Study of the self-degradation performance of a passive direct methanol fuel cell with Fe-N-C catalyst

Chenjun Hou^a, Weijian Yuan^{a,*}, Shilong Gao^b, Yujun Zhang^a, Yufeng Zhang^a, and

Xuelin Zhang^{a,*}

a School of Astronautics, Harbin Institute of Technology, Harbin, China

b State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced

Innovation Center for Soft Matter Science and Engineering, Beijing University of

Chemical Technology, Beijing, 100029, People's Republic of China

E-mail: ywj@hit.edu.cn (Weijian Yuan); zhangxuelin@hit.edu.cn (Xuelin Zhang)

Supporting Information

1. Experiment

1.1 Chemicals

Aniline (99.0% purity) and monocyanamide (49.0% purity) were purchased from Aladdin. hydrochloric acid (HCl, 37%) was purchased from Kermel, and carbon black BP2000 was donated by Cabot Corp. Ferric chloride (FeCl₃, 98% purity) and ammonium persulfate ((NH₄)₂S₂O₈, 98% purity) were purchased from Alfa Aesar.

1.2 Synthesis of Fe-N-C catalysts

2 ml aniline and 3 ml monocyanamide were dissolved in 80 ml 1.5 M HCl, and 0.4 g carbon black with 3 g FeCl₃ were dispersed in 80 ml 1.5 M HCl. The above two solutions were mixed, and then 5 g $(NH_4)_2S_2O_8$ dissolved in 80 ml 1.5 M HCl was added. After polymerization, a heat treatment in 900 °C under N₂ for 1 h was conducted, and the product was pre-leached in 2 M H₂SO₄ at 90 °C for 5 h. The pre-leached powder then underwent a second heat treatment under N₂ for 2.5 h and under NH₃ for 0.5 h in 900 °C.

1.3 Characterizations

Scanning electron microscope (SEM) was conducted to observe the morphology of prepared catalysts, and X-ray diffraction (XRD) and Raman spectroscopy were performed to analyze the physical structures and disordered degree of catalysts separately. N₂ adsorption/desorption test was applied to character the porous structures of catalysts, and X-ray photoelectron spectroscopy (XPS) measurement was utilized to research the chemical components of catalysts.

1.4 Electrochemical measurements

The system of electrochemical measurement was composed of a glassy carbon working electrode, a platinum foil counter electrode and an Hg/Hg₂SO₄ reference electrode. The working electrodes were prepared by coating the catalyst ink onto the surface of glassy carbon electrode. Particularly, 15 mg Fe-N-C catalyst, 525 μ L ethanol and 145 μ L Nafion solution (5%) were mixed and stirred for 30 minutes, and then, 7 μ L catalyst ink was applied onto the working electrode, making the loading of Fe-N-C catalyst 800 μ g cm⁻². As a comparison, 5 mg 40% Pt/C catalyst, 1.21 mL isopropanol and 40 μ L Nafion were well mixed, and 5 μ L of catalyst ink was coated on the working electrode, making the loading of Pt 80 μ g cm⁻².

Electron transfer numbers can be calculated according to the Koutecky-Levich (K-L) equation, which can be expressed as:

$$1/j = 1/j_k + 1/j_d = 1/j_k + 1/(0.62nFD^{2/3}v^{-1/6}C\omega^{1/2})$$
(1)

where *j* is the total current density, j_k is the kinetic current density and j_d is the diffusion limiting current density. K-L equation relates the liming current density measured in RDE tests and the number of electron transfer (*n*), the rotation speed (ω) and other parameters including *F*, the Faraday constant (96485 C mol⁻¹); *D*, the diffusion coefficient of oxygen (1.93*10⁻⁵ cm² s⁻¹); *v*, the electrolyte kinematic viscosity (1*10⁻² cm² s⁻¹); and *C*, the bulk oxygen concentration (1.26*10⁻³ mol dm⁻³). For rotating ring disk electrode (RRDE) test, the ring potential was kept as 1.2 V vs RHE, and the H2O2 yield was calculated according to the Equation (2):

$$\%H_{2}O_{2} = 100 \cdot \frac{\frac{2I_{r}}{N}}{I_{d} + \frac{I_{r}}{N}}$$
(2)

where: I_{d} , I_{r} and N represent the disk current, the ring current and the ring collection

efficiency (0.37). RRDE tests were performed under 1600 rpm at 10 mV s⁻¹.

2. Figures

Fig. S1 Polarization curves of Pt/C based DMFC at 60 °C.

Fig. S2 Discharging curve of a DMFC with a constant current density of 100 mA cm⁻²
within 12 hours (a); Polarization curves of a DMFC before and after the stability test
(b). The working temperature is 60 °C and the methanol concentration is 3 M.

Fig. S3 Polarization curves of Pt/C based DMFC after stationary over several days.

The concentration of supplied methanol is 3 M and the temperature is 60 °C.

Fig. S4 Pore size contribution curve of prepared Fe-N-C catalyst

Fig. S5 LSV curves of catalysts tested in O₂-satuarated 0.1M HClO₄.

Fig. S6 Koutecky-Levich plots of Fe-N-C tested in O2-satuarated 0.1 M HClO4

Fig. S7 H₂O₂ yield of the prepared Fe-N-C catalyst in O₂-satuarated 0.1 M HClO₄

Fig. S8 I-t curves of Pt/C catalyst and Fe-N-C catalyst tested in O₂-satuarated 0.1 M

HClO₄ at 0.5 V vs RHE.

Fig. S9 SCV curves of Fe-N-C based electrode tested in O_2 -satuarated 0.1M HClO₄

with the addition of methanol.

Cathode	Anode	Reactant	Reactant Performance		
5.0 mg/cm^2	4.0mg/cm ²	3M CH ₃ OH 1mL/min	80°C		
50% Nafion	PtRu/C	O ₂ ,100 mL/min	130 mW/cm^2	1	
2.5mg/cm^2	1.0 mg/cm^2	2M CH ₃ OH 1mL/min	90°C	2	
50% Nafion	Pt/C	O ₂ ,200 mL/min	20 mW/cm^2		
4.5 mg/cm^2	1.0 mg/cm^2	10M CH ₃ OH2mL/min	90°C	3	
45%Nafion	PtRu/C	O ₂ ,100 mL/min	48 mW/cm^2		
2.5 mg/cm^2	2.5 mg/cm^2	5M CH ₃ OH 2mL/min	110°C	4	
45%Nafion	PtRu/C	O ₂ ,100 mL/min	11.2 mW/cm ²		
4.0 mg/cm^2	1.0 mg/cm^2	2M CH ₃ OH 2mL/min	90°C	5	
45%Nafion	PtRu/C	O ₂ ,100 mL/min	10.5 mW/cm^2		
3.0 mg/cm^2	1.0 mg/cm^2	10M CH ₃ OH 2mL/min	90°C	6	
45%Nafion	PtRu/C	O ₂ ,100 mL/min	22 mW/cm^2		
7.4 mg/cm^2	1.0 mg/cm^2	10M CH ₃ OH 2mL/min	90°C	7	
45%Nafion	PtRu/C	O ₂ ,100 mL/min	30 mW/cm^2	,	
5.0 mg/cm^2	2.0 mg/cm^2	1M CH ₃ OH 2mL/min	80°C	8	
66.7%Nafion	PtRu/C	O ₂ ,400 mL/min	32 mW/cm^2		
4.0mg/cm ²	1.5 mg/cm^2	2M CH ₃ OH 20mL/min	50°C	9	
25%Nafion	PtRu/C	O ₂ ,500 mL/min	20.9 mW/cm^2		
4.0 mg/cm^2	4.0 mg/cm^2	10M CH ₃ OH 2mL/min	90°C	10	
45%Nafion	PtRu/C	O ₂ ,100 mL/min	60 mW/cm^2		
5.0 mg/cm^2	2.0 mg/cm^2	5M CH ₃ OH 10mL/min	20°C	11	
50%Nafion	PtRu/C	O ₂ ,25 mL/min	6 mW/cm^2		
4.0 mg/cm^2	2.7 mg/cm^2	0.5M CH ₃ OH 1.8mL/min	75°C	12	
45%Nafion	PtRu/C	Air,500 mL/min	58 mW/cm^2		
5.0 mg/cm^2	2.0 mg/cm^2	1M CH ₃ OH 2.5mL/min	70°C	13	
50%Nafion	PtRu/C	Air,100 mL/min	14.9 mW/cm ²		
4.0 mg/cm^2	4.0 mg/cm^2	2M CH ₃ OH	60°C	14	
45%Nafion	PtRu/C	Air-breathing	19.48 mW/cm ²		
5.0 mg/cm^2	4.0 mg/cm^2	1M CH ₃ OH	30°C	15	
50%Nafion	PtRu/C	Air-breathing	11.72 mW/cm ²	10	
8.0 mg/cm ²	4.0 mg/cm ²	3M CH₃OH	60°C	This	
45%Nafion	PtRu/C	Air-breathing	28.85 mW/cm ²	Work	

Fe-N-C based cathode catalyst

P _{max} @Fe-N-C	P _{max} @Pt/C	Tem.	P _{max} @Fe-N-C/ P _{max} @Pt/C	Ref.
6.5 mW/cm ²	11.1 mW/cm ²	30°C	58.6%	7
22.6 mW/cm ²	30.9mW/cm ²	90°C	73.1%	16
19.6 mW/cm ²	30.9mW/cm ²	90°C	63.4%	2
38.47 mW/cm ²	60 mW/cm ²	70°C	64.1%	17
71 mW/cm ²	115 mW/cm^2	80°C	61.7%	18
19.48 mW/cm ²	33.95mW/cm ²	60°C	57.4%	14
58 mW/cm ²	120 mW/cm ²	60°C	48.3%	12
21.5 mW/cm ²	115 mW/cm ²	70°C	18.7%	19
28.85 mW/cm ²	34.94 mW/cm ²	60°C	82.6%	This Work

Table S2 Summary of the performance of the PEM-based DMFC with Fe-N-C and

Pt/C cathode catalysts

Reference:

- Y.-C. Wang, L. Huang, P. Zhang, Y.-T. Qiu, T. Sheng, Z.-Y. Zhou, G. Wang, J.-G. Liu, M. Rauf, Z.-Q. Gu, W.-T. Wu and S.-G. Sun, *ACS Energy Letters*, 2017, 2, 645-650.
- L. Osmieri, R. Escudero-Cid, A. H. A. Monteverde Videla, P. Ocón and S. Specchia, *Applied Catalysis B: Environmental*, 2017, 201, 253-265.
- D. Sebastián, A. Serov, K. Artyushkova, J. Gordon, P. Atanassov, A. S. Aricò and V. Baglio, *ChemSusChem*, 2016, 9, 1986-1995.
- A. H. A. Monteverde Videla, D. Sebastián, N. S. Vasile, L. Osmieri, A. S. Aricò,
 V. Baglio and S. Specchia, *Int. J. Hydrogen Energy*, 2016, 41, 22605-22618.
- 5. C. Lo Vecchio, A. Aricò and V. Baglio, *Materials*, 2018, 11.
- D. Sebastián, A. Serov, K. Artyushkova, P. Atanassov, A. S. Aricò and V. Baglio, *J. Power Sources*, 2016, **319**, 235-246.
- 7. D. Sebastián, V. Baglio, A. S. Aricò, A. Serov and P. Atanassov, *Applied Catalysis B: Environmental*, 2016, **182**, 297-305.
- 8. J. C. Park and C. H. Choi, J. Power Sources, 2017, **358**, 76-84.
- Y. Hu, J. Zhu, Q. Lv, C. Liu, Q. Li and W. Xing, *Electrochim. Acta*, 2015, 155, 335-340.
- D. Sebastián, A. Serov, I. Matanovic, K. Artyushkova, P. Atanassov, A. S. Aricò and V. Baglio, *Nano Energy*, 2017, 34, 195-204.
- S. Baranton, C. Coutanceau, J. M. Léger, C. Roux and P. Capron, *Electrochim. Acta*, 2005, **51**, 517-525.

- 12. Q. Li, T. Wang, D. Havas, H. Zhang, P. Xu, J. Han, J. Cho and G. Wu, *Advanced Science*, 2016, **3**.
- R. Mei, J. Xi, L. Ma, L. An, F. Wang, H. Sun, Z. Luo and Q. Wu, *J. Electrochem.* Soc., 2017, 164, F1556-F1565.
- X. Zhang, C. Hou, W. Yuan, C. Deng, F. Ji, L. Tian, G. Lin, H. Deng and Y. Zhang, *Fuel Cells*, 2022, 23, 42-50.
- J. Xi, F. Wang, R. Mei, Z. Gong, X. Fan, H. Yang, L. An, Q. Wu and Z. Luo, *RSC Advances*, 2016, 6, 90797-90805.
- L. Osmieri, R. Escudero-Cid, M. Armandi, A. H. A. Monteverde Videla, J. L. García Fierro, P. Ocón and S. Specchia, *Applied Catalysis B: Environmental*, 2017, 205, 637-653.
- L. Cao, W. Yang, H. Zou, S. Chen and Z. Liu, J. Inorg. Organomet. Polym. Mater., 2019, 29, 1886-1894.
- X. Xu, X. Zhang, Z. Xia, R. Sun, J. Wang, Q. Jiang, S. Yu, S. Wang and G. Sun, ACS Appl. Mater. Interfaces, 2021, 13, 16279-16288.
- E. Giordano, E. Berretti, L. Capozzoli, A. Lavacchi, M. Muhyuddin, C. Santoro,
 I. Gatto, A. Zaffora and M. Santamaria, *J. Power Sources*, 2023, 563.