Supporting Information

Phosphaguanidinate Yttrium Carbene, Carbyne and Carbide Complexes: Three Distinct C1 Functionalities

Wen Jiang,^[a] Lixin Zhang^{*[a]}

[a] Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Jiangwan Campus, Fudan University, Shanghai, 200438, China.

Tables of Contents

General procedure (page 2)

NMR spectra of selected complexes (page 3 to 19)

Molecular structures of selected complexes (page 20 to 29)

Crystal data of selected complexes (page 30 to 32)

References (page 33)

General. All manipulations were performed with rigorous exclusion of air and water, using Schlenk techniques or an MBRAUN glovebox (Unilab Mbraun; <1 ppm O₂, <1 ppm H₂O). Solvents (toluene, hexane, and THF) were purified using Grubbs-type columns (MBraun SPS-800, solvent purification system), dried over fresh Na chips and stored in glovebox. Bis(2,6-diisopropylphenyl) carbodiimide was obtained from Tokyo Chemical Industry Co., Ltd and used without purification. CH₃C₆H₄NMe₂-o was purchased from Sigma-Aldrich and used without purification. Ph₂PH and ⁿBuLi (2.5 mol L⁻¹ in hexane) were purchased from Engery Chemical Co., Ltd and used without purification. The AlMe₃ (1 mol L⁻¹ in hexane) was purchased from J&K Co., Ltd and used without purification. Benzene-d₆ was obtained from J&K Co., Ltd and dried by using sodium chips. The synthesis of $(Ph_2P)[C(NR)(NHR)]$ (R = 2,6-(^{*i*}Pr₂)C₆H₃) refers to reported literature.¹ ¹H, ¹³C{¹H}, ³¹P{¹H}, ¹³C DEPT-135 and ¹H-¹³C HMQC NMR spectra of complexes were recorded using a JEOL ECA-400 NMR spectrometer (FT, 400 MHz for ¹H; 100 MHz for ¹³C, 162 MHz for ³¹P) at room temperature. The combustion method was used for the carbon, hydrogen and nitrogen analyses on an Elementar Vario EL III analyzer at Fudan Univerisity (China).

NMR spectra of all complexes

The solid samples were dissolved in C_6D_6 , and then transferred into a J-Young NMR tube in the glove-box. The ¹H, ¹³C{¹H}, ³¹P{¹H}, ¹³C DEPT-135 and ¹H-¹³C HMQC NMR spectra were recorded on a JEOL ECA-400 NMR spectrometer (FT, 400 MHz for ¹H; 100 MHz for ¹³C, 162 MHz for ³¹P) in C_6D_6 at room temperature.

Figure S1. ¹H NMR spectrum of **1-Y** obtained in C₆D₆ at room temperature.

Figure S2. ¹³C{¹H} NMR spectrum of **1-Y** obtained in C_6D_6 at room temperature.

6.23 6.18 6.08

Figure S3. ³¹P{¹H} NMR spectrum of **1-Y** obtained in C_6D_6 at room temperature.

Figure S4. ¹H NMR spectrum of **1-Lu** obtained in C₆D₆ at room temperature.

Figure S5. ¹³C{¹H} NMR spectrum of **1-Lu** obtained in C_6D_6 at room temperature.

Figure S7. ¹H NMR spectrum of 2 obtained in C_6D_6 at room temperature.

Figure S9. ³¹P{¹H} NMR spectrum of **2** obtained in C_6D_6 at room temperature.

Figure S10. ¹H NMR spectrum of **3** obtained in C_6D_6 at room temperature.

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum of **3** obtained in C₆D₆ at room temperature.

Figure S12. Two-dimensional ${}^{1}H{}^{-13}C$ HMQC NMR spectrum of complex **3** (${}^{1}H$ NMR spectrum (400 MHz) on the top, ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz) on the left).

9

50 45

40 35

25 20

30

15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 f1 (ppm)

-45 -50

Figure S15. ¹H NMR spectrum of **4** obtained in C_6D_6 at room temperature.

Figure S16. ¹³C{¹H} NMR spectrum of **4** obtained in C_6D_6 at room temperature.

Figure S17. $^{31}P\{^{1}H\}$ NMR spectrum of 4 obtained in C_6D_6 at room temperature.

Figure S18. ¹H NMR spectrum of **5** obtained in C₆D₆ at room temperature.

Figure S19. ¹³C{¹H} NMR spectrum of **5** obtained in C_6D_6 at room temperature.

-5.26

а

4.0

6.0

5.5

5.0

4.5

.5

7.0

6.5

Tol

0.5 12.48 -

2.5

1.2 23.40 -

1.0

d

0.011.83

0.5

°0 12.15∃

13

---0.94

260	200	140	80	40	0 f1 (ppm)	-60	-120	-200	-280

Figure S22. The in situ ${}^{31}P{}^{1}H$ NMR spectrum of **6-Y** obtained in C₆D₆ at room temperature.

Figure S23. ¹H NMR spectrum of **6-Lu** obtained in C_6D_6 at room temperature.

Figure S24. ¹³C{¹H} NMR spectrum of **6-Lu** obtained in C_6D_6 at room temperature.

Figure S25. ${}^{31}P{}^{1}H$ NMR spectrum of **6-Lu** obtained in C₆D₆ at room temperature.

Figure S26. ¹H NMR spectrum of **8** obtained in C₆D₆ at room temperature.

Figure S27. ¹³C{¹H} NMR spectrum of **8** obtained in C_6D_6 at room temperature.

Figure S28. Two-dimensional ${}^{1}H{}^{-13}C$ HMQC NMR spectrum of complex **8** (${}^{1}H$ NMR spectrum (400 MHz) on the top, ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz) on the left).

Figure S30. ¹H NMR spectrum of **9** obtained in C₆D₆ at room temperature.

Figure S31. ¹³C{¹H} NMR spectrum of **9** obtained in C_6D_6 at room temperature.

-4.20

X-ray Crystallographic structure determinations

All crystals for X-ray analysis were obtained as described in the preparations. Suitable crystals were sealed in the thin-wall glass capillaries under a microscope in the glovebox. Data collections were performed on a Bruker SMART APEX or Bruker SMART APEX II (at 173 K or 296 K) diffractometer with CCD area detector using graphite-monochromated Mo/Ga K α radiation (λ = 0.71073 Å / λ = 1.34138 Å). The determination of crystal class and unit cell was carried out by using the SMART program package. The raw frame data were processed using SAINT^[2] and SADABS^[3] to yield the reflection data file. The structure was solved by using the SHELXTL program^[4] Refinement was performed on F^2 anisotropically by the full-matrix leastsquares method for all the non-hydrogen atoms. The analytical scattering factors for neutral atoms were used throughout the analysis. Except for the hydrogen atoms on bridging carbons, hydrogen atoms were placed at the calculated positions and included in the structure calculation without further refinement of the parameters. The hydrogen atoms on bridging carbons were located by difference Fourier syntheses and their coordinates and isotropic parameters were refined. The residual electron densities were of no chemical significance. Crystal data, data collection, and processing parameters: 2389279 (for 1-Y), 2389282 (for 1-Lu), 2389309 (for 2), 2389276 (for 4), 2389280 (for 5), 2389278 (for 6-Lu), 2389281 (for 7), 2389283 (for 8) and 2389277 (for 9) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ datarequest/cif.

Figure S33. Molecular structure of complex **1-Y** with thermal ellipsoids at 30% probability. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Y(1)-C(2) 2.441(3), Y(1)-C(11) 2.436(3), Y(1)-N(1) 2.524(2), Y(1)-N(2) 2.607(2), Y(1)-N(3) 2.403(2), Y(1)-N(4) 2.475(2); C(2)-Y(1)-N(1) 68.47(8), N(1)-Y(1)-N(2) 117.76(7), N(1)-Y(1)-C(11) 84.57(9), N(2)-Y(1)-C(11) 67.32(8), C(2)-Y(1)-N(2) 81.04(8), C(2)-Y(1)-C(11) 121.88(10).

Figure S34. Molecular structure of complex **1-Lu** with thermal ellipsoids at 30% probability. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Lu(1)-C(2) 2.381(5), Lu(1)-C(11) 2.396(5), Lu(1)-N(2) 2.487(4), Lu(1)-N(1) 2.559(4), Lu(1)-N(3) 2.358(4), Lu(1)-N(4) 2.427(4); C(2)-Lu(1)-N(1) 68.39(15), N(1)-Lu(1)-N(2) 119.28(14), N(1)-Lu(1)-C(11) 81.93(16), N(2)-Lu(1)-C(11) 69.21(17), C(2)-Lu(1)-N(2) 85.23(17), C(2)-Lu(1)-C(11) 124.08(19).

Figure S35. Molecular structure of complex **2** with thermal ellipsoids at 30% probability. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Lu(1)-N(1) 2.299(4), Lu(1)-N(2) 2.347(3), Lu(1)-N(4) 2.535(4), Lu(1)-O(2) 2.044(3), Lu(1)-O(1) 2.316(3), Lu(1)-C(51) 2.476(5); N(1)-Lu(1)-O(2) 107.70(13), N(2)-Lu(1)-O(2) 101.95(13), N(1)-Lu(1)-C(51) 95.68(15), N(2)-Lu(1)-C(51) 95.07(15), N(1)-Lu(1)-O(1) 88.49(12), N(2)-Lu(1)-O(1) 146.07(12).

Figure S36. Molecular structure of complex **4** with thermal ellipsoids at 30% probability except for the $2,6-({}^{i}Pr)_{2}C_{6}H_{3}$ groups and phenyl groups in the phosphaguanidinate ligand. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Lu(1)-Lu(1A) 3.3824(5), Lu(1)-N(1) 2.284(4), Lu(1)-N(2) 2.290(4), Lu(1)-C(1) 2.441(6), Lu(1)-C(1A) 2.428(6), Lu(1)-C(2) 2.297(6); N(1)-Lu(1)-N(2) 58.58(14), N(1)-Lu(1)-C(1) 141.64(19), N(1)-Lu(1)-C(2) 109.12(19), N(2)-Lu(1)-C(1) 93.35(17), N(2)-Lu(1)-C(2) 111.70(18), C(1)-Lu(1)-C(2) 105.4(2), C(1A)-Lu(1)-C(2) 110.7(2).

Figure S37. Molecular structure of complex **5** with thermal ellipsoids at 30% probability. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Lu(1)-N(1) 2.305(3), Lu(1)-N(2) 2.316(3), Lu(1)-N(3) 2.244(3), Lu(1)-N(4) 2.308(3), Lu(1)-C(1) 2.308(4), C(39)-C(40) 1.501(5), C(2)-P(1) 1.878(4); N(1)-Lu(1)-C(1) 93.43(15), N(2)-Lu(1)-C(1) 127.61(16), N(3)-Lu(1)-C(1) 107.38(16), N(4)-Lu(1)-C(1) 102.68(15), N(1)-Lu(1)-N(2) 57.84(11), N(3)-Lu(1)-N(4) 59.17(11).

Figure S38. Molecular structure of complex **6-Lu** with thermal ellipsoids at 30% probability. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Lu(1)-C(1) 2.307(3), Lu(1)-C(2) 2.472(4), Lu(1)-C(3) 2.431(4), Al(1)-C(4) 1.959(3), Lu(1)-N(1) 2.276(2), Lu(1)-N(2) 2.273(2); C(1)-Lu(1)-N(1) 112.43(11), C(1)-Lu(1)-N(2) 111.55(11), C(1)-Lu(1)-C(2) 102.93(13), C(1)-Lu(1)-C(3) 105.83(14).

Figure S39. Molecular structure of complex **7** with thermal ellipsoids at 30% probability except for the $2,6-({}^{i}Pr)_{2}C_{6}H_{3}$ groups and phenyl groups in the phosphaguanidinate ligand. All hydrogen atoms are omitted for clarity (except for H2). Selected bond lengths (Å) and angles (deg): Y(1)-C(1) 2.538(3), Y(1)-C(2) 2.390(2), Y(2)-C(1) 2.508(3), Y(2)-C(2) 2.414(2), C(2)-Al(1) 1.992(3), C(2)-Al(2) 1.983(3), Y(1)-C(3) 2.593(3), Y(1)-C(6) 2.646(3), Y(2)-C(5) 2.601(3), Y(2)-C(8) 2.609(3); C(1)-Y(1)-C(2) 85.28(9), C(1)-Y(2)-C(2) 85.42(9), Y(1)-C(1)-Y(2) 91.50(11), Y(1)-C(2)-Y(2) 97.58(8).

Figure S40. Molecular structure of complex **8** with thermal ellipsoids at 30% probability except for the $2,6-({}^{i}Pr)_{2}C_{6}H_{3}$ groups and phenyl groups in the phosphaguanidinate ligand. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Y(1)-Y(2) 3.6371(5), Y(1)-C(1) 2.429(3), Y(1)-C(2) 2.597(3), Y(1)-C(5) 2.574(3), Y(1)-C(8) 2.562(3), Y(2)-C(3) 2.620(3), Y(2)-C(6) 2.583(3), Y(2)-C(1) 2.421(3), Y(2)-C(2) 2.566(2), C(1)-Al(1) 1.939(3), C(1)-Al(2) 1.973(3), C(1)-Al(3) 1.972(3); C(1)-Y(1)-C(2) 86.18(9), C(1)-Y(2)-C(2) 87.05(9), Y(1)-C(1)-Y(2) 97.17(9), Y(1)-C(2)-Y(2) 89.57(8), Al(1)-C(1)-Al(2) 93.82(12), Al(1)-C(1)-Al(3) 96.52(12), Al(2)-C(1)-Al(3) 169.63(15).

Figure S41. Molecular structure of complex **9** with thermal ellipsoids at 30% probability. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Y(1)-N(1) 2.326(4), Y(1)-N(2) 2.351(4), Y(1)-C(1) 2.528(4), Y(1)-C(2) 2.558(4), Y(1)-C(5) 2.541(4), Y(1)-C(6) 2.570(4); C(1)-Y(1)-N(1) 103.90(11), C(1)-Y(1)-N(2) 97.65(11), C(2)-Y(1)-N(1) 94.93(12), C(2)-Y(1)-N(2) 150.89(13), C(5)-Y(1)-N(1) 96.19(11), C(5)-Y(1)-N(2) 99.99(12), C(6)-Y(1)-N(1) 151.81(13), C(6)-Y(1)-N(2) 95.77(12), C(1)-Y(1)-C(2) 79.89(13), C(5)-Y(1)-C(6) 79.65(13).

	1-Y	1-Lu	2	
Formula	$C_{55}H_{68}N_4PY$	$C_{55}H_{68}N_4PLu$	C ₆₃ H ₈₄ LuN ₄ O ₂ P	
Molecular weight	905.01	991.07	1135.28	
Crystal system	Monoclinic	Monoclinic	Triclinic	
Space group	<i>P</i> 2 ₁ /n	<i>P</i> 2 ₁ /n	<i>P</i> -1	
<i>a /</i> (Å)	15.5692(14)	15.5704(6)	10.7810(7)	
<i>b∕</i> (Å)	18.5082(16)	18.4527(6)	12.3125(8)	
<i>c∕</i> (Å)	16.5373(15)	16.5098(6)	23.2922(15)	
V∕ (ų)	4722.5(7)	4698.0(3)	4305.7(5)	
Ζ	4	4	2	
$ ho_c$ /(mg. m ⁻³)	1.273	1.401	1.321	
μ(Mo-K _α)/(mm ⁻¹)	1.568	3.058	2.577	
	-18<=h<=18, -	-19<=h<=19,	-12<=h<=12, -	
Limiting indices	22<=k<=22, -	-22<=k<=23,	14<=k<=14, -	
	19<=l<=19	-20<=l<=20	27<=l<=27	
Collected	53122	71428	72131	
reflections				
Unique	8349	10102	10086	
	[R(int)= 0.1093]	[R(int)= 0.1177]	[R(int) = 0.070	
Parameters	570	562	652	
Goodness of fit on F ²	1.043	1.053	1.219	
	$R_1 = 0.0439$	$R_1 = 0.0613$	$R_1 = 0.0445$	
$R_1^{a}, WR_2^{a}[I > 2\sigma(I)]$	wR ₂ = 0.1111	$wR_2 = 0.1596$	wR ₂ = 0.1166	
R_1 , wR_2 indices (all	$R_1 = 0.0519$	R ₁ = 0.0712	$R_1 = 0.0466$	
data)	wR ₂ = 0.1178	$wR_2 = 0.1659$	wR ₂ = 0.1174	
Max/min residual density(e Å ⁻³)	1.00 and -0.51	1.27 and -2.19	0.90 and -1.00	
^a R1 = Σ F0 - F _c Σ[w(F _o ²) ²]] ^{1/2} ; w = 1, 2σF ²).	(based on reflecti $/[\sigma^2(F_0^2) + (0.095P)$	ons with $F_0^2 > 2\sigma F^2$). ²]; <i>P</i> = [max(F_0^2 , 0) +2	$wR_2 = [\sum [w(F_0^2 - F_c^2)/3 (also with F_c^2)/3)]$	

Table S1. Crystal data and refinement details of complexes 1-Y, 1-Lu and 2

	4	5	6-Lu	
Formula	$C_{92}H_{110}Lu_2N_4P_2$	C ₆₄ H ₈₅ LuN ₄ P	$C_{42}H_{59}AlLuN_2P$	
Molecular weight	1683.72	1116.29	824.83	
Crystal system	Triclinic	Monoclinic	Monoclinic	
Space group	<i>P</i> -1	P2 ₁ /c	<i>P</i> 2 ₁ /n	
<i>a /</i> (Å)	10.5399(4)	12.962(8)	12.7487(5)	
<i>b/</i> (Å)	11.7073(5)	19.845(8)	18.7568(7)	
<i>c∕</i> (Å)	19.0482(8)	22.439(7)	17.9516(7)	
V∕ (ų)	2094.24(15)	5704(6)	4288.6(3)	
Ζ	2	4	4	
$ ho_c$ /(mg. m ⁻³)	1.340	1.300	1.277	
μ(Mo-K _α)/(mm ⁻¹)	2.427	1.801	2.388	
	-12<=h<=12, -	-15<=h<=15,	-14<=h<=15, -	
Limiting indices	13<=k<=13, -	-23<=k<=23,	22<=k<=22, -	
	22<=l<=22	-25<=l<=26	21<=l<=21	
Collected	44234	59596	45965	
reflections				
Unique	7409	10112	7578	
	[R(int)= 0.0544]	[R(int)= 0.0817]	[R(int) = 0.043	
Parameters	473	649	4592	
Goodness of fit on F ²	1.200	1.051	1.100	
	$R_1 = 0.0372$	$R_1 = 0.0320$	$R_1 = 0.0218$	
$R_1^{a}, WR_2^{a}[I > 2\sigma(I)]$	wR ₂ = 0.0803	wR ₂ = 0.0654	$wR_2 = 0.0438$	
R_1 , wR_2 indices (all	$R_1 = 0.0430$	$R_1 = 0.0566$	$R_1 = 0.0313$	
data)	wR ₂ = 0.0829	wR ₂ = 0.0778	$wR_2 = 0.0500$	
Max/min residual density(e Å ⁻³)	1.45 and -1.54	0.91 and -0.90	0.33 and -0.79	
^a R1 = $\sum $ F0 - F _c $\sum [w(F_o^2)^2]^{1/2}; w = 1,$	(based on reflecti $/[\sigma^2(F_0^2) + (0.095P)^2)$	ons with $F_0^2 > 2\sigma F^2$). v^2]; $P = [max(F_0^2, 0) + 2$	$wR_2 = [\sum [w(F_0^2 - F_c^2)]/3 \text{ (also with } F_0^2)]/3$	

Table S2. Crystal data and refinement details of complexes 4, 5 and 6-Lu

	7	8	9	
Formula	$C_{82}H_{110}AI_2N_4P_2Y_2$	$C_{84}H_{115}AI_{3}N_{4}P_{2}Y_{2}$	$C_{45}H_{68}Al_2N_2PY$	
Molecular weight	1445.45	1501.49	810.85	
Crystal system	Triclinic	Monoclinic	Monoclinic	
Space group	<i>P</i> -1	<i>P</i> 2 ₁ /n	<i>P</i> 2 ₁ /c	
<i>a /</i> (Å)	12.0176(6)	19.8360(19)	16.1150(14)	
<i>b/</i> (Å)	18.7006(11)	12.2333(12)	16.9001(16)	
<i>c∕</i> (Å)	19.4040(11)	34.501(3)	19.322(2)	
V∕ (ų)	3899.7(4)	8352.7(14)	4872.5(8)	
Ζ	2	4	4	
ρ _c /(mg. m ⁻³)	1.231	1.194	1.105	
μ(Mo-K _α)/(mm⁻¹)	1.588	1.886	1.294	
	-14<=h<=14 -	-23<=h<=23	-19<=h<=19	
Limiting indices	22<=k<=22	-14<=k<=14	-20<=k<=20 -	
	-23<=l<=23	-41<= <=41	23<=l<=20	
Collected	85131	144943	41269	
reflections				
Unique	13652	14774	8614	
	[R(int) = 0.0978]	[R(int) = 0.0756]	[R(int) = 0.094	
Parameters	9112	9302	520P	
Goodness of fit on F ²	1.044	1.029	1.038	
	$R_1 = 0.0363$	$R_1 = 0.0418$	$R_1 = 0.0464$	
$R_1^{a}, WR_2^{a}[I > 2\sigma(I)]$	wR ₂ = 0.0798	wR ₂ = 0.0985	$wR_2 = 0.1078$	
R_1 , wR_2 indices (all	$R_1 = 0.0533$	R ₁ = 0.0506	R ₁ = 0.0776	
data)	wR ₂ = 0.0867	$wR_2 = 0.1053$	$wR_2 = 0.1208$	
Max/min residual density(e Å ⁻³)	0.34 and -0.50	2.89 and -0.63	0.41 and -0.48	
^a R1 = ∑ F0 - F _c	(based on reflection	ons with $F_0^2 > 2\sigma F^2$). w	$R_2 = [\sum [w(F_0^2 - F_c^2)^2]$	
$\sum [w(F_0^2)^2]^{1/2}; w = 1$	$/[\sigma^2(F_0^2) + (0.095P)^2]$]; $P = [\max(F_0^2, 0) + 2F$	$c^2]/3$ (also with F_0^2	
2σF ²)	, (() , ()	2, L (0, -, <u>-</u> .		

Table S3. Crystal data and refinement details of complexes 7, 8 and 9

References

[1] J. Grundy, M. P. Coles, P. B. Hitchcock, *Dalton Trans.*, **2003**, 2573–2577; b) N. E. Mansfield, M. P. Coles, P. B. Hitchcock, *Dalton Trans.*, **2005**, 2833–2841.

[2] *SAINTPlus Data Reduction and Correction Program* v. 6.02a, Bruker AXS, Madison, WI, **2000**.

[3] G. M. Sheldrick, *SADABS*, A Program for Empirical Absorption Correction, University of Göttingen, Göttingen, Germany, **1998**.

[4] G. M. Sheldrick, *SHELXL-97*, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, **1997**.