Supporting Information

Interfacial seed-assisted FAPbl₃ crystallization and phase stabilization enhances the performance of all-air-processed perovskite solar cells

Yuan Liu^a, Xingyuan Zhou^a, Yupei Wu^a, Hongwei Zhang^a and Kun Cao^{a,*}

^a State Key Laboratory of Organic Electronics and Information Displays & Institute of

Advanced Materials (IAM), School of Materials Science and Engineering, Nanjing

University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

* Corresponding author. E-mail: iamkcao@njupt.edu.cn

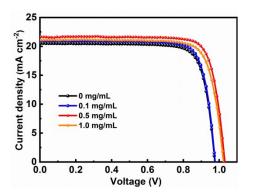


Figure S1. J-V curves of the perovskite solar cells based on $FAPbI_3$ films treated with different concentrations (0, 0.1, 0.5, and 1.0 mg/mL) of $CsPbI_3$ nanocrystals.

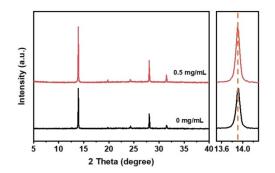


Figure S2. XRD patterns of the control (0 mg/mL) and target (0.5 mg/mL) perovskite films.

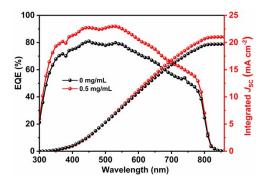


Figure S3. The EQE spectrum of the champion PSC based on the FAPbI₃ film treated with 0.5 mg/mL CsPbI₃ nanocrystals.

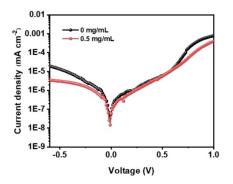


Figure S4. Dark J-V curves of the control (0 mg/mL) and target (0.5 mg/mL) PSCs.

Table S1. Photovoltaic performance parameters of the control (0 mg/mL) andtarget (0.5 mg/mL) PSCs.

Device	Scanning mode	V _{oc} (V)	J _{sc} (mA/cm²)	FF (%)	PCE (%)
Control	foward	0.95	19.97	74.26	14.09
Control	reverse	0.97	20.52	79.88	15.90
Torgot	foward	1.02	21.24	79.11	17.14
Target	reverse	1.03	21.69	80.75	18.04