Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2025

# **Supporting Information**

### Synthesis of IrCu/Co<sub>3</sub>O<sub>4</sub> hybrid nanostructures and their enhanced catalytic properties

## toward oxygen evolution reaction under both acidic and alkaline conditions

Xiaomei Xu<sup>1</sup>, Taekyung Yu<sup>1, \*</sup>

<sup>1</sup> Department of Chemical Engineering, Integrated Engineering Major, College of Engineering,

Kyung Hee University, Yongin, 17104, Republic of Korea

\*Corresponding author

E-mail addresses: <u>tkyu@khu.ac.kr (T. Yu)</u>

#### 1. Electrochemical Characterization.

All electrochemical measurements were carried out at ambient temperature and pressure with an electrochemical workstation (CHI760E, Chenhua Shanghai). A three-electrode cell configuration was employed with a working electrode of glassy carbon with a working area of 0.07 cm<sup>2</sup>, a counter electrode of graphite rod. The Hg/HgO (Re-61AP, ALS), and Ag/AgCl were the reference electrodes under the alkaline and acidic conditions, respectively. Electrocatalyst inks were prepared by dispersing 2 mg of catalyst into a solution containing 45  $\mu$ L of 5% Nafion solution (Du Pont) and 555  $\mu$ L of ultrapure water-ethanol solution with equal volumes of water and ethanol, followed by ultrasonication for 0.5 h. Before each experiment, the glassy carbon electrode was polished with 0.05  $\mu$ m alumina for 0.2 h until it achieved a mirror shine. Then, 3.4  $\mu$ L of the catalyst solution was transferred onto a glassy carbon electrode and fully dried at 25 °C.

The overpotential ( $\eta$ ) was calculated by  $\eta = E(vs. RHE) - 1.23 V$  for OER. In addition, the 90% iR correction was done for the polarization curves. Electrochemical impedance spectroscopy (EIS) analysis was conducted at 1.50-1.65 V vs. RHE in the frequency range from 100 k to 0.01 Hz and the EIS plots were fitted using ZView software. To compare the electrochemically active surface area (ECSA) of each catalyst, the double-layer capacitance (CdI) was measured in 1.0 M KOH (0.5 M H<sub>2</sub>SO<sub>4</sub>) in the non-Faradaic region at the scan rates of 20, 40, 60, 80, and 100 mV·s<sup>-1</sup>.

$$C_{dl} = (\Delta j = (j_a - j_c))/2$$
 (1)

Turnover Frequency (TOF) is a measure of catalytic activity. It refers to the number of times a catalytic site converts a substrate into a product per unit time. It's a critical parameter for evaluating the efficiency of catalysts in chemical reactions<sup>1</sup>.

$$TOF=I/4nF$$
 (2)

where I is the current density at a definite overpotential; F is the Faraday's constant (96,485  $\text{C}\cdot\text{mol}^{-1}$ ); and n, the number of moles of the electrochemical materials on the electrode. The factors 4 are based on the assumption that four electrons are necessary to form on oxygen molecules<sup>2</sup>.



Fig. S1. (a and b) TEM images and (c) XRD patterns of Co<sub>3</sub>O<sub>4</sub> nanosheets.



Fig. S2. Size distribution diagrams of the (a) Ir<sub>26</sub>Cu<sub>74</sub> nanoparticles (b) Ir<sub>19</sub>Cu<sub>81</sub>/Co<sub>3</sub>O<sub>4</sub>, (c) Ir<sub>26</sub>Cu<sub>74</sub>/Co<sub>3</sub>O<sub>4</sub>, and (d) Ir<sub>32</sub>Cu<sub>68</sub>/Co<sub>3</sub>O<sub>4</sub>, respectively.



Fig. S3. TEM images of the (a)  $Ir_{19}Cu_{81}/Co_3O_4$  and (b)  $Ir_{32}Cu_{68}/Co_3O_4$ . (c) XRD patterns of the  $Ir_{19}Cu_{81}/Co_3O_4$  and  $Ir_{32}Cu_{68}/Co_3O_4$ . (d) XRD patterns of the  $Ir_{19}Cu_{81}$  and  $Ir_{32}Cu_{68}$ .



Fig. S4. (a) TEM and (b, c, d) HRTEM images of the Ir26Cu74 nanoparticles



Fig. S5. TEM EDS Mapping images of the Ir<sub>26</sub>Cu<sub>74</sub> NPs.



Fig. S6. TEM images of the Ir<sub>26</sub>Cu<sub>74</sub>/Co<sub>3</sub>O<sub>4</sub> after OER stability test in (a) 1.0 M KOH and (b) 0.5 M H<sub>2</sub>SO<sub>4</sub> solutions, respectively.



Fig. S7 CV curves of the (a) commercial  $RuO_2$ , (b)  $Ir_{26}Cu_{74}$ , (c)  $Ir_{19}Cu_{81}/Co_3O_4$ , (d)  $Ir_{26}Cu_{74}/Co_3O_4$ , and (e)  $Ir_{32}Cu_{68}/Co_3O_4$  at different scan rates in a 1.0 M KOH solution.



Fig. S8. TOFs of the Ir<sub>26</sub>Cu<sub>74</sub>, Ir<sub>19</sub>Cu<sub>81</sub>/Co<sub>3</sub>O<sub>4</sub>, Ir<sub>26</sub>Cu<sub>74</sub>/Co<sub>3</sub>O<sub>4</sub>, and Ir<sub>32</sub>Cu<sub>68</sub>/Co<sub>3</sub>O<sub>4</sub> calculated in an (a) alkaline and (b) acidic conditions, respectively. (c) Mass activity of the Ir<sub>26</sub>Cu<sub>74</sub> and Ir<sub>26</sub>Cu<sub>74</sub>/Co<sub>3</sub>O<sub>4</sub>.



Fig. S9. Durability of the  $Ir_{26}Cu_{74}/Co_3O_4$  in a 1.0 M KOH solution.



Fig. S10. CV curves of the (a) commercial RuO<sub>2</sub>, (b)  $Ir_{26}Cu_{74}$ , (c)  $Ir_{19}Cu_{81}/Co_3O_4$ , (d)  $Ir_{26}Cu_{74}/Co_3O_4$ , and (e)  $Ir_{32}Cu_{68}/Co_3O_4$  at different scan rates in a 0.5 M H<sub>2</sub>SO<sub>4</sub> solution.



Fig. S11. XPS spectra of the Ir<sub>26</sub>Cu<sub>74</sub>/Co<sub>3</sub>O<sub>4</sub> after OER stability test in an (a to c) alkaline and (d to f) acidic conditions, respectively.



Fig. S12. OER stability test result of the  $Ir_{26}Cu_{74}$  in a 1.0 M KOH solution

| Samples        | C <sub>Ir</sub> (mg/mL) | C <sub>Cu</sub> (mg/mL) | Ir, Cu Mole ration |
|----------------|-------------------------|-------------------------|--------------------|
| Ir19Cu81/Co3O4 | 0.87                    | 1.23                    | 0.23:1             |
| Ir26Cu74/Co3O4 | 1.24                    | 1.16                    | 0.36:1             |
| Ir32Cu68/Co3O4 | 1.50                    | 1.13                    | 0.47:1             |

Table S1. ICP data of the IrCu/Co<sub>3</sub>O<sub>4</sub>.

| Samples/<br>Binding Energy (eV) | Ir26Cu74 | Ir26Cu74/Co3O4 | Co <sub>3</sub> O <sub>4</sub> |
|---------------------------------|----------|----------------|--------------------------------|
|                                 |          |                |                                |
| Ir <sup>0</sup> 4f 7/2          | 60.78    | 60.98          | /                              |
| Ir <sup>0</sup> 4f 5/2          | 63.58    | 63.90          | /                              |
| Ir <sup>4+</sup> 4f 7/2         | 61.87    | 61.88          | /                              |
| Ir <sup>4+</sup> 4f 5/2         | 64.58    | 64.78          | /                              |
| Cu <sup>0</sup> 2p 3/2          | 932.18   | 932.28         | /                              |
| Cu <sup>0</sup> 2p 1/2          | 951.98   | 952.28         | /                              |
| Cu <sup>2+</sup> 2p 3/2         | 933.98   | 934.88         | /                              |
| Cu <sup>2+</sup> 2p 1/2         | 953.88   | 954.68         | /                              |
| Co <sup>2+</sup> 2p 3/2         | /        | 781.78         | 782.48                         |
| Co <sup>2+</sup> 2p 1/2         | /        | 796.98         | 797.88                         |
| Co <sup>3+</sup> 2p 3/2         | /        | 780.38         | 780.48                         |
| Co <sup>3+</sup> 2p 1/2         | /        | 795.38         | 796.58                         |

Table S2. XPS data of the  $Ir_{26}Cu_{74}$ ,  $Ir_{26}Cu_{74}/Co_3O_4$ , and  $Co_3O_4$ .

| Catalysts                         | Electrolyte | OER(mV)@<br>j(mA/cm <sup>2</sup> ) | Tafel slope<br>(mV∙dec⁻¹) | References |
|-----------------------------------|-------------|------------------------------------|---------------------------|------------|
|                                   | 1.0 M KOH   | 263.1@10                           |                           |            |
| Ir <sub>26</sub> Cu <sub>74</sub> | 1.0 M KOH   | 283.1@20                           | 82.3                      | This work  |
|                                   | 1.0 M KOH   | 328.2@50                           |                           |            |
|                                   | 1.0 M KOH   | 264.9@10                           |                           |            |
| Ir19Cu81/C03O4                    | 1.0 M KOH   | 282.1@20                           | 77.9                      | This work  |
|                                   | 1.0 M KOH   | 310.9@50                           |                           |            |
|                                   | 1.0 M KOH   | 255.9@10                           |                           |            |
| Ir26Cu74/C03O4                    | 1.0 M KOH   | 268.1@20                           | 67.5                      | This work  |
|                                   | 1.0 M KOH   | 287.1@50                           |                           |            |
| Ir32Cu68/C03O4                    | 1.0 M KOH   | 256.1@10                           |                           |            |
|                                   | 1.0 M KOH   | 271.1@20                           | 75.1                      | This work  |
|                                   | 1.0 M KOH   | 296.5@50                           |                           |            |
| Ir-Co3O4@NC                       | 1.0 M KOH   | 296.0@10                           | 89.0                      | 3          |
| Pt3Rh–Co3O4/C                     | 1.0 M KOH   | 290 .0@10                          | 63.4                      | 4          |
| 5-Ir-NCO                          | 1.0 M KOH   | 348.0@10                           | 103.0                     | 5          |
| IrCo–N–C                          | 0.1 M KOH   | 330.0@10                           | 79.0                      | 6          |
| Ir-TrEGO                          | 1.0 M KOH   | 338.0@10                           | 127.7                     | 7          |
| IrO <sub>2</sub> @Ir-MOF          | 1.0 M KOH   | 283.0@10                           | 110.6                     | 8          |

Table S3. OER performances of electrocatalysts in a 1.0 M KOH solution.

| <br>IrCo NRAs        | 1.0 M KOH | 257.3@10 | 70.1  | 9  |
|----------------------|-----------|----------|-------|----|
| IrO <sub>2</sub> /NF | 1.0 M KOH | 292.0@10 | 60.7  | 10 |
| Ir nanochains        | 1.0 M KOH | 340.0@10 | 125.0 | 11 |

| Catalysts                                               | Electrolyte                          | OER(mV)@<br>j(mA/cm <sup>2</sup> ) | Tafel slope<br>(mV∙dec <sup>-1</sup> ) | References  |
|---------------------------------------------------------|--------------------------------------|------------------------------------|----------------------------------------|-------------|
| Ir <sub>26</sub> Cu <sub>74</sub>                       | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 387.0@10                           | 207.4                                  | This work   |
|                                                         | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 434.9@20                           | - 296.4                                |             |
|                                                         | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 334.9@10                           | 101 8                                  | This work   |
| II [9Cu8]/C03O4                                         | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 369.1@20                           | 171.0                                  | T IIIS WOLK |
| In Cu /Ca O                                             | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 293.0@10                           | 1(5.2                                  |             |
| IF26CU74/C03O4                                          | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 317.1@20                           | 105.5                                  | This work   |
|                                                         | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 317.0@10                           | 193.0                                  | This month  |
| IF32CU68/C03O4                                          | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 345.9@20                           | 182.9                                  | I IIS WORK  |
| IrO2/Co3O4                                              | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 452.0@10                           | 114.4                                  | 12          |
| Ir <sub>1</sub> -Co <sub>3</sub> O <sub>4</sub> -NS-300 | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 505.0@10                           | 129.3                                  | 13          |
| IrCoOx@LLCF                                             | 0.1 M HClO4                          | 286 ± 5@10                         | $47.3\pm2$                             | 14          |
| IrO2@Co3O4                                              | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 301.0@10                           | 72.1                                   | 15          |
| IrCoNi PHNCs                                            | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 309.0@10                           | /                                      | 16          |
| Ir(20)/Fe@NCNT-<br>900                                  | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 300.0@10                           | 64.5                                   | 17          |
| Rh22Ir78                                                | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 300.0@10                           | /                                      | 18          |
| HM-IrO <sub>2</sub>                                     | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 312.0@10                           | 61.2                                   | 19          |
| C–IrO <sub>2</sub>                                      | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 308.0@10                           | 87.7                                   | 20          |

Table S4. OER performances of noble metal based electrocatalysts in a 0.5 M H<sub>2</sub>SO<sub>4</sub> electrolyte.

| Ir/G 0.5 M H <sub>2</sub> SO <sub>4</sub> 38 | 0 126.6 <sup>21</sup> |
|----------------------------------------------|-----------------------|
|----------------------------------------------|-----------------------|

| Samples                                                                          | C <sub>Ir</sub> (mg/mL) | C <sub>Cu</sub> (mg/mL) | C <sub>Co</sub> (mg/mL) | Mole ration |
|----------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------|
| Ir <sub>26</sub> Cu <sub>74</sub> /Co <sub>3</sub> O <sub>4</sub><br>(1.0 M KOH) | 0.885                   | 0.036                   | 2.845                   | Ir89Cu11    |
| Ir26Cu74/Co3O4<br>(0.5 M H2SO4)                                                  | 0.950                   | 0.031                   | 3.367                   | Ir91Cu9     |

Table S5. ICP data of the  $Ir_{26}Cu_{74}/Co_3O_4$  post OER in alkaline and acidic conditions.

#### References

- Q. Zhang, W. Zhang, J. Zhu, X. Zhou, G. -R. Xu, D. Chen, Z. Wu, L. Wang, *Adv. Energy Mater.*, 2023, 2304546.
- 2. J. Chen, Y. Ma, T. Huang, T. Jiang, S. Park, J. Xu, X. Wang, Q. Peng, S. Liu, G. Wang, W. Chen, *Adv. Mater.*, 2023, 2312369.
- S. Jung, R. A. Senthil, C. J. Moon, N. Tarasenka, A. Min, S. J. Lee, N. Tarasenko, M. Y. Choi, *Chem. Eng. J.*, 2023, 143717468.
- 4. N. Bhuvanendran, C. W. Park, H. Su, S. Y. Lee, Environ. Res., 2023, 115950229.
- 5. H. -J. Lee, D. -H. Park, W. -J. Lee, S. -B. Han, M. -H. Kim, J. -H. Byeon, K. -W. Park, *Appl. Catal. A: Gen.*, 2021, 118377626.
- M. Xiao, J. Zhu, S. Li, G. Li, W. Liu, Y. -P. Deng, Z. Bai, L. Ma, M. Feng, T. Wu, D. Su, J. Lu, A. Yu, Z. Chen, ACS Catal., 2021, 8837-884611.
- 7. X. Li, J. Cao, J. Chen, Y. Zhu, H. Xia, Z. Xu, C. Gu, J. Xie, M. Jones, C. Lyu, J. Corbin, X. Li, W. Hu, *Adv. Funct. Mater.*, 2024, 231353034.
- L. Li, G. Li, Y. Zhang, W. Ouyang, H. Zhang, F. Dong, X. Gao, Z. Lin, J. Mater. Chem. A, 2020, 25687-256958.
- 9. Y. Zhang, G. Zhang, M. Zhang, X. Zhu, P. Shi, S. Wang, A. -L. Wang, *Chem. Eng. J.*, 2022, 133577433.
- 10. S. Hong, K. Ham, J. Hwang, S. Kang, M. H. Seo, Y. -W. Choi, B. Han, J. Lee, K. Cho, *Adv. Funct. Mater.*, 2023, 220954333.
- 11. Z. Liu, J. Li, J. Zhang, M. Qin, G. Yang, Y. Tang, ChemCatChem, 2020, 3060-306712.
- 12. K. Hua, R. Ding, X. Duan, Z. Rui, X. Li, Y. Wu, D. Yang, J. Li, J. Liu, *ACS Appl. Nano Mater.*, 2024, 487-4977.
- 13. Y. Liu, Y. Chen, X. Mu, Z. Wu, X. Jin, J. Li, Y. Xu, L. Yang, X. Xi, H. Jang, Z. Lei, Q. Liu, S. Jiao, P. Yan, X. Li, R. Cao, ACS Catal., 2023, 3757-376713.
- 14. L. Chong, J. Wen, E. Song, Z. Yang, I. D. Bloom, W. Ding, Adv. Energy Mater., 2023, 230230613.
- 15. W. Han, Y. Qian, F. Zhang, Y. He, P. Li, X. Zhang, Chem. Eng. J., 2023, 145353473.
- 16. J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G. -C. Wang, S. Guo, *Adv. Mater.*, 2017, 170379829.
- 17. Z. Zhang, Y. Xia, M. Ye, D. Wen, W. Zhang, W. Peng, L. Tian, W. Hu, *Int. J. Hydrog. Energy*, 2022, 13371-1338547.
- 18. Z. Liu, Z. Kong, S. Cui, L. Liu, F. Wang, Y. Wang, S. Wang, S. -Q. Zang, Small, 2023, 230221619.
- 19. J. Wu, W. Zou, J. Zhang, L. Zhang, H. Song, Z. Cui, L. Du, Small, 2024, 230841920.
- 20. H. Yu, F. Liao, W. Zhu, K. Qin, J. Shi, M. Ma, Y. Li, M. Fang, J. Su, B. Song, L. Li, R.R. Zairov, Y. Ji, M. Shao, Q. Shao, *ChemCatChem*, 2023, e20230073715.
- 21. S. Zhang, L. Yin, Q. Li, S. Wang, W. Wang, Y. Du, Chem. Sci., 2023, 5887-589314.