
N2	P2	N1	108.49(15)	N8	P3	N9	122.17(16)			110	,
N6	P2	N1	115.61(16)	N4	Zn1	N1	73.35(12)				

Fig. S14 Core structure of complex **10** with 30 % probability ellipsoids (isopropyl substituents and Zn bound ethyl groups are omitted for clarity, Zn atoms in red are part of EtZn moieties). Selected bond lengths (Å) and angles (°):

107.2(2) 106.4(2)

108.5(2)

N22

N22

N23

									-
		1.657(4			1.605(4			2.182(4	
P11	N11)	P22	N27)	Zn5	N13)	
		1.647(4			1.652(4			2.181(4	
P11	N13)	P23	N22)	Zn5	N16)	
		1.602(4			1.654(4			2.226(4	
P11	N14)	P23	N23)	Zn5	N18)	
		1.656(4			1.631(4			2.479(4	
P11	N15)	P23	N28)	Zn6	N12)	
		1.658(4			1.618(4			2.114(4	
P12	N11)	P23	N29)	Zn6	N16)	
DIA	2110	1.650(4	7 1	N71.1	2.201(4	7.6	2110	2.071(4	
P12	N12)	Zni	NII)	Zno	N18)	
D12	NIC	1.665(4	7.1	N114	1.945(4	77	NIDO	2.166(4	
P12	IN10) 1.607(4	Zni	IN14)	Zn/	N23)	
D12	N17	1.007(4	7 n1	N21	2.220(4	7n7	N26	2.201(4	
112	1817) 1.655(4	ZIII	1121) 1 933(4	2.117	1120	2 220(4	
P13	N12)	Znl	N24)	Zn7	N28)	
115	1112) 1.666(4	2.111	1124	2.221(4	2.117	1120) 2.481(4	
P13	N13)	Zn2	N11)	Zn8	N23)	
		1.631(4			1.933(4			2.108(4	
P13	N18) `	Zn2	N17)	Zn8	N25)	
		1.620(4			2.195(4			2.077(4	
P13	N19)	Zn2	N21)	Zn8	N29)	
		1.655(4			1.933(4			2.165(4	
P21	N21)	Zn2	N27)	Zn9	N22)	
		1.662(4			2.175(4			2.201(4	
P21	N23)	Zn3	N12)	Zn9	N25)	
		1.611(4	-		2.170(4			2.230(4	
P21	N24)	Zn3	N15)	Zn9	N29)	
DOI	1125	1.648(4	7.2	N10	2.247(4	7 10	1122	2.453(4	
P21	N25)	Zn3	N19)	Znio	N22)	
D 22	ND1	1.660(4	7.04	N112	2.463(4	7-10	NDC	2.101(4	
P22	INZ I) 1.662(A	ZII4	IN15) 2 115(4	Zniu	IN20	2 000(4	
D22	N22	1.005(4	7n4	N15	2.115(4	7n10	N28	2.090(4	
1 22	INZZ) 1.651(4	2114	1115) 2 073(4	LIIIU	1120)	
P22	N26)	7n4	N19	2.075(4				
122	1120)		1117)	1			
P11	N11	P12 1	16.6(2)	N18	P13	N12	106.9(2	2) N28	P23
P12	N12	P13 1	15.3(2)	N19	P13	N12	106.8(2	2) N29	P23
P11	N13	P13 1	115.7(2)	N12	P13	N13	107.68	(19) N22	P23

P21	N21	P22	116.4(2)	N18	P13	N13	106.2(2)	N28	P23	N23	105.8(2)
P23	N22	P22	115.1(2)	N19	P13	N13	106.6(2)	N29	P23	N23	107.1(2)
P23	N23	P21	114.8(3)	N19	P13	N18	122.0(2)	N29	P23	N28	121.3(2)
N13	P11	N11	107.5(2)	N24	P21	N21	98.4(2)	N14	Zn1	N11	72.85(15)
N14	P11	N11	98.6(2)	N25	P21	N21	116.4(2)	N24	Zn1	N11	130.84(16)
N15	P11	N11	116.0(2)	N21	P21	N23	107.9(2)	N24	Zn1	N14	152.16(17)
N14	P11	N13	117.7(2)	N24	P21	N23	117.7(2)	N11	Zn1	N21	86.72(14)
N13	P11	N15	100.6(2)	N25	P21	N23	100.7(2)	N14	Zn1	N21	129.59(16)
N14	P11	N15	117.0(2)	N24	P21	N25	116.3(2)	N24	Zn1	N21	72.69(15)
N12	P12	N11	107.9(2)	N26	P22	N21	115.8(2)	N17	Zn2	N11	72.85(16)
N17	P12	N11	98.7(2)	N27	P22	N21	98.5(2)	N21	Zn2	N11	86.85(14)
N17	P12	N12	117.2(2)	N21	P22	N22	107.7(2)	N27	Zn2	N11	130.14(16)
N11	P12	N16	115.8(2)	N26	P22	N22	100.3(2)	N27	Zn2	N17	150.72(16)
N12	P12	N16	101.32(19)	N27	P22	N22	118.1(2)	N17	Zn2	N21	132.00(16)
N17	P12	N16	116.3(2)	N27	P22	N26	117.0(2)	N27	Zn2	N21	73.34(15)

Fig. S15 Distribution of P-N bond lengths (Å) in crystal structures of **2**, **5**, **6**, **7**, **9** and **10**. Circles represent P-N(ring) bonds, crosses P-N(exo) bonds.

Fig. S16 Distribution of bond angles (°) in crystal structures of **2**, **5**, **6**, **7**, **9** and **10**.. Circles represent angles in the ring (N-P-N, grey; P-N-P, blue), crosses N(exo)-P-N(exo) angles.

Fig. S17 Distribution of phosphazene ring torsion angles (°) in crystal structures of **2**, **5**, **6**, **7**, **9** and **10**. For **6** and **7** circles represent rings with twist, squares rings with *twist-boat* conformation.

Fig. S18 Distribution of Zn-N bond lengths (Å) in crystal structures of **5**, **6**, **7**, **9** and **10**. Circles represent Zn-N(ring) bonds, crosses Zn-N(exo) bonds. Ticks marked in red denote bonds involving Zn atoms that do not bear ethyl groups.

Fig. S19 The three columns on the left show different views of the coordination pattern of *twist* conformers. The fourth column shows the coordination pattern of *twist-boat* conformers found in **6** and **7**. Alkyl substituents and zinc bound ethyl groups are omitted for clarity; Zn atoms in red are part of EtZn moieties, those in yellow do not bear ethyl groups.

Ring puckering parameters

Ring puckering parameters of the phosphazene rings were calculated according to Cremer and Pople.^{S3} The puckering of a six-membered ring is defined by three parameters. In polar coordinates these are Q, θ and ϕ . Q is the total puckering amplitude, while the angles θ and ϕ determine the ring conformation. At Q = 0, the ring is planar. On a sphere with radius Q, the angles θ and ϕ define latitude and longitude, respectively. Positions at the poles ($\theta = 0^{\circ}$ and 180°) correspond to a *chair* conformation, while *boat* and *twist* conformations are found at the equator ($\theta = 90^{\circ}$); the *boat* occurs at phase angles $\phi = 0$, 60, 120, 180, 240, 300° and the *twist* at $\phi = 30$, 90, 150, 210, 270, 330°. Note that at $\theta = 0^{\circ}$ and 180° ϕ is not defined.

Table S7 lists puckering parameters of EtZn complexes that are based on coordinates obtained from X-ray structure analysis. Angles θ and ϕ are normalised to $0^{\circ} < \theta < 90^{\circ}$ and $0^{\circ} < \phi < 30^{\circ}$, respectively.

	Q	θ (°)	\$ (°)	ring conformation
5	0.442	10.2	7.5	chair
5	0.449	11.1	6.9	chair
(0.840	88.3	27.3	twist
0	0.776	88.3	20.1	twist-boat
7	0.826	88.7	28.0	twist
/	0.767	88.0	20.5	twist-boat
8a	0.467	6.0	19.4	chair
9	0.801	89.7	29.6	twist
10	0.805	89.9	29.5	twist
10	0.811	89.8	29.3	twist

Table S2 Puckering parameters of and conformations phosphazene rings in EtZn complexes.

S3 D. Cremer, J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354.

Appendix

¹H and ¹³C NMR spectra of **5**, **6** and **7** have been presented in the PhD thesis "Phosphazenate ligands as stable platforms for multinuclear organometallic arryas" by Philip I. Richards; $[(ZnEt)_6A]_2$ refers to **5**, $(Zn)(ZnEt)_6B_2$ to **6** and $(Zn)(ZnEt)_6E_2$ to **7**.

Experimental chapter. 8.4 Zinc complexes. $[(\mathbb{Z}\mathbf{n}\mathbb{E}\mathbf{t})_{\mathbf{6}}A]_{\mathbf{2}}.$ 1g (3.17 x10⁻³ mol) of the hexakis(methylamino) cyclotriphosphazene, AH₆, are suspended in 20 mL of thf. To this suspension is added 19.35 mL (19.35 x10⁻³ mol, 6.1eq) of ZnEt₂. The solution is heated to reflux for 15 mins. During which time the suspension dissolves to leave a clear solution. Single crystals suitable for x-ray diffraction are collected from a thf/hexane solution at -20°C. Yield 2.39g (86%) ¹H NMR (400.13MHz, d⁸toluene, 25°C, TMS): $\delta = 0.39$ ppm (m, 24H, ZnCH₂CH₃), 1.29 ppm (m, 36H, ZnCH₂CH₃), 2.52 ppm (br, 36H, NCH₃). ¹³C{¹H} NMR (100.62MHz, d⁸toluene, 25°C, TMS): $\delta = 11.8$ ppm (m, 12C, ZnCH₂CH₃), 32.15 ppm (m, 12C, ZnCH₂CH₃), 32.1 ppm (br, 12C, NCH₃). ³¹P NMR (161.97MHz, Toluene, 25°C, 85% H₃PO₄): $\delta = 44.95$ ppm (²J = 8.47 Hz, second coupling not seen), 37.71 ppm (${}^{2}J = 8.47$ Hz, ${}^{2}J = 28.83$ Hz) and 26.75 ppm (2 J = 28.83 Hz, other coupling not seen). IR (Nujol): $v(cm^{-1}) = 1165$, 1056 (P-N stretch), 905, 832, 658. Elemental analysis $P_6N_{18}C_{36}H_{96}Zn_{12}$ (1751.80): calcd. C 24.68, H 5.52, N 14.40; found C 24.72, H 5.41, N 12.41. m.p. = +350°C, blackens at 190°C. 250

Experimental chapter.

Chemical Formula	C36 H96 N18 P6 Zn12	$V/Å^3$	3270.1(14)
FW	1751.80	Z	4
Crystal system	Triclinic	$\rho_{calc}/g \text{ cm}^{-3}$	1.779
Space group	P-1	T/K	150(2)
a/ Å	11.937(3)	$\lambda(MoK_{\alpha})/$ Å	0.71073
b/ Å	12.505(3)	μ (MoK _{α})mm ⁻¹	4.502
c/ Å	25.365(7)	Data/parameters	8463 / 673
α /°	91.181(4)	$R_1(I \ge 2\sigma(I))$	0.0665
β /°	99.781(4)	wR ² (all data)	0.2192
γ /°	118.070(4)		

$(\mathbb{Z}n)(\mathbb{Z}n\mathbb{E}t)_{10}B.$

1g (2.50 x10⁻³ mol) of the hexakis(ethylamino) cyclotriphosphazene, BH_6 , are suspended in 20 mL of hexane. To this suspension is added 15.27 mL (15.27 x10⁻³ mol, 6.1 eq) of ZnEt₂. The solution is heated to reflux for 15 mins. During which time the suspension dissolves to leave a clear solution.

Single crystals suitable for x-ray diffraction are collected from a hexane solution at 25°C.

Yield 1.71g (76%)

¹H NMR (400.13MHz, d⁸toluene, 25°C, TMS): $\delta = 0.67$ ppm (m, 20H, ZnCH₂CH₃), 1.28 ppm (m, 30H, ZnCH₂CH₃), 1.28 – 1.49 ppm (m, 18H, NCH₂CH₃), 3.13 ppm (m, 12H, NCH₂CH₃).

¹³C{¹H} NMR (100.62MHz, d⁸toluene, 25°C, TMS): $\delta = 12.7$ ppm (m, 10C, ZnCH₂CH₃), 18 ppm (br, 12C, NCH₂CH₃), 30.3 ppm (m, 10C, ZnCH₂CH₃), 40.5 ppm (br, 12C, NCH₂CH₃).

Experimental chapter.

 ^{31}P NMR (161.97MHz, Toluene, 25°C, 85% H_3PO_4): δ = 44.74, 39.49 ppm

(Coupling not observed).

IR (Nujol): $v(cm^{-1}) = 1258$, 1093 (P-N stretch), 1043 (P-N stretch), 874, 796.

Elemental analysis $P_6N_{18}C_{44}H_{110}Zn_{11}$ (1796.38): calcd. C 29.42, H 6.17, N 14.04; found C 29.03, H 6.03, N 12.35.

m.p. = 118°C accompanied by a blackening transition.

C44 H110 N18 P6 Zn11	V/ Å ³	7396(3)
1796.38	Z	8
Monoclinic	$\rho_{calc}/g \text{ cm}^{-3}$	1.724
P2(1)/c	T/K	150(2)
20.369(4)	λ (MoK _a)/Å	0.71073
12.655(3)	μ (MoK _{α})mm ⁻¹	3.989
28.711(6)	Data/parameters	9585 / 767
90.00	$R_1(I \ge 2\sigma(I))$	0.0392
91.98(3)	wR ² (all data)	0.1145
90.00		
	$\begin{array}{r} C_{44} H_{110} N_{18} P_6 Zn_{11} \\ 1796.38 \\ \hline Monoclinic \\ P2(1)/c \\ 20.369(4) \\ 12.655(3) \\ 28.711(6) \\ 90.00 \\ 91.98(3) \\ 90.00 \end{array}$	$\begin{array}{c c} C_{44} H_{110} N_{18} P_6 Zn_{11} & V/ \mathring{A}^3 \\ \hline 1796.38 & Z \\ \hline Monoclinic & \rho_{calc/g} cm^{-3} \\ \hline P2(1)/c & T/K \\ \hline 20.369(4) & \lambda(MoK_{\alpha})/ \mathring{A} \\ \hline 12.655(3) & \mu(MoK_{\alpha})mn^{-1} \\ \hline 28.711(6) & Data/parameters \\ \hline 90.00 & R_1(I>2\sigma(I)) \\ \hline 91.98(3) & wR^2(all data) \\ \hline 90.00 \\ \end{array}$

$(\mathbb{Z}n)(\mathbb{Z}n\mathbb{E}t)_{10}\mathbb{E}.$

1g (2.07 x10⁻³ mol) of the hexakis(*n*-propylamino) cyclotriphosphazene, EH_6 , are dissolved in 20 mL of hexane. To this solution is added 12.61 mL (12.61 x10⁻³ mol, 6.1eq) of ZnEt₂. The solution is heated to reflux for 2 h.

Single crystals suitable for x-ray diffraction are collected from a hexane solution at -20°C.

Yield 1.67g (82%)

252

Experimental chapter.

¹H NMR (400.13MHz, d⁸toluene, 25°C, TMS): $\delta = 0.65$ ppm (m, 20H, ZnCH₂CH₃), 0.75 ppm (m, 36H, NCH₂CH₂CH₃), 1.10 ppm (m, 30H, ZnCH₂CH₃), 1.34 ppm (m, 24H, NCH₂CH₂CH₃), 2.90 ppm (m, 24H, NCH₂CH₂CH₃).

¹³C{¹H} NMR (100.62MHz, d⁸toluene, 25°C, TMS): δ = 11.9 ppm (m, 10C, ZnCH₂CH₃), 12 ppm (br, 12C, NCH₂CH₂CH₃), 30.3 ppm (m, 10C, ZnCH₂CH₃), 30.5 ppm (br, 12C, NCH₂CH₂CH₃), 42 ppm (br, 12C, NCH₂CH₂CH₃).

 31 P NMR (161.97MHz, Toluene, 25°C, 85% H₃PO₄): δ = 45.21, 38.85 ppm (Coupling not observed).

IR (Nujol): $\nu(cm^{-1}) = 1258$, 1089 (P-N stretch), 1019 (P-N stretch), 943, 868, 801.

Elemental analysis $P_6N_{18}C_{56}H_{134}Zn_{11}$ (1964.69): calcd. C 34.23, H 6.87, N 12.84; found C 30.10, H 6.79, N 7.63.

m.p. = 142°C accompanied by a blackening transition.

Chemical Formula	C56 H134 N18 P6 Zn11	V/ Å ³	8684(4)
FW	1964.69	Z	4
Crystal system	Monoclinic	$\rho_{calc}/g \text{ cm}^{-3}$	2.241
Space group	P2(1)/n	T/K	150(2)
a/ Å	13.276(2)	λ (MoK _a)/Å	0.71073
b/ Å	28.803(11)	μ (MoK _{α})mm ⁻¹	6.894
c/ Å	22.877(4)	Data/parameters	11036 / 880
α /°	90.00	$R_1(I>2\sigma(I))$	0.0664
β /°	96.93(2)	wR ² (all data)	0.1743
γ /°	90.00		

253