Supporting Information

Highly efficient tunable white emission with ultralong afterglow in Sb³⁺/Mn²⁺- codoped CsCdCl₃ crystals for multifunctional applications

Ruonan Zhi, Linghang Kong,^{†*} Hui Peng,^{†*} Qilin Wei,[‡] Guang Dai,^{&*} Bingsuo Zou[†] [†]State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China. [‡]School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. [&]Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China.

Samples	Nominal/mol % (Sb)	Actual/mol % (Sb)	Nominal/mo l% (Mn)	Actual/mol % (Mn)
CsCdCl ₃ :0.1%Sb ³⁺	0.1	0.035	/	/
$0.1\% Mn^{2+}$ -doped CsCdCl ₃ : $0.1\% Sb^{3+}$	0.1	0.036	0.1	0.06
$0.5\% Mn^{2+}-doped CsCdCl_3:0.1\% Sb^{3+}$	0.1	0.035	0.5	0.32
1%Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	0.1	0.037	1	0.71
3%Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	0.1	0.034	3	2.18
5%Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	0.1	0.033	5	3.46
10% Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	0.1	0.036	10	7.63

Table S1. Comparison of element concentrations obtained from EDS of $y\%Mn^{2+}$ -doped CsCdCl₃:0.1%Sb³⁺.

Table S2. PL decay lifetime of y%Mn²⁺-doped CsCdCl₃:0.1%Sb³⁺ monitored at 510 nm and the corresponding energy transfer efficiency.

Samples	Decay lifetime (µs)	Energy transfer efficiency (%)
CsCdCl ₃ :0.1%Sb ³⁺	1.30	/
0.1%Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	1.21	6.9
0.5%Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	0.998	23.2
1%Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	0.852	34.5
3%Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	0.617	52.5
5%Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	0.453	65.2
10% Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	0.313	75.9

Table S3. PLQY of 0.1%Sb³⁺/y%Mn²⁺ codoped CsCdCl₃.

Samples	PLQY (%)	
$CsCdCl_3:0.1\%Sb^{3+}$	60	
$0.1\% Mn^{2+}$ -doped CsCdCl ₃ : $0.1\% Sb^{3+}$	64	
$0.5\% Mn^{2+}$ -doped CsCdCl ₃ : $0.1\% Sb^{3+}$	69	
1%Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	74	
3%Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	67	
5%Mn ²⁺ -doped CsCdCl ₃ :0.1%Sb ³⁺	57	
10% Mn^{2+} -doped CsCdCl ₃ :0.1%Sb ³⁺	50	

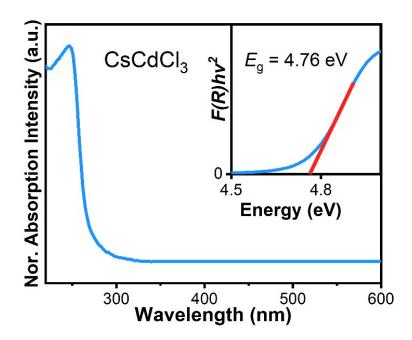


Figure S1. Absorption spectrum of CsCdCl₃.

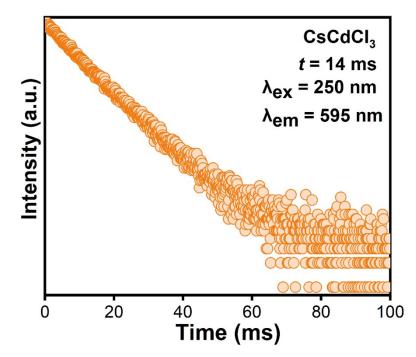


Figure S2. PL decay lifetime of CsCdCl₃.

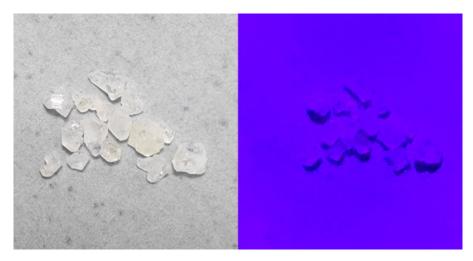


Figure S3. Optical images of CsCdCl₃ under 350 nm UV lamp.

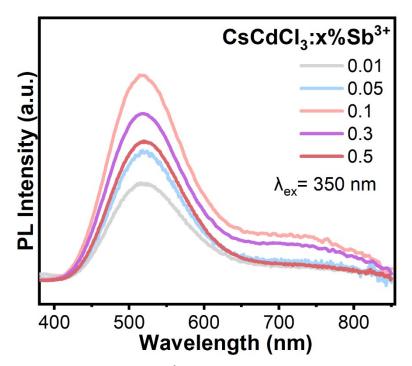


Figure S4. PL spectra of $x\%Sb^{3+}$ -doped CsCdCl₃ under 350 nm excitation.

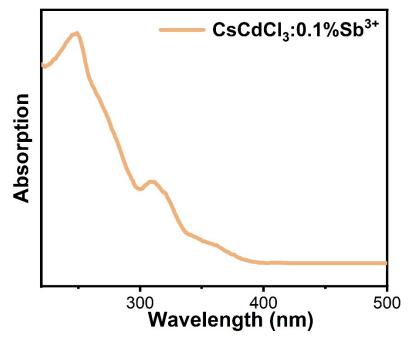


Figure S5. Absorption spectrum of 0.1%Sb³⁺-doped CsCdCl₃.

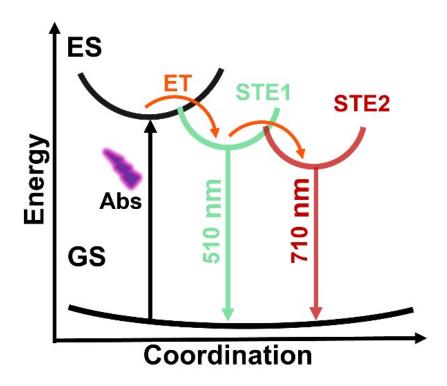


Figure S6. Schematic of the photophysical processes of Sb³⁺-doped CsCdCl₃.

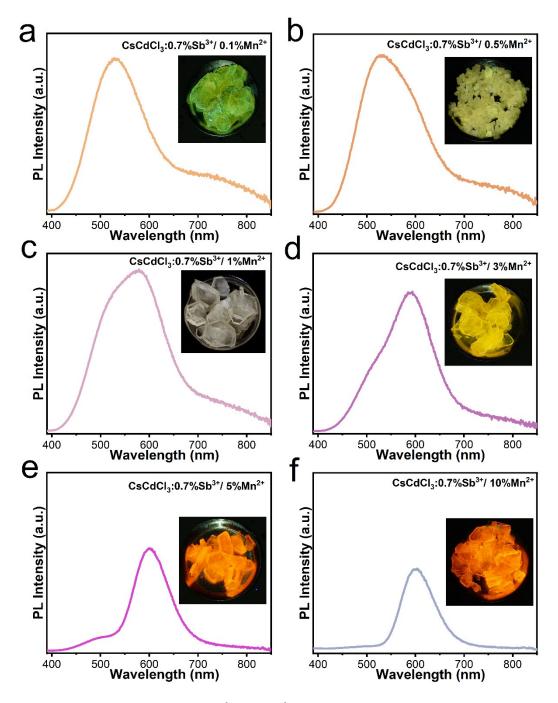


Figure S7. PL spectra of 0.1%Sb³⁺/y%Mn²⁺-codoped CsCdCl₃ crystals, and the inset shows the photographs of 0.1%Sb³⁺/y%Mn²⁺-codoped CsCdCl₃ crystals under 365 nm 0.1%Sb3+/0.1%Mn2+-codoped irradiation. (a) CsCdCl₃ crystals; (b) $0.1\%Sb^{3+}/0.5\%Mn^{2+}$ -codoped CsCdCl₃ crystals; (c) $0.1\%Sb^{3+}/1\%Mn^{2+}$ -codoped 0.1%Sb³⁺/3%Mn²⁺-codoped (d) CsCdCl₃ crystals; CsCdCl₃ crystals; (e) 0.1%Sb³⁺/5%Mn²⁺-codoped CsCdCl₃ crystals; (f) 0.1%Sb³⁺/10%Mn²⁺-codoped CsCdCl₃ crystals.

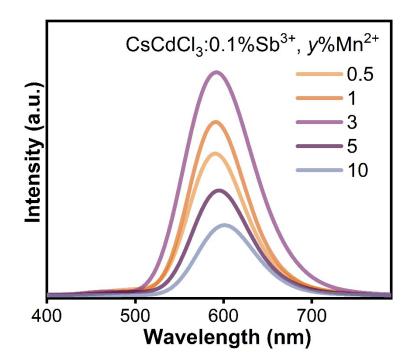


Figure S8. PL spectra of 0.1%Sb³⁺/Mn²⁺-codoped CsCdCl₃ under 254 nm excitation.

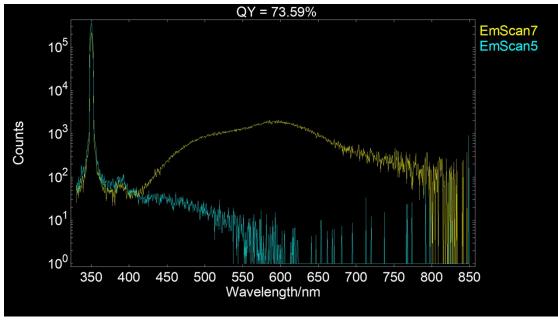


Figure S9. The PLQY of 0.1%Sb³⁺/1%Mn²⁺-codoped CsCdCl₃.

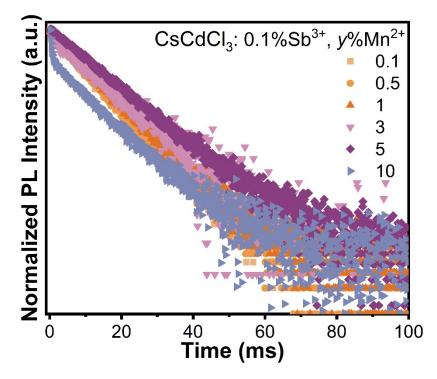


Figure S10. PL decay lifetime of 0.1%Sb³⁺/ Mn²⁺-codoped CsCdCl₃ monitored at 600 nm.

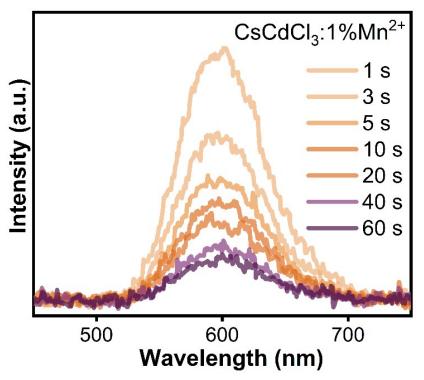


Figure S11. Afterglow emission spectra of 1%Mn²⁺-doped CsCdCl₃ at various delay times after stopping 254 nm excitation.

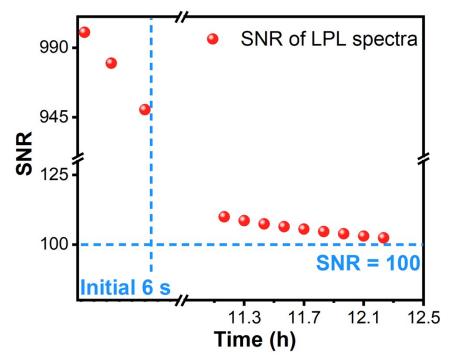


Figure S12. The signal-to-noise of afterglow spectra of 0.1%Sb³⁺/1%Mn²⁺-codoped CsCdCl₃.

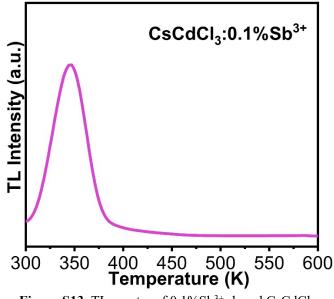


Figure S13. TL spectra of 0.1%Sb³⁺-doped CsCdCl₃.

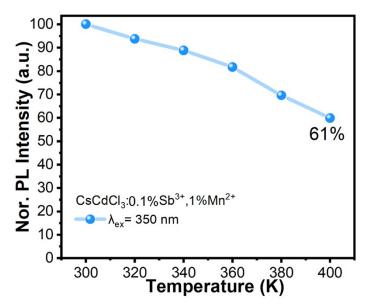


Figure S14. PL intensity of high temperature-dependent PL spectra excited by 350 nm.

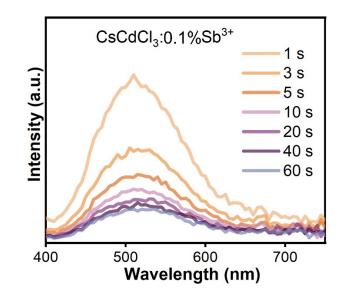


Figure S15. Afterglow emission spectra of 0.1%Sb³⁺-doped CsCdCl₃ at various delay times after stopping 350 nm excitation.

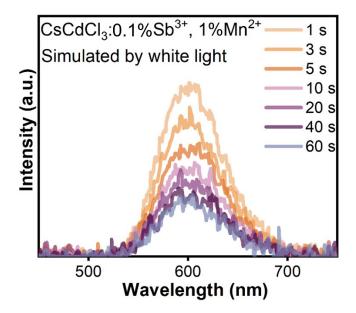


Figure S16. Afterglow emission spectra of 0.1%Sb³⁺/1%Mn²⁺-codoped CsCdCl₃ simulated by white light after 12 hours pre-delay.

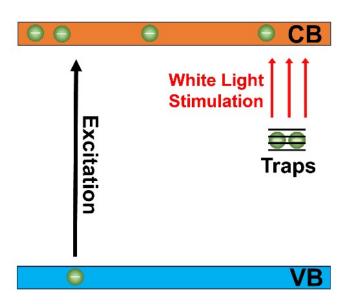


Figure S17. The difference between "excitation" and "white-stimulation" behaviors.

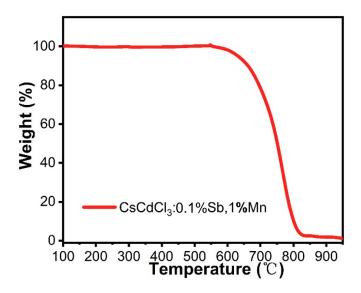


Figure S18. TGA curve of 0.1%Sb³⁺/1%Mn²⁺-codoped CsCdCl₃-codoped CsCdCl₃.

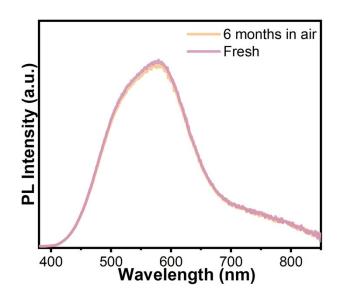


Figure S19. PL spectra of 0.1%Sb³⁺/1%Mn²⁺-codoped CsCdCl₃ before and after storing in air for 6 months.

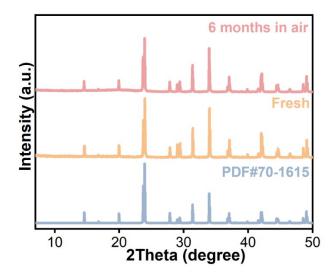


Figure S20. PXRD patterns of 0.1%Sb³⁺/1%Mn²⁺-codoped CsCdCl₃ before and after storing in air for 6 months.

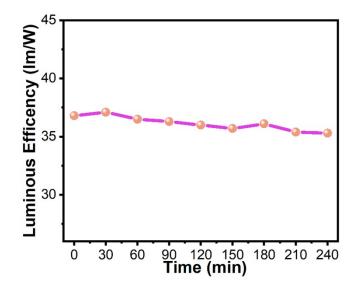


Figure S21. The operational stability of 0.1%Sb³⁺/1%Mn²⁺-codoped CsCdCl₃-based WLED.