Supplementary Material

Synthesis of a three-phase heterojunction NdVO₄/V₂O₅/BiVO₄ by

cation-exchange method for the degradation of anionic azo dye

orange II

Liyang Li,^a Zixi Liao^a Jianhong Yi*^a and Dong Fang *^a

Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093,

P.R. China.

* corresponding author.

email: fangdong@kmust.edu.cn

Note S1. Materials Characterizations

X-ray powder diffraction (XRD) analysis of all photocatalysts was performed using a BDX320 instrument, scanning in the range of 10' to 80' at a rate of 10'min⁻¹. Rietveld refinement was carried out using GSAS-II software. Surface and internal structural information of the materials were obtained through scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). On an aberration-corrected TEM operated at 300 kV, high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and elemental electron energy loss spectroscopy (EELS) maps were acquired. Xray photoelectron spectroscopy (XPS) was conducted to study the chemical states of the samples using a PHI-5000C ESCA system with a Mg/Kα source. Additionally, optical properties were measured using ultraviolet-visible diffuse reflectance spectroscopy (DRS) (Shimadzu, UV-3600) and photoluminescence (PL) spectra at 371 nm were obtained using a Shimadzu RF-5301PC spectrophotometer. Time-resolved photoluminescence (TRPL) measurements were carried out at 371 nm using an Edinburgh FLS1000 spectrometer. The surface area of the samples was determined using nitrogen adsorption and the Brunauer-Emmet-Teller (BET) method with the US ASAP (Accelerated Surface Area and Porosimetry) 2020 system. Electron spin resonance (ESR) was measured on a Bruker A300 spectrometer.

Note S2. DFT Calculations

Density functional theory calculations were performed using the Vienna Ab initio Simulation Package (VASP) and the Projector Augmented-Wave (PAW) method. The exchange-correlation potential was represented by the Perdew-Burke-Ernzerhof (PBE) functional within the Generalized Gradient Approximation (GGA). A heterostructure consisting of 147 atoms in the Bi(002)/BiVO₄(001) interface was constructed. A vacuum layer of 15 Å thickness was included along the z-direction. The cutoff energy was set to 500 eV. The k-point sampling grids for the NdVO₄(112)/V₂O₅(200)/BiVO₄(001) heterostructure were set to 1×2×1. An effective U value of 4.5 eV was selected for the 3d orbitals of vanadium atoms. The structures were relaxed until the convergence criteria for energy and forces were below 1.0×10^{-5} eV/atom and 4.0×10^{-2} eV/Å, respectively. A vacuum layer of 15 Å was used. The van der Waals interactions were described using the DFT-D3 method.

Note S3. Photoelectrochemical and electrochemical tests

Instantaneous photocurrent response (i-t), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) tests were conducted on an electrochemical analyzer equipped with a standard three-electrode system. A 0.5M Na₂SO₄ aqueous solution was used as the electrolyte in this system. Platinum foil, Ag/AgCl electrode, and ITO glass with a coated area of 2.0×2 cm² were chosen as the electrode, reference electrode, and working electrode, respectively. Visible light was simulated using a 300 W xenon lamp.

Note S4. Photocatalytic measurement

The photocatalytic activity of the prepared catalyst was assessed by degrading orange II under simulated sunlight (with a 300 W xenon lamp as the light source). A circulating cooling system was used to cool the photoreactor to reduce the impact of the heat generated by the xenon lamp. A sample of 50 mg scraped from the titanium sheet and 100 ml of orange II solution (50 mg L^{-1}) were placed into the reactor. The reaction solution was allowed to stand in the dark for 30 minutes before exposure to light to reach solid-liquid equilibrium. Subsequently,

4 ml of the reaction solution was taken every 30 min. The intensity at the maximum absorption wavelength (485 nm) of orange II was measured using a UV-1700PC spectrophotometer to analyze the concentration of the orange II solution. The degradation rate of orange II was calculated using Equation: $\eta = (C_0 - C_t) / C_0 \times 100\%$

Where:

 η — Degradation rate;

 C_0 — Initial concentration of the solution;

 $C_t-\mbox{Concentration}$ of the solution at time t under xenon lamp irradiation.

Note S5. Photocatalytic Trapping Agent Experiment

The participation of reactive radicals in the photocatalytic degradation process was verified by conducting radical trapping experiments. 4-Hydroxy-TEMPO (nitroxyl radical piperidine), isopropanol (IPA) and ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) were used as trapping agents for superoxide radicals $(\cdot O_2^-)$, hydroxyl radicals $(\cdot OH)$ and holes (h^+) , respectively. The radical trapping experiments followed the same procedural steps as the photocatalytic degradation experiment. To trap $\cdot O_2^-$, 0.05 g of nitroxyl radical piperidine was added to the reaction solution; to trap h^+ , 0.11 g of ethylenediaminetetraacetic acid disodium salt was added to the reaction solution; and to trap $\cdot OH$, 2 ml of isopropanol was added to the reaction solution.

Note S5. Chemicals and materials

All reagents for the preparation of NdVO₄, NdVO₄/V₂O₅ and NVB such as ammonium metavanadate (NH₄VO₃), sodium hydroxide (NaOH), nitric acid (HNO₃), neodymium nitrate hexahydrate (Nd(NO₃)₃·6H₂O) and bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O) were purchased from Shanghai McLean Biochemical Technology Co. Ltd and used as received without further purification.

Fig. S1 The XRD spectrum of $Na_5V_{12}O_{32}$ grown on titanium foil.

Fig. S2 The SEM spectrum of Na₅V₁₂O₃₂.

Fig. S3 The XRD spectrum of NVB-12, NVB-24 and NVB-48.

Fig. S4 The SEM spectrum of NdVO₄.

Fig. S5 (a-b) The SEM, (c-e) TEM images and corresponding FFT and IFFT images in the region of $NdVO_4/V_2O_5$. (f) EDS mapping images and (g) EELS spectra of $NdVO_4/V_2O_5$. (h) The TEM image of the $NdVO_4/V_2O_5$ and (i) the corresponding EDS line scan.

Fig. S6 The SEM images of (a) NVB-12 and (b) NVB-48.

Fig. S7 The GPA strain map of NdVO₄/V₂O₅, showing ϵ_{xy} component.

Fig. S8 The full XPS spectra of NdVO₄, NdVO₄/V₂O₅ and NVB-24. (b) The XPS spectra of V2p for the NdVO₄,

 $NdVO_4/V_2O_5$ and NVB-24.

Fig. S9 Digital photos of three products.

Fig. S10 (a) The XRD images before and after cyclic test of NVB-24.

(b, c) The SEM images and (d, e) EDS mapping images after cyclic test of NVB-24.

	NVB-24			
	NdVO ₄	V ₂ O ₅	BiVO ₄	
a (Å)	7.3113	11.4993	5.1892	
b (Å)	7.3113	3.5665	5.0960	
c (Å)	6.4530	4.3889	11.6953	
α (°)	90	90	90	
β (°)	90	90	90	
γ (°)	90	90	90.3327	
V(A ³)	344.9430	180	309.2700	

Tab. S1 The cell parameters of NVB-24 after XRD refinement.

Tab. S2 The ratios of O_V for the NdVO₄ and NVB-24.

samples	O _V (%)
NdVO ₄	17
NVB-24	26

Photocatalysts	Light source	Degradation rate	Refs.
······	Light source	(%)	
NVB-24	50 mg/L	96.15	This work
ZOFA-20	100 mg/L	77.27	1
BiOI/HKUST-1	200 mg/L	94.70	2
Zn0.9Co0.1O	10 mg/L	80.00	3
Montmorillonite KSF	12 mg/L	76.40	4
Trace Cu(II)	20 mg/L	95.52	5
Fe ³⁺ /H ₂ O ₂	$1.0 \times 10^{-4} \text{ M}$	81.40	6
FeOCI/WS ₂	60 mg/L	93.40	7

Tab. S3 The degradation rate of orange II by NVB-24 is compared with that of photocatalysts reported in previous literature.

References

- 1 V. H. Hoang, T. H. H. Chu, T. D. Nguyen, T. H. V. Nguyen, T. H. Nguyen, T. C. Luu, H. T. Van, H. Nguyen, D. T. Duong and V. H. L. Nguyen, *Korean J. Chem. Eng.*, 2024, **41**, 1415–1425.
- 2 S. Zhang, R. Wang, X. Cheng, J. Lian, X. Liu and J. Tang, *Water*, 2024, 16, 1805.
- 3 G. Rekhila, H. Lahmar, S. Habi Ben Hariz, M. Benamira and M. Trari, *Inorg. Chem. Commun.*, 2024, **164**, 112349.
- 4 J. Li, F. Wu, N. Deng, E. M. Glebov, N. M. Bazhin, *Reaction. Kinet. Catal. L.*, 2008, 95, 247-255.
- 5 J. Wang, M. Zhang, R. Zhou, J. Li, W. Zhao and W. Chen, *J. Environ. Chem. Eng.*, 2021, 9, 104907.

6 F. Chen, Y. Li, L. Guo and J. Zhang, J. Hazard. Mater., 2009, 169, 711–718.

7 D. Xie, C. Tang, D. Li, J. Yuan and F. Xu, *Inorg. Chem. Commun.*, 2023, **156**, 111085.