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Supporting Information

1. Experiment 

1.1 Chemicals

Aniline (99.0% purity) and monocyanamide (49.0% purity) were purchased from 

Aladdin. hydrochloric acid (HCl, 37%) was purchased from Kermel, and carbon black 

BP2000 was donated by Cabot Corp. Ferric chloride (FeCl3, 98% purity) and 

ammonium persulfate ((NH4)2S2O8, 98% purity) were purchased from Alfa Aesar. 

1.2 Synthesis of Fe-N-C catalysts

2 ml aniline and 3 ml monocyanamide were dissolved in 80 ml 1.5 M HCl, and 0.4 g 

carbon black with 3 g FeCl3 were dispersed in 80 ml 1.5 M HCl. The above two 

solutions were mixed, and then 5 g (NH4)2S2O8 dissolved in 80 ml 1.5 M HCl was 

added. After polymerization, a heat treatment in 900 ℃ under N2 for 1 h was conducted, 

and the product was pre-leached in 2 M H2SO4 at 90 ℃ for 5 h. The pre-leached powder 

then underwent a second heat treatment under N2 for 2.5 h and under NH3 for 0.5 h in 

900 ℃.

1.3 Characterizations

Scanning electron microscope (SEM) was conducted to observe the morphology of 

prepared catalysts, and X-ray diffraction (XRD) and Raman spectroscopy were 

performed to analyze the physical structures and disordered degree of catalysts 

separately. N2 adsorption/desorption test was applied to character the porous structures 

of catalysts, and X-ray photoelectron spectroscopy (XPS) measurement was utilized to 

research the chemical components of catalysts.



1.4 Electrochemical measurements

The system of electrochemical measurement was composed of a glassy carbon working 

electrode, a platinum foil counter electrode and an Hg/Hg2SO4 reference electrode. The 

working electrodes were prepared by coating the catalyst ink onto the surface of glassy 

carbon electrode. Particularly, 15 mg Fe-N-C catalyst, 525 μL ethanol and 145 μL 

Nafion solution (5%) were mixed and stirred for 30 minutes, and then, 7 μL catalyst 

ink was applied onto the working electrode, making the loading of Fe-N-C catalyst 800 

μg cm-2. As a comparison, 5 mg 40% Pt/C catalyst, 1.21 mL isopropanol and 40 μL 

Nafion were well mixed, and 5 μL of catalyst ink was coated on the working electrode, 

making the loading of Pt 80 μg cm-2.

Electron transfer numbers can be calculated according to the Koutecky-Levich (K-L) 

equation, which can be expressed as:

1/j=1/jk + 1/jd = 1/jk + 1/(0.62nFD2/3ν-1/6Cω1/2)                               (1)

where j is the total current density, jk is the kinetic current density and jd is the diffusion 

limiting current density. K-L equation relates the liming current density measured in 

RDE tests and the number of electron transfer (n), the rotation speed (ω) and other 

parameters including F, the Faraday constant (96485 C mol-1); D, the diffusion 

coefficient of oxygen (1.93*10-5 cm2 s-1); ν, the electrolyte kinematic viscosity (1*10-2 

cm2 s-1); and C, the bulk oxygen concentration (1.26*10-3 mol dm-3). For rotating ring 

disk electrode (RRDE) test, the ring potential was kept as 1.2 V vs RHE, and the H2O2 

yield was calculated according to the Equation (2):
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where: Id, Ir and N represent the disk current, the ring current and the ring collection 

efficiency (0.37). RRDE tests were performed under 1600 rpm at 10 mV s-1.

2. Figures

Fig. S1 Polarization curves of Pt/C based DMFC at 60 ℃.

Fig. S2 Discharging curve of a DMFC with a constant current density of 100 mA cm-2 

within 12 hours (a); Polarization curves of a DMFC before and after the stability test 

(b). The working temperature is 60 ℃ and the methanol concentration is 3 M.



Fig. S3 Polarization curves of Pt/C based DMFC after stationary over several days. 

The concentration of supplied methanol is 3 M and the temperature is 60 ℃.

Fig. S4 Pore size contribution curve of prepared Fe-N-C catalyst



Fig. S5 LSV curves of catalysts tested in O2-satuarated 0.1M HClO4.

Fig. S6 Koutecky-Levich plots of Fe-N-C tested in O2-satuarated 0.1 M HClO4



Fig. S7 H2O2 yield of the prepared Fe-N-C catalyst in O2-satuarated 0.1 M HClO4

Fig. S8 I-t curves of Pt/C catalyst and Fe-N-C catalyst tested in O2-satuarated 0.1 M 

HClO4 at 0.5 V vs RHE. 



Fig. S9 SCV curves of Fe-N-C based electrode tested in O2-satuarated 0.1M HClO4 

with the addition of methanol.



Table S1 Summary of the component and performance of PEM-based DMFC with 

Fe-N-C based cathode catalyst

Cathode Anode Reactant Performance Ref.

5.0 mg/cm2

50% Nafion
4.0mg/cm2

PtRu/C
3M CH3OH 1mL/min

O2,100 mL/min
80℃

130 mW/cm2
1

2.5mg/cm2

50% Nafion
1.0 mg/cm2

Pt/C
2M CH3OH 1mL/min

O2,200 mL/min
90℃

20 mW/cm2
2

4.5 mg/cm2

45%Nafion
1.0 mg/cm2

PtRu/C
10M CH3OH2mL/min

O2,100 mL/min
90℃

48 mW/cm2
3

2.5 mg/cm2

45%Nafion
2.5 mg/cm2

PtRu/C
5M CH3OH 2mL/min

O2,100 mL/min
110℃

11.2 mW/cm2
4

4.0 mg/cm2

45%Nafion
1.0 mg/cm2

PtRu/C
2M CH3OH 2mL/min

O2,100 mL/min
90℃

10.5 mW/cm2
5

3.0 mg/cm2

45%Nafion
1.0 mg/cm2

PtRu/C
10M CH3OH 2mL/min

O2,100 mL/min
90℃

22 mW/cm2
6

7.4 mg/cm2

45%Nafion
1.0 mg/cm2

PtRu/C
10M CH3OH 2mL/min

O2,100 mL/min
90℃

30 mW/cm2
7

5.0 mg/cm2

66.7%Nafion
2.0 mg/cm2

PtRu/C
1M CH3OH 2mL/min

O2,400 mL/min
80℃

32 mW/cm2
8

4.0mg/cm2

25%Nafion
1.5 mg/cm2

PtRu/C
2M CH3OH 20mL/min

O2,500 mL/min
50℃

20.9 mW/cm2
9

4.0 mg/cm2

45%Nafion
4.0 mg/cm2

PtRu/C
10M CH3OH 2mL/min

O2,100 mL/min
90℃

60 mW/cm2
10

5.0 mg/cm2

50%Nafion
2.0 mg/cm2

PtRu/C
5M CH3OH 10mL/min

O2,25 mL/min
20℃

6 mW/cm2
11

4.0 mg/cm2

45%Nafion
2.7 mg/cm2

PtRu/C
0.5M CH3OH 1.8mL/min

Air,500 mL/min
75℃

58 mW/cm2
12

5.0 mg/cm2

50%Nafion
2.0 mg/cm2

PtRu/C
1M CH3OH 2.5mL/min

Air,100 mL/min
70℃

14.9 mW/cm2
13

4.0 mg/cm2

45%Nafion
4.0 mg/cm2

PtRu/C
2M CH3OH 

Air-breathing
60℃

19.48 mW/cm2
14

5.0 mg/cm2

50%Nafion
4.0 mg/cm2

PtRu/C
1M CH3OH 

Air-breathing
30℃

11.72 mW/cm2
15

8.0 mg/cm2

45%Nafion
4.0 mg/cm2

PtRu/C
3M CH3OH 

Air-breathing
60℃

28.85 mW/cm2
This 

Work



Table S2 Summary of the performance of the PEM-based DMFC with Fe-N-C and 

Pt/C cathode catalysts

Pmax@Fe-N-C Pmax@Pt/C Tem. Pmax@Fe-N-C/ Pmax@Pt/C Ref.

6.5 mW/cm2 11.1 mW/cm2 30℃ 58.6% 7

22.6 mW/cm2 30.9mW/cm2 90℃ 73.1% 16

19.6 mW/cm2 30.9mW/cm2 90℃ 63.4% 2

38.47 mW/cm2 60 mW/cm2 70℃ 64.1% 17

71 mW/cm2 115 mW/cm2 80℃ 61.7% 18

19.48 mW/cm2 33.95mW/cm2 60℃ 57.4% 14

58 mW/cm2 120 mW/cm2 60℃ 48.3% 12

21.5 mW/cm2 115 mW/cm2 70℃ 18.7% 19

28.85 mW/cm2 34.94 mW/cm2 60℃ 82.6% This Work
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