SUPPORTING INFORMATION

Pd@BTL-Cd core-shell nanoparticles as plasmonic photocatalyst for the reductive

amination of furfural in water

Jyoti Rohilla^a, Sahil Thakur^a, Sahil Sharma^b, Raghubir Singh^{b*}, Varinder Kaur^{a*}

^aDepartment of Chemistry, Panjab University, Sector-14, Chandigarh-160014, India

^bDepartment of Chemistry, DAV College, Sector 10, Chandigarh-160011, India

*Corresponding author: var ka04@yahoo.co.in (V.K.), raghubirsingh@davchd.ac.in (R.S.)

Contents

List of Figures					
Figure S1	¹ H NMR spectrum of tripodal ligand BTL	S 3			
Figure S2	¹³ C NMR spectrum of tripodal ligand BTL	S3			
Figure S3	¹ H NMR spectrum of metal complex BTL-Cd	S4			
Figure S4	¹³ C NMR spectrum of metal complex BTL-Cd	S4			
Figure S5	ESI-MS spectrum of tripodal ligand BTL	S5			
Figure S6	ESI-MS spectrum of BTL-Cd metal complex	S5			
Figure S7	Raman spectra of (a) BTL-Cd, and (b) Pd@BTL-Cd	S6			
Figure S8	Particle size histogram of Pd@BTL-Cd core shell nanoparticles	S6			
Figure S9	FESEM images of (a-b) Pd@BTL-Cd	S6			
Figure S10	(a) PXRD pattern of BTL-Cd showing a comparison of both	S7			
	experimental and simulated data, (b) PXRD pattern of Pd@BTL-				
	Cd				
Figure S11	XPS plots of (a) C 1s, (b) N 1s, and (c) O 1s of Pd@BTL-Cd	S7			
Figure S12	NH ₃ TPD spectra of (a) BTL-Cd, (b) Pd@BTL-Cd	S8			
Figure S13	UV absorption spectrum of (a) PdCl ₂ , (b) Pd NPs, (c) BTL-Cd, and (d) Pd@BTL-Cd	S8			
Figure S14	Kinetics curve of conversion of furfural to furfuryl amine to show the influence of reaction time, temperature, catalyst amount, substrate ammonia ratio	S 9			
Figure S15	GC spectrum of the typical reaction mixture. Reaction conditions: 10 mg (Pd@BTL-Cd), 10 mmol (Furfural), 15 mmol (Aqueous ammonia), xenon light, 4 h.	S9			
Figure S16	The MS spectrum of furfuryl alcohol.	S10			
Figure S17	The MS spectrum of Schiff base intrmediate.	S10			
Figure S18	The MS spectrum of furfuryl amine.	S11			
	¹ H and ¹³ C nmr of benzyl amine	S11			
	¹ H and ¹³ C spectra of 2-pyridine methanamine	S12			
	¹ H and ¹³ C spectra of 2-thiophene methanamine	S12			
Figure S19	Energy profile diagram of catalytic conversion of furfural to furfuryl amine.	S13			
Figure S20	(a) Recyclability study of Pd@BTL-Cd, (b) PXRD pattern of Pd@BTL-Cd fresh catalyst and after 5th catalytic cycles, (c) FTIR spectra of Pd@BTL-Cd fresh catalyst and after 5th catalytic cycles	S13			
List of Table	8				
Table S1	Crystallographic data and structural parameters for ligand BTL and BTL-Cd	S14			
Table S2	Selected bond length (Å) and bond angle (°) for BTL and BTL-Cd	S15			
Table S3	Previous reported palladium based catalytic systems for reductive amination of furfural	S16			
Table S4	Optimization of different aldehyde sources for the catalytic activity of Pd@BTL-Cd	S16			
Section S1	Detailed calculation of acidic active sites of Pd@BTL-Cd	S17			
Section S2	Detailed calculation of Turnover Number	S17-S18			

Fig. S1 ¹H NMR spectrum of tripodal ligand BTL

Fig. S2 ¹³C NMR spectrum of tripodal ligand BTL

Fig. S3 ¹H NMR spectrum of metal complex BTL-Cd

Fig. S4 ¹³C NMR spectrum of metal complex BTL-Cd

Fig. S5 ESI-MS spectrum of tripodal ligand BTL

Fig. S6 ESI-MS spectrum of BTL-Cd metal complex

Fig. S7 Raman spectra of (a) BTL-Cd, and (b) Pd@BTL-Cd

Fig. S8 (a) Particle size histogram of Pd@BTL-Cd core shell nanoparticle, DLS of (b) Pd NPs, and (c) Pd@BTL-Cd

Fig. S9 FESEM images of (a-b) Pd@BTL-Cd

Fig. S10 (a) PXRD pattern of BTL-Cd showing a comparison of both experimental and simulated data, (b) PXRD pattern of Pd@BTL-Cd

Fig. S11 XPS plots of (a) C 1s (Pd@BTL-Cd), (b) N 1s (Pd@BTL-Cd), (c) O 1s (Pd@BTL-Cd), (d) Cl 2p (Pd@BTL-Cd)

Fig. S12 NH₃-TPD spectra of (a) BTL-Cd, (b) Pd@BTL-Cd

Fig. S13 UV absorption spectrum of (a) PdCl₂, (b) Pd NPs, (c) BTL-Cd, and (d) Pd@BTL-

Cd

Fig. S14 Kinetics curve of conversion of furfural to furfuryl amine to show the influence of reaction time, Reaction Conditions: Distilled water (15 ml), Room Temperature, 0.6 substrate/ammonia ratio, Catalyst amount =10 mg, (b) Kinetics curve of conversion of furfural to furfuryl amine to show the influence of temperature, Reaction Conditions: Distilled water (15 ml), 4 h, 0.6 substrate/ammonia ratio, Catalyst amount = 10 mg, (c) Kinetics curve of conversion of furfural to furfuryl amine to show the influence of catalyst amount, Reaction Conditions: Distilled water (15 ml), Room Temperature, 0.6 substrate/ammonia ratio 3 h, (d) Kinetics curve of conversion of furfural to furfuryl amine to show the influence of substrate/Ammonia ratio, Reaction conditions: Distilled water (15 ml), Room Temperature, 3 h, Catalyst amount =10 mg.

Fig. S15 GC spectrum of the typical reaction mixture. Reaction conditions: 10 mg (Pd@BTL-Cd), 10 mmol (Furfural), 15 mmol (Aqueous ammonia), xenon light, 4 h

Fig. S16 The MS spectrum of furfuryl alcohol.

Fig. S17 The MS spectrum of Schiff base intermediate.

Fig. S18 The MS spectrum of furfuryl amine

Fig. S19 ¹H and ¹³C nmr of benzyl amine [¹H NMR (CDCl₃, 500 MHz): 1.82 (s, 2H, -NH₂), 3.80 (s, 2H, H¹), 7.21 (t, 1H, 3 J = 10 Hz, H⁵), 7.29 (m, 4H, 3 J = 10 Hz, H^{3,4,6,7}). ¹³C NMR (CDCl₃, 125 MHz): (46.42, C¹), (126.81, C⁵), (127.10, C³,C⁷), (128.55, C⁴,C⁶), (143.19, C²)].

Fig. S20 ¹H and ¹³C spectra of 2-pyridine methanamine [¹H NMR (CDCl₃, 500 MHz): 2.55 (s, 2H, -NH₂), 3.90 (s, 2H, H¹), 7.12 (dt, 1H, 3 J = 5 Hz, H⁴), 7.25 (d, 1H, 3 J = 10 Hz, H⁶), 7.62 (dt, 1H, 3J= 5 Hz, H⁵), 8.51 (d, 1H, 3J= 5 Hz, H³). ¹³C NMR (CDCl₃, 125 MHz): (47.07, C¹), (121.08, C⁴), (121.63, C⁶), (136.04, C⁵), (148.49, C³), (161.02, C²)].

Fig. S21 ¹H and ¹³C spectra of 2-thiophene methanamine [¹H NMR (CDCl₃, 500 MHz): 1.99 (s, 2H, -NH₂), 3.94 (s, 2H, H¹), 6.847 (m, 1H, 3 J = 5 Hz, H⁴), 6.891 (dd, 1H, 3 J = 5 Hz, H⁵), 7.125 (dd, 1H, 3J= 5 Hz, H³). ¹³C NMR (CDCl₃, 125 MHz): (41.21, C¹), (123.63, C³), (123.92, C⁵), (126.77, C⁴), (147.35, C²)]

Reaction Co-ordinate

Fig. S22 Energy profile diagram of catalytic conversion of furfural to furfuryl amine.

Fig. S23 (a) Recyclability study of Pd@BTL-Cd, (b) PXRD pattern of Pd@BTL-Cd fresh catalyst and after 5th catalytic cycles, (c) FTIR spectra of Pd@BTL-Cd fresh catalyst and after 5th catalytic cycles.

Parameters	BTL	BTL-Cd		
Empirical formula	$C_{27}H_{39}Cl_3N_4O_3$	$C_{27}H_{34}Cd_2Cl_2N_4O_3$		
Formula weight	573.97	758.28		
Temperature/K	293(2)	293(2)		
Crystal system	monoclinic	orthorhombic		
Space group	$P2_1/n$	P2 ₁ 2 ₁ 2		
a/Å	10.0304(10)	26.9155(6)		
b/Å	19.479(3)	15.7883(3)		
c/Å	17.5363(18)	8.7097(2)		
α/°	90	90		
β/°	97.579(12)	90		
γ/°	90	90		
Volume/Å ³	3396.3(7)	3701.19(14)		
Ζ	4	4		
ρ _{calc} g/cm ³	1.123	1.361		
μ/mm ⁻¹	0.300	1.321		
F(000)	1216.0	1512.0		
Crystal size/mm ³	0.8 imes 0.6 imes 0.2	0.7 imes 0.4 imes 0.2		
Radiation	MoKa (λ =	Mo Ka (λ =		
	0.71073)	0.71073)		
20 range for data collection/°	6.282 to 57.472	6.52 to 54.884		
Index ranges	$-12 \le h \le 12, -24 \le$	$-33 \le h \le 34, -20 \le$		
	$k \leq 23, \ -22 \leq l \leq$	$k \le 13, -11 \le 1 \le 10$		
	20			
Reflections collected	25032	31122		
Independent reflections	7133 [R _{int} =	7869 [R _{int} =		
	0.1827, R _{sigma} =	$0.0386, R_{sigma} =$		
	0.1471]	0.0408]		
Data/restraints/parameters	7133/0/337	7869/1/308		
Goodness-of-fit on F ²	0.904	1.037		
Final R indexes [I>=2σ (I)]	$R_1 = 0.0925,$	$R_1 = 0.0346, WR_2 =$		
	$wR_2 = 0.2654$	0.0678		
Final R indexes [all data]	$R_1 = 0.1874,$	$R_1 = 0.0486, wR_2 =$		
	$wR_2 = 0.3455$	0.0719		
Largest diff. peak/hole / e Å ⁻³	0.49/-0.42	0.28/-0.31		

Table S1 Crystallographic data and structural parameters for ligand BTL and BTL-Cd

Bond length (Å)				
BTL		BTL-Cd		
O1-C5	1.358(7)	Cd01-O3	2.289(3)	
O2-C14	1.367(6)	Cd01-O2	2.303(4)	
O3-C23	1.379(7)	Cd01-N4	2.359(4)	
N1-C7	1.506(6)	Cd02-Cl1	2.414(13)	
N2-C27	1.508(6)	Cd02-O3	2.184(4)	
N2-C11	1.484(7)	Cd01-N2	2.331(4)	
C13-C18	1.373(7)	Cd01-N1	2.461(4)	
C5-C4	1.391(7)	Cd01-N3	2.367(4)	
C10-C11	1.523(7)	Cd02-Cl2	2.421(17)	
C22-C23	1.399(7)	Cd03-O2	2.148(3)	

Table S2 Selected bond length (Å) and bond angle (°) for BTL

Bond angle (°)				
BT	L	BTL	·Cd	
C7-N1-C8	115.3(4)	O3-Cd01-N2	112.18(13)	
C11-N2-C27	115.2(4)	O3-Cd01-N1	153.81(15)	
C9-N4-C10	110.2(4)	O3-Cd01-N3	118.92(15)	
C19-N4-C10	110.2(4)	N2-Cd01-N4	111.09(17)	
C19-N4-C9	110.4(4)	O2-Cd01-N2	83.25(15)	
C21-N3-C20	113.7(4)	O2-Cd01-N4	152.31(14)	
O2-C14-C13	117.7(4)	N4-Cd01-N1	74.42(16)	
C4-C3-C2	121.9(5)	N3-Cd01-N1	73.99(15)	
C3-C4-C5	120.5(6)	O3-Cd02-Cl1	116.95(11)	
C6-C7-N1	112.3(4)	O2-Cd02-Cl1	114.51(11)	
C6-C1-C2	120.8(6)	O2-Cd02-O3	78.12(13)	
C24-C25C26	120.0(6)	C18-O3-Cd01	131.6(3)	
N3-C20-C19	111.3(5)	C8-N2-Cd01	110.9(3)	
C16-C15-C14	119.8(5)	Cd02-O2-Cd01	104.78(14)	
BTL-	·Cd	C10-N1-Cd01	106.8(3)	
N4-Cd01-N3	109.76(16)	C19-N1-C10	111.8(4)	
Cl1-Cd02-Cl2	112.43(6)	O3-Cd01-O2	72.96(12)	
O3-Cd02-Cl2	114.63(11)	O3-Cd01-N4	79.60(14)	
O2-Cd02-Cl2	116.26(12)	N2-Cd01-N1	75.07(13)	
Cd02-O3-Cd01	104.05(14)	N2-Cd01-N3	118.44(15)	
C18-O3-Cd02	124.2(3)	O2-Cd01-N1	133.17(14)	
C7-N2-Cd01	114.3(3)	O2-Cd01-N3	81.15(15)	
C23-O2-Cd01	121.2(2)	C9-N1-Cd01	105.5(3)	
C19-N1-Cd01	109.3(3)	C12-N4-Cd01	110.8(4)	

S. N.	Catalyst	Hydrogen Source	Substrate (mmol)	Solvent	NH3 (mmol)	Temp. (°C)	Time (h)	Yield of FAM	Ref.
1.	Pd/CNT	Formic Acid	1	Methanol	-	120	6	>99	50
2.	Pd/SiO ₂	H_2 gas	1	Dioxane/w	5	120	10	10	16
3.	Pd/HZSM- 5(46)	H ₂ gas	2	Methanol	7 M	100	15 min	44	3
4.	Ru/Nb_2O_5	H ₂ gas	0.5	MeOH	8	90	4	89	51
5.	Co@NC- 800	H_2 gas	1	EtOH	28	130	12	82	52
6.	Ru NPs	H ₂ gas	0.5	MeOH	8	90	2	90	53
7.	Ru/TiO_2	H ₂ gas	0.5	MeOH	8	90	4	72	51
8.	Fe ₃ O ₄ @Si O ₂ -Ni	H_2 gas	1	EtOH	750 μL	120	2	73	54
9.	Raney Ni	H ₂ gas	5	MeOH	$NH_3(g)$	120	2	65	55
10.	Ru/BNC	H_2 gas	0.12	MeOH	$ \begin{array}{c} (0.11 \text{ Mi } \text{ a}) \\ \text{N}_2\text{H}_4.2\text{H}_2\text{O} \\ (0.48) \end{array} $	80	16	95	56
11.	0.5% Ru/P25	Ethanol	0.5	EtOH	8	rt	6	69	19
12.	Ni/CaCO ₃	Water/Zn	5	Water	20	80	10	91	17
13.	Pd@BTL- Cd	Water	5	Water	8	RT	4	97	This Work

Table S3 Previous reported Palladium based catalytic systems for reductive amination of furfural

Table S4 Optimization of different aldehyde sources for the catalytic activity of Pd@BTL-Cd

S.No.	Substrate	Product	Product Yield (%)
1.	Benzaldehyde	Benzyl Amine	79
2.	2-Thiophene Carboxaldehyde	2-Thiophene methylamine	83
3.	2-Pyridine Carboxaldehyde	2-pyridyl methyl amine	80

Section S1

Detailed calculation of acidic active sites of Pd@BTL-Cd:

Calibration Factor (counts/mmol) = 35,890,228

Weight of catalyst = 0.0588 g

Area (count) at 209.7 °C = 5,34,351

Area (count) at 237.6 °C = 43,89,992

Total area (counts) = 49,24,343

Total area (counts)49,24,343

 $NH_3 \text{ desorbed (mmol)} = Calibration Factor (counts/mmol)} = \overline{35,890,228} = 0.1372 \text{ mmol}$

Acidic Sites (mmol) = $\frac{NH3 \ desorbed \ (mmol)}{Catalyst \ weight \ (g)} = \frac{0.1372}{0.0588} = 2.33 \ \text{mmol/g}$

Section S2

Detailed calculation of Turnover Number:

In a heterogeneous catalytic reaction, active sites refer to the specific sites capable of facilitating a particular reaction. The no. of acidic site available in the catalyst was calculated through TPD studies. The available acidic sites act as catalytic active sites for the reaction.

The available acidic sites present in $Pd@BTL-Cd = 2.333 \text{ mmolg}^{-1}$

According to TPD studies,

1 g of Pd@BTL-Cd contain active sites = $2.333 \text{ mmol g}^{-1}$

10 mg of Pd@BTL-Cd contain active sites = 2.33×10^{-2} mmol g⁻¹

The effectiveness of the catalyst in a reaction system is typically expressed as the turnover number (TON), which quantifies the number of reactions occurring per active site. The TON value can be calculated as follows:

 $TON = \frac{\% \text{ yield } \times \text{No. of moles of reactant}}{\text{No. of moles of catalyst}}$

For the catalytic reaction,

	Selectivity% imes Conversion%
% yield	= 100
=	= 98× 99/100
	= 97.02 %
TON =	$\frac{97.02 \times 5}{2.33 \times 10^{-2}}$
=	= 20819 mmolg ⁻¹
	Moles of catalyst $ imes 100$
Mol % =	_ Moles of reactant
	$2.33 \times 10^{-2} mmol \times 100$
=	= 5 <i>mmol</i>
=	= 0.5%