Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information

Deciphering the Direct Heterometallic Interaction in κ^3 -bis(donor)ferrocenyl-transition-metal

Complexes

Máté Bartek,^a Eszter Makkos,^{a,b} Zsolt Kelemen^{*a}

a Department of Inorganic and Analytical Chemistry, Budapest University of Technology and

Economics, Műegyetem Rkp. 3, 1111 Budapest, Hungary

b HUN-REN Computation Driven Chemistry Research Group, Budapest University of Technology and Economics, Műegyetem Rkp. 3, 1111 Budapest, Hungary

Name given by the	Functional	Basis set	М	d _{Fe-M}	d _{Fe-M}	h _{rel}	ref.
[Pd(dppdtbpf)(PPh ₃)] ²⁺	PBE	TZP-ZORA	Pd	2.93	3.20	0.0922	13
[Pd(dppdtbpf)(PPh ₃)] ²⁺	PBE-D3	TZP-ZORA	Pd	2.93	3.20	0.0922	13
$[Pd(dcpf)(PPh_3)]^{2+}$	PBE	TZP-ZORA	Pd	2.93	3.17	0.0819	13
$[Pd(dcpf)(PPh_3)]^{2+}$	PBE-D3	TZP-ZORA	Pd	2.93	3.17	0.0819	13
$[Pt(dppr)(PPh_3)]^{2+}$	PBE	TZP-ZORA	Pt	2.89	3.12	0.0796	13
$[Fc'(PPh_2)(NMe_2)$ $\cdot Pd(PPh_2)Fc'(NMe_2)]$ $[BF_4]_2$	B3LYP	def2TZVP	Pd	2.82	3.04	0.0793	14
$[Pt(dppr)(PPh_3)]^{2+}$	PW91	TZP-ZORA	Pt	2.89	3.11	0.0761	13
$\frac{[Fc'(PPh_2)(NMe_2)}{\cdot Pd(PPh_2)Fc'(NMe_2)]}$ $\frac{[BF_4]_2}{[BF_4]_2}$	BP86	def2TZVP	Pd	2.82	3.02	0.0715	14
$[Fc'(PMes_2)(PtBu_2) \\ \cdot PdCl1[SbF_6]$	B3LYP-D3	def2TZVP	Pd	2.84	3.03	0.0691	14
[Fc'(PMes ₂)(PtBu ₂) ·PdCl][SbF ₆]	M06-2X	def2TZVP	Pd	2.84	3.03	0.0673	14
$[Pd(dppr)(PPh_3)]^{2+}$	PBE	TZP-ZORA	Pd	2.89	3.08	0.0657	13
$[Pd(dppr)(PPh_3)]^{2+}$	PBE-D3	TZP-ZORA	Pd	2.89	3.08	0.0657	13
$[Fc'(PPh_2)(NMe_2)$ $\cdot PdP(p-OMe-C_6H_4)_3][BF_4]_2$	B3LYP	def2TZVP	Pd	2.83	3.02	0.0656	14
$[Fc'(PPh_2)(NMe_2)$ $\cdot Pd(PPh_2)Fc'(NMe_2)]$ $[BF_4]_2$	B3LYP-D3	def2TZVP	Pd	2.82	3.00	0.0651	14
$[Fc'(PPh_2)(NMe_2)$ $\cdot Pd(PPh_2C_5H_5)]$ $[SbF_6]_2$	B3LYP	def2TZVP	Pd	2.81	2.99	0.0647	14
$[Fc'(PPh_2)(NMe_2)$ $\cdot Pd(PPh_2)Fc'(NMe_2)]$ $[BF_4]_2$	M06-2X	def2TZVP	Pd	2.82	3.00	0.0637	14
$[Fc'(PPh_2)(NMe_2)$ ·PdCl][SbF_6]_2	M06-2X	def2TZVP	Pd	2.74	2.91	0.0630	14
$[Fc'(PPh_2)(NMe_2)$ ·PdP(p-OMe- C_6H_4)_3][BF_4]_2	M06-2X	def2TZVP	Pd	2.83	3.01	0.0618	14
$[Pd(dcpf)(PPh_3)]^{2+}$	PW91	TZP-ZORA	Pd	2.93	3.11	0.0614	13
$[Fc'(PPh_2)(NMe_2)$ $\cdot Pd(PPh_2)Fc'(NMe_2)]$ $[BF_4]_2$	B3LYP	def2TZVP	Pd	2.83	3.00	0.0605	14
$[Fc'(PPh_2)(NMe_2)$ ·PdCl][SbF ₆] ₂	B3LYP-D3	def2TZVP	Pd	2.74	2.90	0.0590	14
$[Fc'(PPh_2)(NMe_2)$ $\cdot PdP(p-OMe-C_6H_4)_3]$ $[BF_4]_2$	B3LYP-D3	def2TZVP	Pd	2.83	3.00	0.0589	14
$[Pd(dppr)(PPh_3)]^{2+}$	PW91	TZP-ZORA	Pd	2.89	3.06	0.0588	13

Table S1 Different Fe-M distances reported in the literature

$[Pt(dppr)(PPh_3)]^{2+}$	PBE-D3	TZP-ZORA	Pt	2.89	3.06	0.0588	13
[Fc'(PPh ₂)(NMe ₂)	BP86	def2TZVP	Pd	2.83	3.00	0.0582	14
·PdP(p-OMe-							
$C_6H_4)_3][BF_4]_2$							
$[Pd(dppdtbpf)(PPh_3)]^{2+}$	PW91	TZP-ZORA	Pd	2.93	3.10	0.0580	13
[Fc'(PPh ₂)(NMe ₂)	M06-2X	def2TZVP	Pd	2.81	2.97	0.0580	14
$\cdot Pd(PPh_2C_5H_5)][SbF_6]_2$							
[Fc'(PMes ₂)(PtBu ₂)	B3LYP	def2TZVP	Pd	2.84	3.00	0.0568	14
\cdot PdCl][SbF ₆]							
[Fc'(PPh ₂)(NMe ₂)	BP86	def2TZVP	Pd	2.81	2.97	0.0559	14
$\cdot Pd(PPh_2C_5H_5)][SbF_6]_2$							
$[Fc'(PPh_2)(NMe_2)]$	M06-2X	def2TZVP	Pd	2.83	2.99	0.0552	14
$\cdot Pd(PPh_2)Fc'(NMe_2)$]							
$[BF_4]_2$							14
$[Fc'(PPh_2)(NMe_2)]$	B3LYP-D3	def2TZVP	Pd	2.81	2.97	0.0548	14
\cdot Pd(PPh ₂ C ₅ H ₅)][SbF ₆] ₂			D 1	2.02	2.00	0.0507	14
$[Fc'(PPh_2)(NMe_2)]$	B3LYP-D3	def21ZVP	Pd	2.83	2.98	0.0527	14
\cdot Pd(PPh ₂)Fc'(NMe ₂)]							
$[BF4]_2$	DDEL 1DDE		Ъ	2.92	2.07	0.0520	14
$[FC(PPf_2)(NMe_2)]$	PBENIPBE	delZIZVP	Pa	2.82	2.97	0.0520	
[PE1]							
$\frac{[DI'_4]_2}{[Pd(dthnf)C1]^+}$	PRF-D3	ΤΖΡ-ΖΟΒΑ	Pd	2.94	3.00	0.0510	13
[1 u(utopi)Ci]			Dí	2.74	2.00	0.0510	13
[Pt(dcpf)(PPh ₃)] ²	PW91	IZP-ZORA	Pt	2.94	3.09	0.0510	10
$[Pt(dcpf)(PPh_3)]^{2+}$	PBE	TZP-ZORA	Pt	2.94	3.09	0.0510	13
$[Pd(dcpf)(PMe_3)]^{2+}$	PBE-D3	TZP-ZORA	Pd	2.95	3.10	0.0508	13
$[Pd(dcpf)(PMe_3)]^{2+}$	PW91	TZP-ZORA	Pd	2.95	3.10	0.0508	13
[Fc'(PPh ₂)(NMe ₂)	BP86	def2TZVP	Pd	2.83	2.97	0.0506	14
$\cdot Pd(PPh_2)Fc'(NMe_2)]$							
$[BF_4]_2$							
[Pd(dtbpf)Cl] ⁺	PBE	TZP-ZORA	Pd	2.94	3.08	0.0476	13
[Fc'(PMes ₂)(PtBu ₂)	B3LYP	def2TZVP	Pd	2.74	2.86	0.0455	14
·PdCl][SbF ₆]							
$[Pt(dcpf)(PPh_3)]^{2+}$	PBE-D3	TZP-ZORA	Pt	2.94	3.07	0.0442	13
$[Pd(dcpf)(PMe_3)]^{2+}$	PBE-D3	TZP-ZORA	Pd	2.95	3.08	0.0441	13
Pd(dppf	M11/LAN	$6-31^+G(d,p)$	Pd	2.76	2.88	0.0438	35
$\kappa^{3}P,P',Fe)(PPh_{3})[BF_{4}]_{2}$	L2DZ-ECP						
	(Fe,Pd)						
$[Pd(dppf)(PPh_3)]^{2+}$	PBE-D3	TZP-ZORA	Pd	2.89	3.01	0.0415	13
$[Pd(dppf)(PPh_3)]^{2+}$	PBE-D3	TZP-ZORA	Pd	2.89	3.01	0.0415	13
$\left[\mathbf{F}_{\mathbf{A}} / (\mathbf{D} \mathbf{M}_{\mathbf{A}} + \mathbf{x}_{\mathbf{A}}) / (\mathbf{D} \mathbf{M}_{\mathbf{A}} + \mathbf{x}_{\mathbf{A}}) \right]$	DDQC		DJ	2.94	2.05	0.0402	14
$\frac{[FC(FIVIES_2)(PTBU_2)}{PdC[11(ShE_1)]}$	BP90	del21ZVP	Pa	2.84	2.95	0.0402	
$\frac{\Gamma(U)[SUF_6]}{[F_0'(DM_{200})(DtD_{110})]}$	OB07V D	def TTTVD	DA	281	2.05	0.0201	14
$\cdot PdC11(ShF_1)$			Fu	2.04	2.93	0.0301	
$\frac{[Pd(dppf)(PPh_3)]^{2+}}{[Pd(dppf)(PPh_3)]^{2+}}$	PBE	TZP-ZORA	Pd	2.89	3.00	0.0381	13
[Dd/dthat]+			L.	2.02	2.02	0.0277	13
	PBE-D3	I LP-LUKA	Pa	2.92	5.03	0.0377	

[Fc'(PPh ₂)(NMe ₂)	PBEh1PBE	def2TZVP	Pd	2.83	2.94	0.0371	14
·PdP(p-OMe-							
$C_{6}H_{4})_{3}[BF_{4}]_{2}$							14
$[Fc'(PPh_2)(NMe_2)$ ·Pd(PPh_C_H_1)][ShF_1]	PBEh1PBE	def2TZVP	Pd	2.81	2.92	0.0370	14
$[Pd(dtbpf)I]^+$	PBE	TZP-ZORA	Pd	2.92	3.02	0.0342	13
[Fc'(PPh ₂)(NMe ₂) ·PdCll[SbF ₆] ₂	ωB97X-D	def2TZVP	Pd	2.74	2.83	0.0342	14
$\frac{[Fc'(PMes_2)(PtBu_2)}{PdCll[SbF_6]}$	PBEh1PBE	def2TZVP	Pd	2.84	2.93	0.0335	14
$[Fc'(PPh_2)(NMe_2)$ $\cdot Pd(PPh_2)Fc'(NMe_2)]$ $[BE_4]_2$	PBEh1PBE	def2TZVP	Pd	2.83	2.92	0.0326	14
[Fc(NCNDIPP) ₂ Li] ⁻	BP86-D4	def2TZVPP	Li	2.85	2.76	0.0313	34
[Fc'(PPh ₂)(NMe ₂) ·PdCl][SbF ₆] ₂	BP86	def2TZVP	Pd	2.74	2.82	0.0313	14
$[Pd(dppf)(P(pC_6H_4CF_3)_3)][BF_4]_2$	PW91	TZP-ZORA	Pd	2.89	2.98	0.0311	5
[Pd(dtbpf)I] ⁺	PW91	TZP-ZORA	Pd	2.92	3.01	0.0308	13
$[Pd(dippf)(PMe_3)]^{2+}$	PBE	TZP-ZORA	Pd	3.02	3.11	0.0298	13
[Pd(dippf)(PMe ₃)] ²⁺	PBE-D3	TZP-ZORA	Pd	3.02	3.11	0.0298	13
[{fc(NIm) ₂ }NiCl ₂]	B97D	6-311G**	Ni	3.80	3.91	0.0297	15
[Fc'(PPh ₂)(NMe ₂) ·PdCl][SbF ₆] ₂	PBEh1PBE	def2TZVP	Pd	2.74	2.82	0.0291	14
[Fc(NCNDIPP) ₂ Ag] ⁻	B3LYP-D4	def2TZVPP	Ag	3.15	3.24	0.0284	34
$\kappa^3 \operatorname{-dppf}_1(1p^+)$	TPSS-D3	def2TZVP	Fe	4.22	4.34	0.0282	21
$[Fc'(PPh_2)(NMe_2)$ $\cdot Pd(PPh_2)Fc'(NMe_2)][B$ $F_4]_2$	ωB97X-D	def2TZVP	Pd	2.82	2.90	0.0272	14
[Fc(NCNDIPP) ₂ Ag] ⁻	B3LYP-D3	def2TZVPP	Ag	3.15	3.23	0.0258	34
$[{fc(NIm)_2}Pd(NCMe)]_{2+}$	B97D	6-311G**	Pd	2.63	2.70	0.0252	15
[Pd(dtbpf)Cl] ⁺	PW91	TZP-ZORA	Pd	2.92	2.99	0.0240	28
[Pd(dtbpf)I] ⁺	PW91	TZP-ZORA	Pd	2.92	2.99	0.0240	28
[Pd(dtbpf)Br] ⁺	PW91	TZP-ZORA	Pd	2.92	2.99	0.0240	28
[Pd(dtbpf)Cl] ⁺	PW91	TZP-ZORA	Pd	2.94	3.01	0.0238	13
[Fc(NCNDIPP) ₂ Ag] ⁻	B3LYP	def2TZVPP	Ag	3.15	3.22	0.0217	34
$[Fc'(PPh_2)(NMe_2)$ $\cdot PdP(p-OMe-C_6H_4)_3]$ $[BF_4]_2$	ωB97X-D	def2TZVP	Pd	2.83	2.90	0.0216	14
[fc(NPEt ₃) ₂ PdMe] ⁺	PW91	TZP-ZORA	Pd	2.78	2.84	0.0214	37
$[Fc'(PPh_2)(NMe_2)$ $\cdot Pd(PPh_2C_5H_5)][SbF_6]_2$	ωB97X-D	def2TZVP	Pd	2.81	2.87	0.0210	14
$[Pd(dippf)(PMe_3)]^{2+}$	PW91	TZP-ZORA	Pd	3.02	3.08	0.0199	13
[Fc(NCNDIPP) ₂ Ag] ⁻	BP86	def2TZVPP	Ag	3.15	3.21	0.0195	34

$[Fc'(PPh_2)(NMe_2)]$	ωB97X-D	def2TZVP	Pd	2.83	2.88	0.0191	14
$F_4]_2$							
$[{fc(NIm)_2}NiCl]^+$	B97D	6-311G**	Ni	2.63	2.68	0.0187	15
[Fc(NCNDIPP) ₂ Ag] ⁻	BP86-D4	def2TZVPP	Ag	3.15	3.21	0.0185	34
[Fc(NCNDIPP) ₂ Cu] ⁻	BP86-D3	def2TZVPP	Cu ^I	3.17	3.22	0.0170	34
[Fc(NCNDIPP) ₂ Cu] ⁻	B3LYP-D3	def2TZVPP	Cu ^I	3.17	3.22	0.0167	34
[Fc(NCNDIPP) ₂ Cu] ⁻	B3LYP-D4	def2TZVPP	Cu ^I	3.17	3.22	0.0167	34
$[{fc(NIm)_2} \\ Ni(NCMe)]^{2+}$	B97D	6-311G**	Ni	2.63	2.67	0.0153	15
[Fc(NCNDIPP) ₂ Cu]	BP86-D3	def2TZVPP	Cu ^{II}	3.12	3.07	0.0149	34
[Fc(NCNDIPP) ₂ Li] ⁻	B3LYP	def2TZVPP	Li	2.85	2.89	0.0148	34
$[{fc(NIm)_2}PdCl]^+$	B97D	6-311G**	Pd	2.67	2.71	0.0142	15
[Fc(NCNDIPP) ₂ Ag] ⁻	BP86-D3	def2TZVPP	Ag	3.15	3.20	0.0141	34
[Fc(NCNDIPP) ₂ Cu] ⁻	BP86-D4	def2TZVPP	Cu ^I	3.17	3.21	0.0136	34
[Fc(NCNDIPP) ₂ Li] ⁻	B3LYP-D4	def2TZVPP	Li	2.85	2.81	0.0130	34
[Fc(NCNDIPP) ₂ Li] ⁻	BP86	def2TZVPP	Li	2.85	2.88	0.0130	34
[Fc(NCNDIPP) ₂ Cu]	BP86	def2TZVPP	Cu ^{II}	3.12	3.15	0.0117	34
[Fc(NCNDIPP) ₂ Li] ⁻	BP86-D3	def2TZVPP	Li	2.85	2.81	0.0109	34
$[PdCl({Fe(\eta^{5}-$	M11/LAN	6-31 ⁺ G(d,p)	Pd	3.79	3.75	0.0102	35
$C_{5}H_{4}NVC(NR_{2})_{2}_{2}-\kappa^{3}N,$ N',Fe)] ₂ [PdCl ₄]	(Fe,Pd)						
[Fc(NCNDIPP) ₂ Cu]	B3LYP-D4	def2TZVPP	Cu ^{II}	3.12	3.15	0.0101	34
[Fc(NCNDIPP) ₂ Cu]	B3LYP	def2TZVPP	Cu ^{II}	3.12	3.15	0.0095	34
[Fc(NCNDIPP) ₂ Cu]	BP86-D4	def2TZVPP	Cu ^{II}	3.12	3.09	0.0088	34
$[fc(NPPh_3)_2PdMe]^+$	PW91	TZP-ZORA	Pd	2.80	2.82	0.0087	37
$[{fc(NIm)_2}Pd(PMe_3)]^{2+}$	B97D	6-311G**	Pd	2.75	2.77	0.0073	15
$[{fc(NIm)_2}Ni(PMe_3)]^{2+}$	B97D	6-311G**	Ni	2.74	2.76	0.0066	15
1	TPSS	def2TZVP	Ni	4.24	4.27	0.0057	21
[fc(NPPh ₃) ₂ NiPh] ⁺	PW91	TZP-ZORA	Ni	2.82	2.81	0.0051	37
[Fc(NCNDIPP) ₂ Cu] ⁻	BP86	def2TZVPP	Cu ^I	3.17	3.19	0.0047	34
[Fc(NCNDIPP) ₂ Cu]	B3LYP-D3	def2TZVPP	Cu ^{II}	3.12	3.13	0.0047	34
[Fc(NCNDIPP) ₂ Cu] ⁻	B3LYP	def2TZVPP	Cu ^I	3.17	3.18	0.0038	34
$[{fc(NIm)_2}PdCl_2]$	B97D	6-311G**	Pd	4.00	3.99	0.0025	15

Table S2 CCDC numbers for 1-6

Structure	CCDC#	reference
1	980227	13
2	277349	38
3	1569204	37
4	1117672	39
5	114238	36
6	114239	36

Table S3 The obtained d_{Fe-M} (in Å) applying different basis sets using TPSSh DFT functional

Structure	d _{Fe-M,exp} [Å]	3-21G	def2-TZVP	6-311+G** and for metal atoms LANL2DZ	def2-TZVP and for metal atoms TZP-ZORA
1	2.939	2.836	2.935	2.919	2.876
2	2.663	2.666	2.713	2.718	2.690
3	2.781	2.769	2.808	2.818	2.767
4	2.879	2.793	2.940	2.919	2.883
5	2.886	2.552	2.892	2.853	2.891

Table S4. Computed and experimental values of Fe-M distances $(d_{\text{Fe-M}})$ in Å for structures 1-6

Structure	d_{Fe_M}	TPSSh	M06-	CAM-	CAM-	PW91	B3LYP	B3LYP-	ωb97X-	BP86
			2X	B3LYP	B3LYP-			D3	D	
					D3					
1	2.94	3.05	3.08	2.99	3.00	2.94	3.06	3.01	3.03	2.98
2	2.66	2.77	2.78	2.75	2.74	2.71	2.83	2.75	2.76	2.73
3	2.78	2.89	2.9	2.84	2.84	2.81	2.94	2.86	2.87	2.83
4	2.88	3.04	3.05	2.96	2.99	2.94	3.03	2.99	3.00	2.97
5	2.89	3.00	2.98	2.91	2.93	2.89	2.95	2.96	2.95	2.90
6	4.27	4.29	4.20	4.16	4.29	4.25	4.1	4.24	4.16	4.27

Table S5 Computed ring tilts for structures with an eclipsed geometry in conjunction of the def2-TZVP basis set with pseudopotentials on the metal atoms.

Structure	Functional	d _{Fe-M} [Å]	α _{exp.} [°]	$\alpha_{calc.}$ [°]	h _{rel} [-]
3	B3LYP	2.781	15.324	12.900	0.158
3	B3LYP-D3	2.781	15.324	12.481	0.186
3	BP86	2.781	15.324	14.266	0.069
3	CAM-B3LYP	2.781	15.324	12.827	0.163
3	CAM-B3LYP-D3	2.781	15.324	12.688	0.172
3	M06-2X	2.781	15.324	13.556	0.115
3	PW91	2.781	15.324	14.406	0.060
3	TPSSh	2.781	15.324	14.373	0.062
3	b97X-D	2.781	15.324	14.333	0.065
4	B3LYP	2.879	20.045	17.665	0.119
4	B3LYP-D3	2.879	20.045	17.496	0.127
4	BP86	2.879	20.045	19.372	0.034
4	CAM-B3LYP	2.879	20.045	17.434	0.130
4	CAM-B3LYP-D3	2.879	20.045	17.347	0.135
4	M06-2X	2.879	20.045	15.289	0.237
4	PW91	2.879	20.045	19.588	0.023
4	TPSSh	2.879	20.045	19.171	0.044
4	ωb97X-D	2.879	20.045	17.597	0.122
5	B3LYP	2.886	15.139	13.248	0.125
5	B3LYP-D3	2.886	15.139	13.627	0.100
5	BP86	2.886	15.139	15.292	0.010
5	CAM-B3LYP	2.886	15.139	13.088	0.135
5	CAM-B3LYP-D3	2.886	15.139	13.325	0.120
5	M06-2X	2.886	15.139	11.221	0.259
5	PW91	2.886	15.139	15.537	0.026
5	TPSSh	2.886	15.139	15.030	0.007
5	ωb97X-D	2.781	15.139	13.494	0.109

Fig. S1 Mean absolute values of relative errors including bond lengths depicted in Fig. S2

Fig. S2 General ball-stick figure of the κ^3 -bis(donor)-ferrocenophanes with notable bond lengths (d) discussed in Fig. S1

		-	
B3LYP	$d_{exp,1}$ [Å]	$d_{calc,1}$ [Å]	h _{rel} [-]
Pd-Cl	2.316	2.306	-0.004
P-Pd	2.278	2.324	0.020
P-Pd	2.271	2.332	0.026
P-C	1.798	1.816	0.010
P-C	1.796	1.822	0.015
Fe-Pd	2.939	3.048	0.036
TPSSh	$d_{exp,1}$ [Å]	d _{calc,1} [Å]	h _{rel} [-]
Pd-C1	2.316	2.293	-0.010
P-Pd	2.278	2.314	0.015
P-Pd	2.271	2.303	0.014
P-C	1.798	1.815	0.009
P-C	1.796	1.808	0.007
Fe-Pd	2.939	2.936	-0.001
ωb97X-D	$d_{exp,1}$ [Å]	d _{calc,1} [Å]	h _{rel} [-]
Pd-Cl	2.316	2.293	-0.010
P-Pd	2.278	2.314	0.015
P-Pd	2.271	2.303	0.014
P-C	1.798	1.815	0.009
P-C	1.796	1.808	0.007
Fe-Pd	2.939	2.988	0.017
	L	L	
BP86	$d_{exp,1}$ [Å]	d _{calc,1} [Å]	h _{rel} [-]
Pd-Cl	2.316	2.312	-0.002
P-Pd	2.278	2.308	0.013
P-Pd	2.271	2.313	0.018
P-C	1.798	1.817	0.011
P-C	1.796	1.823	0.015
Fe-Pd	2.939	3.002	0.021
M06-2X	$d_{exp,1}$ [Å]	d _{calc,1} [Å]	h _{rel} [-]
Pd-Cl	2.316	2.302	-0.006
P-Pd	2.278	2.287	0.004
P-Pd	2.271	2.345	0.031
P-C	1.798	1.820	0.012
P-C	1.796	1.808	0.007
Fe-Pd	2.939	3.062	0.040
í	1	1	

Table S6 Experimental, and calculated bond lengths of 1

CAM-B3LYP	$d_{exp,1}$ [Å]	d _{calc,1} [Å]	h _{rel} [-]
Pd-Cl	2.316	2.277	-0.017
P-Pd	2.278	2.303	0.011
P-Pd	2.271	2.315	0.019
P-C	1.798	1.814	0.009
P-C	1.796	1.807	0.006
Fe-Pd	2.939	3.011	0.024
PW91	$d_{exp,1}$ [Å]	$d_{calc,1}$ [Å]	h _{rel} [-]
Pd-Cl	2.316	2.307	-0.004
P-Pd	2.278	2.303	0.011
P-Pd	2.271	2.309	0.016
P-C	1.798	1.819	0.012
P-C	1.796	1.813	0.010
Fe-Pd	2.939	2.983	0.015
CAM-B3LYP-D3	$d_{exp,1}$ [Å]	$d_{calc,1}$ [Å]	h _{rel} [-]
CAM-B3LYP-D3 Pd-Cl	d _{exp,1} [Å] 2.316	d _{calc,1} [Å] 2.275	h _{rel} [-] -0.018
CAM-B3LYP-D3 Pd-Cl P-Pd	d _{exp,1} [Å] 2.316 2.278	d _{calc,1} [Å] 2.275 2.301	h _{rel} [-] -0.018 0.010
CAM-B3LYP-D3 Pd-Cl P-Pd P-Pd	d _{exp,1} [Å] 2.316 2.278 2.271	d _{calc,1} [Å] 2.275 2.301 2.288	h _{rel} [-] -0.018 0.010 0.007
CAM-B3LYP-D3 Pd-Cl P-Pd P-Pd P-C	d _{exp,1} [Å] 2.316 2.278 2.271 1.798	d _{calc,1} [Å] 2.275 2.301 2.288 1.804	h _{rel} [-] -0.018 0.010 0.007 0.003
CAM-B3LYP-D3 Pd-Cl P-Pd P-Pd P-C P-C	d _{exp,1} [Å] 2.316 2.278 2.271 1.798 1.796	d _{calc,1} [Å] 2.275 2.301 2.288 1.804 1.813	h _{rel} [-] -0.018 0.010 0.007 0.003 0.009
CAM-B3LYP-D3 Pd-Cl P-Pd P-Pd P-C P-C Fe-Pd	d _{exp,1} [Å] 2.316 2.278 2.271 1.798 1.796 2.939	d _{calc,1} [Å] 2.275 2.301 2.288 1.804 1.813 3.033	h _{rel} [-] -0.018 0.010 0.007 0.003 0.009 0.031
CAM-B3LYP-D3 Pd-Cl P-Pd P-Pd P-C P-C Fe-Pd	d _{exp,1} [Å] 2.316 2.278 2.271 1.798 1.796 2.939	d _{calc,1} [Å] 2.275 2.301 2.288 1.804 1.813 3.033	h _{rel} [-] -0.018 0.010 0.007 0.003 0.009 0.031
CAM-B3LYP-D3 Pd-Cl P-Pd P-Pd P-C P-C Fe-Pd B3LYP-D3	d _{exp,1} [Å] 2.316 2.278 2.271 1.798 1.796 2.939 d _{exp,1} [Å]	d _{calc,1} [Å] 2.275 2.301 2.288 1.804 1.813 3.033 d _{calc,1} [Å]	h _{rel} [-] -0.018 0.010 0.007 0.003 0.009 0.031 h _{rel} [-]
CAM-B3LYP-D3 Pd-Cl P-Pd P-Pd P-C P-C Fe-Pd B3LYP-D3 Pd-Cl	d _{exp,1} [Å] 2.316 2.278 2.271 1.798 1.796 2.939 d _{exp,1} [Å] 2.316	d _{calc,1} [Å] 2.275 2.301 2.288 1.804 1.813 3.033 d _{calc,1} [Å] 2.300	h _{rel} [-] -0.018 0.010 0.007 0.003 0.009 0.031 h _{rel} [-] -0.007
CAM-B3LYP-D3 Pd-Cl P-Pd P-Pd P-C P-C Fe-Pd B3LYP-D3 Pd-Cl P-Pd	d _{exp,1} [Å] 2.316 2.278 2.271 1.798 1.796 2.939 d _{exp,1} [Å] 2.316 2.278	d _{calc,1} [Å] 2.275 2.301 2.288 1.804 1.813 3.033 d _{calc,1} [Å] 2.300 2.310	h _{rel} [-] -0.018 0.010 0.007 0.003 0.009 0.031 h _{rel} [-] -0.007 0.014
CAM-B3LYP-D3 Pd-Cl P-Pd P-Pd P-C P-C Fe-Pd B3LYP-D3 Pd-Cl P-Pd P-Pd P-Pd	d _{exp,1} [Å] 2.316 2.278 2.271 1.798 1.796 2.939 d _{exp,1} [Å] 2.316 2.278 2.278	d _{calc,1} [Å] 2.275 2.301 2.288 1.804 1.813 3.033 d _{calc,1} [Å] 2.300 2.310 2.302	h _{rel} [-] -0.018 0.010 0.007 0.003 0.009 0.031 h _{rel} [-] -0.007 0.014 0.013
CAM-B3LYP-D3 Pd-Cl P-Pd P-Pd P-C P-C Fe-Pd B3LYP-D3 Pd-Cl P-Pd P-Pd P-Pd P-Pd	d _{exp,1} [Å] 2.316 2.278 2.271 1.798 1.796 2.939 d _{exp,1} [Å] 2.316 2.278 2.271 1.798	d _{calc,1} [Å] 2.275 2.301 2.288 1.804 1.813 3.033 d _{calc,1} [Å] 2.300 2.310 2.302 1.895	h _{rel} [-] -0.018 0.010 0.007 0.003 0.009 0.031 h _{rel} [-] -0.007 0.014 0.013 0.051
CAM-B3LYP-D3 Pd-Cl P-Pd P-C P-C Fe-Pd B3LYP-D3 Pd-Cl P-Pd P-Pd P-Pd P-C P-C P-C	d _{exp,1} [Å] 2.316 2.278 2.271 1.798 1.796 2.939 d _{exp,1} [Å] 2.316 2.278 2.271 1.798 1.796 2.939	d _{calc,1} [Å] 2.275 2.301 2.288 1.804 1.813 3.033 d _{calc,1} [Å] 2.300 2.310 2.302 1.895 1.820	h _{rel} [-] -0.018 0.010 0.007 0.003 0.009 0.031 h _{rel} [-] -0.007 0.014 0.013 0.051 0.013

B3LYP	$d_{exp,2}$ [Å]	$d_{calc,2}$ [Å]	h _{rel} [-]
Pd-Cl	2.345	2.332	-0.006
P-N	1.614	1.619	0.003
P-N	1.614	1.619	0.003
N-Pd	2.049	2.061	0.006
N-Pd	2.030	2.061	0.015
Fe-Pd	2.663	2.775	0.040
TPSSh	d _{exp,2} [Å]	d _{calc,2} [Å]	h _{rel} [-]
Pd-Cl	2.345	2.318	-0.012
P-N	1.614	1.631	0.010
P-N	1.614	1.626	0.007
N-Pd	2.049	2.048	0.000
N-Pd	2.030	2.048	0.009
Fe-Pd	2.663	2.713	0.018
ωb97X-D	$d_{exp,2}$ [Å]	$d_{calc,2}$ [Å]	h _{rel} [-]
Pd-Cl	2.345	2.318	-0.012
P-N	1.614	1.631	0.010
P-N	1.614	1.626	0.007
N-Pd	2.049	2.048	0.000
N-Pd	2.030	2.048	0.009
Fe-Pd	2.663	2.748	0.031
BP86	$d_{exp,2}$ [Å]	$d_{calc,2}$ [Å]	h _{rel} [-]
Pd-Cl	2.345	2.331	-0.006
P-N	1.614	1.641	0.016
P-N	1.614	1.641	0.016
N-Pd	2.049	2.066	0.008
N-Pd	2.030	2.066	0.018
Fe-Pd	2.663	2.738	0.027
M06-2X	$d_{exp,2}$ [Å]	$d_{calc,2}$ [Å]	h _{rel} [-]
Pd-Cl	2.345	2.327	-0.008
P-N	1.614	1.618	0.002
P-N	1.614	1.618	0.002
N-Pd	2.049	2.058	0.004
N-Pd	2.030	2.058	0.014
Fe-Pd	2.663	2.830	0.059

Table S7 Experimental, and calculated bond lengths of ${\bf 2}$

CAM-B31YP	$d_{exp,2}$ [Å]	$d_{calc,2}$ [Å]	h _{rel} [-]
Pd-Cl	2.345	2.305	-0.017
P-N	1.614	1.608	-0.004
P-N	1.614	1.608	-0.004
N-Pd	2.049	2.032	-0.008
N-Pd	2.030	2.032	0.001
Fe-Pd	2.663	2.754	0.033
PW91	$d_{exp,2}$ [Å]	$d_{calc,2}$ [Å]	h _{rel} [-]
Pd-Cl	2.345	2.329	-0.007
P-N	1.614	1.638	0.014
P-N	1.614	1.638	0.014
N-Pd	2.049	2.062	0.006
N-Pd	2.030	2.062	0.016
Fe-Pd	2.663	2.729	0.024
CAM-B3IYP-D3	$d_{exp,2}$ [Å]	$d_{calc,2}$ [Å]	h _{rel} [-]
Pd-Cl	2.345	2.304	-0.018
P-N	1.614	1.609	-0.003
P-N	1.614	1.609	-0.003
N-Pd	2.049	2.030	-0.010
N-Pd	2.030	2.030	0.000
Fe-Pd	2.663	2.757	0.034
B3LYP-D3	$d_{exp,2}$ [Å]	$d_{calc,2}$ [Å]	h _{rel} [-]
Pd-Cl	2.345	2.329	-0.007
P-N	1.614	1.621	0.004
P-N	1.614	1.621	0.004
N-Pd	2.049	2.057	0.004
N-Pd	2.030	2.057	0.013
Fe-Pd	2.663	2 781	0.043

B3LYP	davn 2 [Å]	dasla 2 [Å]	h _{rol} [-]
Pd-N	2.054	2.080	0.012
Pd-N	2.048	2.074	0.012
N-P	1.611	1.611	0.000
N-P	1.626	1.612	-0.008
Fe-Pd	2.781	2.887	0.037
N-C	1.406	1.399	-0.005
TPSSh	d _{exp,3} [Å]	d _{calc,3} [Å]	h _{rel} [-]
Pd-N	2.054	2.060	0.003
Pd-N	2.048	2.054	0.003
N-P	1.611	1.615	0.002
N-P	1.626	1.616	-0.006
Fe-Pd	2.781	2.808	0.010
N-C	1.406	1.399	-0.005
	1	1	
ωb97X-D	d _{exp,3} [Å]	d _{calc,3} [Å]	h _{rel} [-]
Pd-N	2.054	2.060	0.003
Pd-N	2.048	2.054	0.003
N-P	1.611	1.615	0.002
N-P	1.626	1.616	-0.006
Fe-Pd	2.781	2.843	0.022
N-C	1.406	1.399	-0.005
BP86	d _{exp,3} [Å]	$d_{calc,3}$ [Å]	h _{rel} [-]
Pd-N	2.054	2.073	0.009
Pd-N	2.048	2.069	0.010
N-P	1.611	1.630	0.012
N-P	1.626	1.629	0.002
Fe-Pd	2.781	2.841	0.021
N-C	1.406	1.403	-0.002
M06-2X	$d_{exp,3}$ [Å]	$d_{calc,3}$ [Å]	h _{rel} [-]
Pd-N	2.054	2.088	0.016
Pd-N	2.048	2.094	0.022
N-P	1.611	1.605	-0.004
N-P	1.626	1.603	-0.014
Fe-Pd	2.781	2.935	0.053
N-C	1.406	1.411	0.004

Table S8 Experimental, and calculated bond lengths of 3

CAM-B3LYP	d _{exp,3} [Å]	d _{calc,3} [Å]	h _{rel} [-]
Pd-N	2.054	2.046	-0.004
Pd-N	2.048	2.053	0.003
N-P	1.611	1.602	-0.006
N-P	1.626	1.600	-0.016
Fe-Pd	2.781	2.859	0.027
N-C	1.406	1.401	-0.004
PW91	d _{exp,3} [Å]	$d_{calc,3}$ [Å]	h _{rel} [-]
Pd-N	2.054	2.064	0.005
Pd-N	2.048	2.072	0.012
N-P	1.611	1.626	0.009
N-P	1.626	1.627	0.001
Fe-Pd	2.781	2.781 2.828	
N-C	1.406 1.397		-0.006
CAM-B3LYP-D3	dava 2 [Å]	daala 2 [Å]	h . []
	Gexp, 5 [1 1]		IIrel [-]
Pd-N	2.054	2.050	-0.002
Pd-N Pd-N	2.054 2.048	2.050 2.040	-0.002 -0.004
Pd-N Pd-N N-P	2.054 2.048 1.611	2.050 2.040 1.600	-0.002 -0.004 -0.007
Pd-N Pd-N N-P N-P	2.054 2.048 1.611 1.626	2.050 2.040 1.600 1.600	-0.002 -0.004 -0.007 -0.016
Pd-N Pd-N N-P N-P Fe-Pd	2.054 2.048 1.611 1.626 2.781	2.050 2.040 1.600 2.868	-0.002 -0.004 -0.007 -0.016 0.030
Pd-N Pd-N N-P N-P Fe-Pd N-C	2.054 2.048 1.611 1.626 2.781 1.406	2.050 2.040 1.600 2.868 1.397	-0.002 -0.004 -0.007 -0.016 0.030 -0.007
Pd-N Pd-N N-P N-P Fe-Pd N-C	2.054 2.048 1.611 1.626 2.781 1.406	2.050 2.040 1.600 2.868 1.397	-0.002 -0.004 -0.007 -0.016 0.030 -0.007
Pd-N Pd-N N-P Fe-Pd N-C B3LYP-D3	2.054 2.048 1.611 1.626 2.781 1.406 d _{exp,3} [Å]	2.050 2.040 1.600 2.868 1.397 d _{calc,3} [Å]	-0.002 -0.004 -0.007 -0.016 0.030 -0.007 h _{rel} [-]
Pd-N Pd-N N-P N-P Fe-Pd N-C B3LYP-D3 Pd-N	2.054 2.048 1.611 1.626 2.781 1.406 d _{exp,3} [Å] 2.054	2.050 2.040 1.600 2.868 1.397 d _{calc,3} [Å] 2.074	-0.002 -0.004 -0.007 -0.016 0.030 -0.007 h _{rel} [-] 0.010
Pd-N Pd-N N-P N-P Fe-Pd N-C B3LYP-D3 Pd-N Pd-N	2.054 2.048 1.611 1.626 2.781 1.406 d _{exp,3} [Å] 2.054 2.048	2.050 2.040 1.600 2.868 1.397 d _{calc,3} [Å] 2.074 2.063	nrel [-] -0.002 -0.004 -0.007 -0.016 0.030 -0.007 hrel [-] 0.010 0.007
Pd-N Pd-N N-P N-P Fe-Pd N-C B3LYP-D3 Pd-N Pd-N N-P	dexp,3 [Å] 2.054 2.048 1.611 1.626 2.781 1.406 dexp,3 [Å] 2.054 2.054 1.611	dcalc,3 [17] 2.050 2.040 1.600 2.868 1.397 dcalc,3 [Å] 2.074 2.063 1.610	nrel [-] -0.002 -0.004 -0.007 -0.016 0.030 -0.007 hrel [-] 0.010 0.007 -0.001
Pd-N Pd-N N-P Fe-Pd N-C B3LYP-D3 Pd-N Pd-N N-P N-P	2.054 2.048 1.611 1.626 2.781 1.406 dexp,3 [Å] 2.054 2.048 1.611 1.626	dcatc,3 [11] 2.050 2.040 1.600 2.868 1.397 dcatc,3 [Å] 2.074 2.063 1.610	Irrel [-] -0.002 -0.004 -0.007 -0.016 0.030 -0.007 Image: state sta
Pd-N Pd-N N-P Fe-Pd N-C B3LYP-D3 Pd-N Pd-N Pd-N N-P N-P Fe-Pd	deep,3 [14] 2.054 2.048 1.611 1.626 2.781 1.406 dexp,3 [Å] 2.054 2.054 1.611 1.626 2.054 2.054 2.048 1.611 1.626 2.781	dcalc,3 [17] 2.050 2.040 1.600 1.600 2.868 1.397 dcalc,3 [Å] 2.074 2.063 1.610 2.904	hrel ['] -0.002 -0.004 -0.007 -0.016 0.030 -0.007 Mrel [-] 0.010 0.007 -0.001 0.010 0.010 0.0010

B3LYP	$d_{exp,4}$ [Å]	d _{calc,4} [Å]	h _{rel} [-]
P-Pd	2.241	2.274	0.014
Pd-S	2.308	2.342	0.014
S-Pd	2.294	2.329	0.015
S-C	1.719	1.736	0.010
S-C	1.741	1.737	-0.002
Fe-Pd	2.879	3.037	0.052
TPSSh	d _{exp,4} [Å]	d _{calc,4} [Å]	h _{rel} [-]
P-Pd	2.241	2.248	0.003
Pd-S	2.308	2.322	0.006
S-Pd	2.294	2.309	0.006
S-C	1.719	1.732	0.008
S-C	1.741	1.734	-0.004
Fe-Pd	2.879	2.940	0.021
wb97X-D	$d_{exp,4}$ [Å]	d _{calc,4} [Å]	h _{rel} [-]
P-Pd	2.241	2.251	0.004
Pd-S	2.308	2.300	-0.003
S-Pd	2.294	2.314	0.008
S-C	1.719	1.733	0.008
S-C	1.741	1.732	-0.005
Fe-Pd	2.879	2.957	0.026
BP86	$d_{exp,4}$ [Å]	$d_{calc,4}$ [Å]	h _{rel} [-]
P-Pd	2.241	2.254	0.006
Pd-S	2.308	2.322	0.006
S-Pd	2.294	2.335	0.017
S-C	1.719	1.737	0.010
S-C	1.741	1.738	-0.002
Fe-Pd	2.879	2.992	0.038
M06-2X	$d_{exp,4}$ [Å]	d _{calc,4} [Å]	h _{rel} [-]
P-Pd	2.241	2.219	-0.010
Pd-S	2.308	2.318	0.004
S-Pd	2.294	2.334	0.017
S-C	1.719	1.745	0.015
S-C	1.741	1.746	0.003
Fe-Pd	2.879	3.031	0.050

Table S9 Experimental, and calculated bond lengths of ${\bf 4}$

CAM-B3LYP	$d_{exp,4}$ [Å]	d _{calc,4} [Å]	h _{rel} [-]
P-Pd	2.241	2.253	0.005
Pd-S	2.308	2.302	-0.003
S-Pd	2.294	2.314	0.009
S-C	1.719	1.732	0.007
S-C	1.741	1.733	-0.004
Fe-Pd	2.879	2.992	0.038
PW91	$d_{exp,4}$ [Å]	d _{calc,4} [Å]	h _{rel} [-]
P-Pd	2.241	2.249	0.004
Pd-S	2.308	2.318	0.004
S-Pd	2.294	2.330	0.016
S-C	1.719	1.733	0.008
S-C	1.741	1.734	-0.004
Fe-Pd	2.879	2.971	0.031
CAM-B3LYP-D3	d _{exp,4} [Å]	d _{calc,4} [Å]	h _{rel} [-]
P-Pd	2.241	2.241	0.000
Pd-S	2.308	2.313	0.002
S-Pd	2.294	2.301	0.003
S-C	1.719	1.733	0.008
S-C	1.741	1.734	-0.004
Fe-Pd	2.879	3.003	0.041
B3LYP-D3	$d_{exp,4}$ [Å]	d _{calc,4} [Å]	h _{rel} [-]
P-Pd	2.241	2.255	0.006
Pd-S	2.308	2.339	0.013
S-Pd	2.294	2.327	0.014
S-C	1.719	1.739	0.012
S-C	1.741	1.738	-0.001
Fe-Pd	2.879	3.052	0.057

			-
B3LYP	$d_{exp,5}$ [Å]	$d_{calc,5}$ [Å]	h _{rel} [-]
S-Ni	2.159	2.162	0.001
S-Ni	2.139	2.146	0.003
Ni-P	2.136	2.103	-0.016
Ni-Fe	2.886	3.000	0.038
C-S	1.728	1.742	0.008
C-S	1.736	1.743	0.004
TPSSh	d _{exp,5} [Å]	$d_{calc,5}$ [Å]	h _{rel} [-]
S-Ni	2.159	2.168	0.004
Ni-S	2.139	2.160	0.010
Ni-P	2.136	2.128	-0.004
Ni-Fe	2.890	2.890	0.000
C-S	1.728	1.735	0.004
C-S	1.736	1.735	0.000
	L	L	
ωb97X-D	d _{exp,5} [Å]	d _{calc,5} [Å]	h _{rel} [-]
S-Ni	2.159	2.159	0.000
Ni-S	2.139	2.159	0.009
Ni-P	2.136	2.141	0.003
Ni-Fe	2.890	2.910	0.007
C-S	1.728	1.738	0.006
C-S	1.736	1.738	0.001
	L	L	
BP86	d _{exp,5} [Å]	d _{calc,5} [Å]	h _{rel} [-]
S-Ni	2.159	2.177	0.008
Ni-S	2.139	2.171	0.015
Ni-P	2.136	2.122	-0.006
Ni-Fe	2.890	2.928	0.013
C-S	1.728	1.739	0.006
C-S	1.736	1.739	0.002
M06-2X	d _{exp,5} [Å]	$d_{calc,5}$ [Å]	h _{rel} [-]
S-Ni	2.159	2.204	0.020
Ni-S	2.139	2.204	0.029
Ni-P	2.136	2.231	0.043
Ni-Fe	2.890	2.954	0.022
C-S	1.728	1.753	0.015
C-S	1.736	1.754	0.010
L	•	•	

Table S10 Experimental, and calculated bond lengths of ${\bf 5}$

CAM-B3LYP	$d_{exp,5}$ [Å]	$d_{calc,5}$ [Å]	h _{rel} [-]
S-Ni	2.159	2.157	-0.001
Ni-S	2.139	2.157	0.008
Ni-P	2.136	2.138	0.001
Ni-Fe	2.890	2.960	0.024
C-S	1.728	1.738	0.006
C-S	1.736	1.738	0.001
			•
PW91	d _{exp,5} [Å]	d _{calc,5} [Å]	h _{rel} [-]
S-Ni	2.159	2.170	0.005
Ni-S	2.139	2.170	0.014
Ni-P	2.136	2.117	-0.009
Ni-Fe	2.890	2.898	0.003
C-S	1.728 1.735		0.004
C-S	1.736 1.735		-0.001
CAM-B3LYP-D3	d _{exp,5} [Å]	d _{calc,5} [Å]	h _{rel} [-]
CAM-B3LYP-D3 S-Ni	d _{exp,5} [Å] 2.159	d _{calc,5} [Å] 2.156	h _{rel} [-] -0.002
CAM-B3LYP-D3 S-Ni Ni-S	d _{exp,5} [Å] 2.159 2.139	d _{calc,5} [Å] 2.156 2.155	h _{rel} [-] -0.002 0.007
CAM-B3LYP-D3 S-Ni Ni-S Ni-P	d _{exp,5} [Å] 2.159 2.139 2.136	d _{calc,5} [Å] 2.156 2.155 2.130	h _{rel} [-] -0.002 0.007 -0.003
CAM-B3LYP-D3 S-Ni Ni-S Ni-P Ni-Fe	d _{exp,5} [Å] 2.159 2.139 2.136 2.890	d _{calc,5} [Å] 2.156 2.155 2.130 2.948	h _{rel} [-] -0.002 0.007 -0.003 0.020
CAM-B3LYP-D3 S-Ni Ni-S Ni-P Ni-Fe C-S	d _{exp,5} [Å] 2.159 2.139 2.136 2.890 1.728	d _{calc,5} [Å] 2.156 2.155 2.130 2.948 1.738	h _{rel} [-] -0.002 0.007 -0.003 0.020 0.006
CAM-B3LYP-D3 S-Ni Ni-S Ni-P Ni-Fe C-S C-S	dexp,5 [Å] 2.159 2.139 2.136 2.890 1.728 1.736	dcalc,5 [Å] 2.156 2.155 2.130 2.948 1.738 1.738	h _{rel} [-] -0.002 0.007 -0.003 0.020 0.006 0.001
CAM-B3LYP-D3 S-Ni Ni-S Ni-P Ni-Fe C-S C-S	dexp,5 [Å] 2.159 2.139 2.136 2.890 1.728 1.736	d _{calc,5} [Å] 2.156 2.155 2.130 2.948 1.738 1.738	h _{rel} [-] -0.002 0.007 -0.003 0.020 0.006 0.001
CAM-B3LYP-D3 S-Ni Ni-S Ni-P Ni-Fe C-S C-S B3LYP-D3	d _{exp,5} [Å] 2.159 2.139 2.136 2.890 1.728 1.736 d _{exp,5} [Å]	d _{calc,5} [Å] 2.156 2.155 2.130 2.948 1.738 1.738 1.738	h _{rel} [-] -0.002 0.007 -0.003 0.020 0.006 0.001 h _{rel} [-]
CAM-B3LYP-D3 S-Ni Ni-S Ni-P Ni-Fe C-S C-S B3LYP-D3 S-Ni	d _{exp,5} [Å] 2.159 2.139 2.136 2.890 1.728 1.728 1.736 d _{exp,5} [Å] 2.159	dcalc,5 [Å] 2.156 2.155 2.130 2.948 1.738 1.738 dcalc,5 [Å] 2.184	h _{rel} [-] -0.002 0.007 -0.003 0.020 0.006 0.001 h _{rel} [-] 0.011
CAM-B3LYP-D3 S-Ni Ni-S Ni-P Ni-Fe C-S C-S B3LYP-D3 S-Ni Ni-S	d _{exp,5} [Å] 2.159 2.139 2.136 2.890 1.728 1.736 d _{exp,5} [Å] 2.159 2.139	d _{calc,5} [Å] 2.156 2.155 2.130 2.948 1.738 1.738 1.738 d _{calc,5} [Å] 2.184 2.176	h _{rel} [-] -0.002 0.007 -0.003 0.020 0.006 0.001 h _{rel} [-] 0.011 0.017
CAM-B3LYP-D3 S-Ni Ni-S Ni-P Ni-Fe C-S C-S B3LYP-D3 S-Ni Ni-S Ni-P	d _{exp,5} [Å] 2.159 2.139 2.136 2.890 1.728 1.728 1.736 d _{exp,5} [Å] 2.159 2.139 2.136	d _{calc,5} [Å] 2.156 2.155 2.130 2.948 1.738 1.738 d _{calc,5} [Å] 2.184 2.176 2.145	h _{rel} [-] -0.002 0.007 -0.003 0.020 0.006 0.001 h _{rel} [-] 0.011 0.017 0.004
CAM-B3LYP-D3 S-Ni Ni-S Ni-P Ni-Fe C-S C-S B3LYP-D3 S-Ni Ni-S Ni-S Ni-P Ni-Fe	d _{exp,5} [Å] 2.159 2.139 2.136 2.890 1.728 1.736 d _{exp,5} [Å] 2.159 2.139 2.136 2.886	d _{calc,5} [Å] 2.156 2.155 2.130 2.948 1.738 1.738 1.738 d _{calc,5} [Å] 2.184 2.176 2.145 2.985	h _{rel} [-] -0.002 0.007 -0.003 0.020 0.006 0.001 h _{rel} [-] 0.011 0.017 0.004 0.033
CAM-B3LYP-D3 S-Ni Ni-S Ni-P Ni-Fe C-S C-S B3LYP-D3 S-Ni Ni-S Ni-P Ni-Fe C-S	d _{exp,5} [Å] 2.159 2.139 2.136 2.890 1.728 1.728 1.736 d _{exp,5} [Å] 2.159 2.139 2.136 2.886 1.728	d _{calc,5} [Å] 2.156 2.155 2.130 2.948 1.738 1.738 d.1.738 d.2.948 2.176 2.145 2.985 1.742	hrel [-] -0.002 0.007 -0.003 0.020 0.020 0.006 0.001 hrel [-] 0.011 0.004 0.0033 0.0034

B3LYP	$d_{exp,6}$ [Å]	$d_{calc,6}$ [Å]	h _{rel} [-]
S-Ni	2.200	2.228	0.013
S-Ni	2.206	2.228	0.010
P-Ni	2.178	2.230	0.023
P-Ni	2.178	2.230	0.023
Ni-Fe	4.269	4.287	0.004
C-S	1.748	1.763	0.008
TPSSh	d _{exp,6} [Å]	d _{calc,6} [Å]	h _{rel} [-]
S-Ni	2.200	2.201	0.000
S-Ni	2.206	2.201	-0.002
P-Ni	2.178	2.178	0.000
P-Ni	2.178	2.178	0.000
Ni-Fe	4.269	4.246	-0.006
C-S	1.748	1.759	0.006
ωb97X-D	d _{exp,6} [Å]	d _{calc,6} [Å]	h _{rel} [-]
S-Ni	2.200	2.201	0.000
S-Ni	2.206	2.201	-0.002
P-Ni	2.178	2.178	0.000
P-Ni	2.178	2.178	0.000
Ni-Fe	4.269	4.158	-0.027
C-S	1.748	1.759	0.006
BP86	d _{exp,6} [Å]	dcalc,6 [Å]	h _{rel} [-]
S-Ni	2.200	2.209	0.004
S-Ni	2.206	2.209	0.001
P-Ni	2.178	2.183	0.002
P-Ni	2.178	2.182	0.002
Ni-Fe	4.269	4.290	0.005
C-S	1.748	1.763	0.008
			-
M06-2X	$d_{exp,6}$ [Å]	d _{calc,6} [Å]	h _{rel} [-]
S-Ni	2.200	2.277	0.034
S-Ni	2.206	2.268	0.027
P-Ni	2.178	2.321	0.062
P-Ni	2.178	2.320	0.061
Ni-Fe	4.269	4.101	-0.041
C-S	1.748	1.759	0.006
k	•	•	

Table S11 Experimental, and calculated bond lengths of ${\bf 6}$

CAM-B3LYP	d _{exp,6} [Å]	$d_{calc,6}$ [Å]	h _{rel} [-]
S-Ni	2.200	2.208	0.004
S-Ni	2.206	2.208	0.001
P-Ni	2.178	2.207	0.013
P-Ni	2.178	2.207	0.013
Ni-Fe	4.269	4.241	-0.007
C-S	1.748	1.757	0.005
PW91	dexp,6 [Å]	$d_{calc,6}$ [Å]	h _{rel} [-]
S-Ni	2.200	2.205	0.002
S-Ni	2.206	2.206	0.000
P-Ni	2.178	2.174	-0.002
P-Ni	2.178	2.175	-0.001
Ni-Fe	4.269	4.267	-0.001
C-S	1.748 1.758		0.006
CAM-B3LYP-D3	dexp,6 [Å]	$d_{calc,6}$ [Å]	h _{rel} [-]
S-Ni	2.200	2.207	0.003
S-Ni	2.206	2.222	0.008
P-Ni	2.178	2.184	0.003
P-Ni	2.178	2.196	0.008
Ni-Fe	4.269	4.164	-0.025
C-S	1.748 1.753		0.003
B3LYP-D3	$d_{exp,6}$ [Å]	$d_{calc,6}$ [Å]	h _{rel} [-]
S-Ni	2.200	2.236	0.016
S-Ni	2.206	2.236	0.014
P-Ni	2.178	2.197	0.009
P-Ni	2.178	2.197	0.009
Ni-Fe	4.269	4.203	-0.016
C-S	1.748	1.761	0.007

Table S12 Comparing the relative error for d _{Fe} .	M with TPSSh/def2-TZVP, and 6-
311+G**/LANL2DZ	

			6-311+G**
Structure	3-21G	def2-TZVP	and for metal atoms
			LANL2DZ
1	0.0350	0.0012	0.0067
2	0.0010	0.0187	0.0208
3	0.0041	0.0097	0.0134
4	0.0296	0.0213	0.0142
5	0.1159	0.0020	0.0114

	d _{Fe-M} ,	d _{Fe-M} ,	ρь	$\nabla^2_{\rm b}$	$\mathbf{H}_{\mathbf{b}}$	Vb	Gb	q _{Fe}	qм	Δq
	exp	calc	[a.u.]	[a.u.]	[a.u.]	[a.u.]	[a.u.]	[-]	[-]	[-]
	[Å]	[Å]								
1	2.94	2.94	0.0282	0.0327	-0.00544	-0.0191	0.0136	0.688	0.381	0.307
2	2.67	2.71	0.0411	0.0489	-0.01001	-0.0322	0.0222	0.699	0.650	0.049
3	2.78	2.81	0.0342	0.0492	-0.00723	-0.0268	0.0195	0.702	0.557	0.145
4	2.88	2.94	0.0282	0.0305	-0.00514	-0.0179	0.0128	0.725	0.215	0.509
5	2.89	2.89	0.0243	0.0297	-0.00347	-0.0144	0.0109	0.662	0.404	0.258
6	4.27	4.25	-	-	-	-	-	-	-	-

Table S13. QTAIM derived values for structures **1-6** at TPSSh/def2-TZVP and for metal atoms Jorge-TZP was used.

Table S14. QTAIM derived values [a.u.] for model structures depicted in Fig. 3. at TPSSh/def2-TZVP+jorge-TZP

	qFe	qм	d _{Fe-M}	ρь	$\nabla^2_{\rm b}$	H _b	Vb
	[-]	[-]	[Å]	[a.u.]	[a.u.]	[a.u.]	[a.u.]
Fc(NMe ₂) ₂ [NiCl]	0.695	0.635	2.621	0.0390	0.0504	-0.00817	-0.0289
Fc(NMe ₂) ₂ [NiNMe ₃]	0.729	0.722	2.743	0.0335	0.0316	-0.00620	-0.0203
Fc(NMe ₂) ₂ [NiPMe ₃]	0.709	0.529	2.723	0.0342	0.0364	-0.00641	-0.0219
Fc(OMe) ₂ [NiCl]	0.708	0.762	2.605	0.0404	0.0513	-0.00873	-0.0303
Fc(OMe) ₂ [NiNMe ₃]	0.677	0.810	2.643	0.0396	0.0375	-0.00839	-0.0262
Fc(OMe) ₂ [NiPMe ₃]	0.676	0.675	2.660	0.0381	0.0413	-0.00774	-0.0258
Fc(PMe ₂) ₂ [NiCl]	0.668	0.422	2.842	0.0256	0.0319	-0.00430	-0.0166
Fc(PMe ₂) ₂ [NiNMe ₃]	0.667	0.542	2.924	0.0242	0.0213	-0.00391	-0.0132
Fc(PMe ₂) ₂ [NiPMe ₃]	0.662	0.255	2.921	0.0239	0.0258	-0.00370	-0.0139
Fc(SMe) ₂ [NiCl]	0.715	0.557	2.802	0.0278	0.0359	-0.00472	-0.0184
Fc(SMe) ₂ [NiNMe ₃]	0.686	0.580	2.932	0.0241	0.0195	-0.00353	-0.0119
Fc(SMe) ₂ [NiPMe ₃]	0.709	0.422	2.919	0.0243	0.0243	-0.00349	-0.0131
Fc(NMe ₂) ₂ [PdCl]	0.728	0.586	2.736	0.0411	0.0386	-0.01027	-0.0302
Fc(NMe ₂) ₂ [PdNMe ₃]	0.726	0.476	2.756	0.0393	0.0417	-0.00942	-0.0293
Fc(NMe ₂) ₂ [PdPMe ₃]	0.724	0.666	2.660	0.0442	0.0601	-0.01101	-0.0371
Fc(OMe) ₂ [PdCl]	0.696	0.627	2.679	0.0449	0.0429	-0.01177	-0.0343
Fc(OMe) ₂ [PdNMe ₃]	0.707	0.538	2.722	0.0413	0.0456	-0.00995	-0.0313
Fc(OMe) ₂ [PdPMe ₃]	0.736	0.646	2.651	0.0449	0.0613	-0.01105	-0.0374
Fc(PMe ₂) ₂ [PdCl]	0.724	0.265	3.002	0.0257	0.0252	-0.00466	-0.0156
Fc(PMe ₂) ₂ [PdNMe ₃]	0.755	0.361	3.090	0.0244	0.0154	-0.00430	-0.0125
Fc(PMe ₂) ₂ [PdPMe ₃]	0.727	0.096	3.128	0.0226	0.0179	-0.00379	-0.0121
Fc(SMe) ₂ [PdCl]	0.715	0.495	2.831	0.0330	0.0392	-0.00661	-0.0230
Fc(SMe) ₂ [PdNMe ₃]	0.709	0.457	2.901	0.0311	0.0261	-0.00616	-0.0188
Fc(SMe) ₂ [PdPMe ₃]	0.693	0.283	2.952	0.0284	0.0276	-0.00525	-0.0174

Fig. S3 Correltaion analysis between QTAIM derived parameters in model structures depicted in **Fig. 3** (TPSSh/def2-TZVP + jorge-TZP).

Pd								Ni						
TPSSh	d_{Fe-M}	ρ_b	G_b	Δq	V_b	H_b	∇_b^2	d_{Fe-M}	ρ_b	G_b	Δq	V_b	H_b	∇_b^2
d_{Fe-M}	1.00							1.00						
$ ho_b$	0.97	1.00						0.97	1.00					
G_b	0.95	0.96	1.00					0.97	0.92	1.00				
Δq	0.89	0.88	0.82	1.00				0.56	0.62	0.44	1.00			
V_b	0.96	0.98	0.99	0.84	1.00			0.98	0.95	0.99	0.51	1.00		
H_b	0.94	0.99	0.93	0.84	0.97	1.00		0.97	0.99	0.93	0.62	0.97	1.00	
∇_b^2	0.87	0.84	0.95	0.72	0.91	0.79	1.00	0.87	0.78	0.96	0.29	0.92	0.80	1.00

Further discussion about QTAIM related parameters

A QTAIM-based approach has been proposed by Espinosa and Streubel for anionic O-donors and halides based on the corresponding VSCC minima in relation to the atomic basins of the interacting atoms in molecules.^{55,58} Their derived dimensional relative charge concentration bands position parameter proved to be a reliable parameter to distinguish dative, and covalent bonding for the examined structures. However, it has been proposed that when at least one heavy (e.g. transitional metal) is involved in the interaction, the radial shape of the ∇^2 (*r*) function leaves considerable ambiguity regarding the nature of the interaction.⁵⁴ Therefore, the examination of other real space values at the BCP is critical.

Gibbs et al reported that for non-transitional metal-oxygen bonds, the G_b/ρ_b ratio proved to be a versatile descriptor, capable of differentiating between closed and shared shell interactions.⁵⁶⁻⁵⁷ With good linear correlations with corresponding bond lengths, the G_b/ρ_b ratio was recently used by Espinosa and Streubel to differentiate weak, dative and mostly covalent bonds in phosphinidene complexes.⁵⁵ We have found diminished correlation between the G_b/ρ_b ratio and d_{Fe-M} for our transitional metal containing species (see Fig. S4).

Fig. S4 Correlation between the adimensional G_b/ρ_b ratio and d_{Fe-M} for model molecules with **a**) M = Pd and **b**) M = Ni.

Further discussion about the involvement of the ipso-carbon atoms

The use, and physical interpretation of source function analysis derived values have been comprehensively reviewed by Gatti.⁵³ For the source function analysis in QTAIM basins, a medium quality grid (with a spacing of 0.1 Bohr) was computed corresponding to the electron density. Then, the source function - with the reference point taken as the position of the corresponding bond critical point

- was integrated into the QTAIM basins with an exact refinement of basin boundary in the Multiwfn program.

	S%(Fe)	S%(Ni)	$\sum S\%(C_{ipso})$	$\sum S\%(C_{ipso,ortho})$
Fc(NMe ₂) ₂ NiCl	-5.63	21.77	-13.91	
Fc(NMe ₂) ₂ NiNMe ₃	-6.37	14.26	-22.15	
Fc(NMe ₂) ₂ NiPMe ₃	-6.65	10.46	-18.67	
Fc(OMe) ₂ NiCl	-0.08	9.42	-10.91	
Fc(OMe) ₂ NiNMe ₃	-4.93	20.82	-12.42	
Fc(OMe) ₂ NiPMe ₃	-3.40	15.74	-14.07	
Fc(PMe ₂) ₂ NiCl	-20.63	-6.61	-11.52	-2.36
Fc(PMe ₂) ₂ NiNMe ₃	-23.00	3.35	-14.03	-7.48
Fc(PMe ₂) ₂ NiPMe ₃	-24.48	-0.27	-15.91	-5.15
Fc(SMe) ₂ NiCl	-13.81	-2.09	-20.80	-2.32
Fc(SMe) ₂ NiNMe ₃	-20.20	3.56	-30.07	-3.19
Fc(SMe) ₂ NiPMe ₃	-17.63	-0.13	-31.54	-3.56

Table S15 S% values for Ni complexes TPSSh/def2-TZVP+jorge-TZP (for metal atoms)

In all complexes, a notable negative contribution to the resulting electron density can be attributed to the *ipso*-carbon atoms. As they act as sinks of electron density, they facilitate the Fe-M interaction by lowering the kinetic energy arising from the repulsion between filled orbitals of the metal fragments. Although the correlation between the corresponding S%(Fe) and S%(M) values is acceptable, a better correlation can be observed between the sum of S% values for the metal centers and the *ipso*-carbon atoms; and d_{Fe-M} , (see **Fig. S4b**). The contributions of other atoms have not been considered, as resulting complexes do not have orbitals which would correspond to an interaction (SF% > -1%). In case of PMe₂ and SMe₂ donors, the effect of *ortho* carbon atoms become apparent and can no longer be neglected. (see **Fig. S4c**), yielding to a better correlation overall. This suggests that the direct heterobimetallic interaction, and the active involvement of the Cp rings dictate together the distance between metal centers in the resulting complex.

Fig. S5 The sum of S% values for the metal atoms (a), for metal atoms and *ipso*-carbon atoms (b) and for metal atoms coupled with *ipso*, and neighboring carbon atoms (c).

It is important to highlight the error of source function computations. Although the source function is a considerably robust descriptor; as it needs to be reintegrated into the electron density grid computed in atomic basins, careful consideration should be taken in determining the trust radius, and positions of nuclear attractors. A direct measure of this is the sum of the integrated SF(A) values for all atoms, which should be close to the computed electron density in the reference point. The relative error for source function computations for Ni complexes is neglibigle (~0.3%, see **Table S16**) in reference to the electron density in the BCP, which validates the use of SF% in these cases. For Pd complexes however, the relative error for the computations grows significantly (~34%, see **Table S16**), which does not lessen upon the utilization of a finer integration grid. The computations were repeated with the midpoints of the metal atoms taken as reference points, and their nuclear positions instead of corresponding (3;-3) critical points yielding similar results.

	ρ_b [a.u.]	$\sum SF_i \rho_b$ [a.u.]	h_{rel,ρ_b} [%]
Fc(NMe ₂) ₂ [NiCl]	0.0389	0.0390	0.01
Fc(NMe ₂) ₂ [NiNMe ₃]	0.0333	0.0335	0.50
Fc(NMe ₂) ₂ [NiPMe ₃]	0.0341	0.0342	0.25
Fc(OMe) ₂ [NiCl]	0.0402	0.0404	0.46
Fc(OMe) ₂ [NiNMe ₃]	0.0394	0.0396	0.49
Fc(OMe) ₂ [NiPMe ₃]	0.0380	0.0381	0.22
Fc(PMe ₂) ₂ [NiCl]	0.0255	0.0256	0.45

Table S16 Electron densities [a.u.] and the sum of integrated SF(A) values [a.u.] for model structures and compounds **1-5** with their corresponding relative error (h_{rel,ρ_b} [%]), at the TPSSh/def2-TZVP (jorge-TZP for metal atoms) level of theory.

Fc(PMe ₂) ₂ [NiNMe ₃]	0.0241	0.0242	0.52
Fc(PMe ₂) ₂ [NiPMe ₃]	0.0239	0.0239	0.15
Fc(SMe) ₂ [NiCl]	0.0277	0.0278	0.32
Fc(SMe) ₂ [NiNMe ₃]	0.0240	0.0241	0.28
Fc(SMe) ₂ [NiPMe ₃]	0.0243	0.0243	0.25
Fc(NMe ₂) ₂ [PdCl]	0.0632	0.0442	-30.13
Fc(NMe ₂) ₂ [PdNMe ₃]	0.0593	0.0411	-30.67
Fc(NMe ₂) ₂ [PdPMe ₃]	0.0575	0.0393	-31.73
Fc(OMe) ₂ [PdCl]	0.0640	0.0449	-29.78
Fc(OMe) ₂ [PdNMe ₃]	0.0636	0.0449	-29.36
Fc(OMe) ₂ [PdPMe ₃]	0.0598	0.0413	-30.95
Fc(PMe ₂) ₂ [PdCl]	0.0427	0.0257	-39.81
Fc(PMe ₂) ₂ [PdNMe ₃]	0.0405	0.0244	-39.85
Fc(PMe ₂) ₂ [PdPMe ₃]	0.0388	0.0226	-41.83
Fc(SMe) ₂ [PdC1]	0.0508	0.0330	-35.04
Fc(SMe) ₂ [PdNMe ₃]	0.0483	0.0311	-35.62
Fc(SMe) ₂ [PdPMe ₃]	0.0455	0.0284	-37.51
1	0.0456	0.0282	-38.29
2	0.0597	0.0411	-31.11
3	0.0526	0.0342	-35.01
4	0.0455	0.0282	-38.08
5	0.0242	0.0243	0.23

The involvement of the p orbitals of the *ipso*-carbon atoms can be visually represented by considering the Kohn-Sham molecular orbitals that give the largest contribution to the electron density at the bond critical point, consistent with the source function analysis.

Fig. S6. Kohn-Sham orbitals for [Fc(NMe2)NiCl]⁺ that give the largest contribution to the electron density at the bond critical point with an isosurface electron density of 0.025 a.u. (TPSSh/def2-TZVP and jorge-TZP for metal atoms)

A notable involvement of the substituent orbitals can be seen in case of SMe_2 and OMe donors. However, the correlation between the resulting SF% sums to d_{Fe-M} is rather poor, suggesting that the direct effect of the substituents does not contribute to the resulting d_{Fe-M} directly (see **Fig. S5** and **Table S17**).

Fig. S7. Kohn-Sham orbitals for [Fc(SMe)NiCl]⁺ that give the largest contribution to the electron density at the bond critical point (with an isosurface electron density of 0.025 a.u., TPSSh/def2-TZVP and jorge-TZP for metal atoms)

	S%(Fe)	S%(Ni)	$\sum S\%(D)$
Fc(NMe ₂) ₂ NiCl	-5.63	21.77	-2.00
Fc(NMe ₂) ₂ NiNMe ₃	-6.37	14.26	-0.38
Fc(NMe ₂) ₂ NiPMe ₃	-6.65	10.46	1.63
Fc(OMe) ₂ NiCl	-0.08	9.42	12.66
Fc(OMe) ₂ NiNMe ₃	-4.93	20.82	11.21
Fc(OMe) ₂ NiPMe ₃	-3.40	15.74	12.61
Fc(PMe ₂) ₂ NiCl	-20.63	-6.61	5.84
Fc(PMe ₂) ₂ NiNMe ₃	-23.00	3.35	2.60
Fc(PMe ₂) ₂ NiPMe ₃	-24.48	-0.27	4.06
Fc(SMe) ₂ NiCl	-13.81	-2.09	26.12
Fc(SMe) ₂ NiNMe ₃	-20.20	3.56	27.51
Fc(SMe) ₂ NiPMe ₃	-17.63	-0.13	28.25

Table S17 S% values for model structures. TPSSh/def2-TZVP+jorge-TZP (for metal atoms)

Fig. S8. Kohn-Sham orbital HOMO-31 for [Fc(SMe)NiCl]⁺ that give the largest contribution to the electron density at the bond critical point (with an isosurface electron density of 0.040 a.u., TPSSh/def2-TZVP and jorge-TZP for metal atoms)

Table S18 Comparison of the DFT results with LNO-CCSD(T)/def2-QZVP//TPSSh/def2-TZVP levelof theory (for $Fc(NMe_2)_2$ based systems)

Fe PM	e ₂ PM + ML e ₂ PM	+ ∋3 ∋3		PMe ₂ eHL + PMe ₂	2 PMe ₃		
lovel of theory	$\Delta E [kcal/mol]$						
level of theory	PdC1	NiCl	Pd(PMe ₃)	Ni(PMe ₃)	Pd(NMe ₃)	Ni(NMe ₃)	
TPSSh/def2-TZVP	-10.1	-11.1	-24.1	-25.4	-32.2	-28.7	
LNO-CCSD(T)/def2- QZVP// TPSSh/def2-TZVP	-10.8	_*	-24.8	_*	-36.0	-24.4	

Table S19 Comparison of the DFT results with LNO-CCSD(T)/def2-QZVP//TPSSh/def2-TZVP levelof theory (for $Fc(NMe_2)_2$ based systems)

* LNO-CCSD(T) failed to reach convergence

Table S20 Comparison of different DFT functionals (for Fc(NMe₂)₂ based system)

 Table S21 Comparison of different DFT functionals (for Fc(PMe₂)₂ based system)

Fig. S9 PES scans for Fc(OMe)₂[NiCl]⁺, Fc(NMe₂)₂[NiCl]⁺, Fc(SMe)₂[NiCl]⁺ Fc(PMe₂)₂[NiCl]⁺ (at TPSSh/def2-SVP level of theory)

Table S22 Energy difference between scan point 1 and 7 (for single point calculations the geometry)
obtained after the scan calculations at TPSSh/def2-SVP were used, the Fe-Pd bond was elongated by
0.7 Å). Utilization of DKH Hamiltonians is indicated as DKH0 or DKH2.

	$\Delta E [kcal/mol]$					
	Fc(NMe ₂) ₂ [PdCl]	Fc(OMe) ₂ [PdCl]	Fc(SMe) ₂ [PdCl]	Fc(PMe ₂) ₂ [PdCl]		
def2-TZVP	37.3	31.5	23.0	21.0		
jorge-TZP	42.3	37.1	28.7	25.2		
jorge-TZP DKH0	46.2	43.1	31.1	26.4		
jorge-TZP DKH2	46.1	42.8	31.1	26.4		
jorge-TZP-DKH	40.6	34.1	26.3	23.7		
jorge-TZP- DKH DKH0	43.8	39.5	27.7	24.2		
jorge-TZP- DKH DKH2	43.7	39.1	27.7	24.2		
LNO-CCSD(T)/ def2-QZVP// TPSSh/def2- TZVP	43.3	40.8	29.1	26.8		

Table S23 Computed BSSE [kcal/mol] for model structures with L = Cl.

L J					
BSSE [kcal/mol]					
for system Fc(NMe ₂) ₂ [PdCl]/ Pd(NMe ₃)	0.1				
for system Fc(PMe ₂) ₂ [PdCl]/Pd(PMe ₃)	0.4				
for system Fc(NMe ₂) ₂ [NiCl]/ Ni(NMe ₃)	0.2				
for system Fc(PMe ₂) ₂ [NiCl]/ Ni(PMe ₃)	0.4				

 $\label{eq:table_set} \textbf{Table S24} \ \text{Computed adiabatic local mode force constants for the corresponding Fe-M bond [mDyn/Å]}$

k_a [mDyn/Å]
1.080
0.808
0.862
1.076
0.828
0.858
0.313
0.259
0.236
0.591
0.450
0.496
1.415
1.137
1.096
1.306
1.101
1.012
0.626
0.551
0.54
0.779
0.637
0.622