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1. Materials and Methods

1.1. Crystal synthesis and Characterization

High-quality MAPbI3 and MAPbBr3 crystals were synthesized in this study following the method 
reported by Makhsud et al.1  Electrochemical impedance spectroscopy (EIS) measurements were 
subsequently performed using a Bio-Logic SP-300 potentiostat equipped with a frequency response 
analyzer and the Semiconductor Analysis and Testing Solutions (SATs) probe station. For the 
measurements, a 100 nm-thick conductive carbon paste was applied to the MHP single crystals (SCs) 
with an electrode spacing of 1 mm. The coated crystals were then dried in an oven at 80 °C for 10 
minutes to ensure proper adhesion and conductivity.

1.2.  Computational Analysis

The machine learning implementation in this study was conducted primarily on Google Colab, accessed 
via a local system equipped with an AMD Ryzen 3 5300U processor, Radeon Graphics, 8.00 GB RAM, 
and a 64-bit Windows 11 operating system. Google Colab provided a robust computational environment 
for feature engineering, model training, and data visualization, facilitating efficient execution and 
analysis. 
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2. Temperature dependent EIS:

Figure S1. Figure S1 presents the temperature dependence of real and imaginary part of EIS as a 
function of Frequency. Figure S1 (a) and (c) depicts real impedance(Z') of both the SCs with a successive 
change in slope around at mid-frequency range (KHz). Figure S1 (b) and (d) illustrates the imaginary 
impedance (Z'') of both the SCs as a function of frequency at different temperatures. 

3. Outlier Detection and Handling:

3.1. Outlier Detection using Box plots

Figure S2 illustrates the key statistical measures for two input features (Temperature and Frequency), 
with a primary aim on identifying outliers in this study. Given the limited number of datapoints in the 
Ionic Radius feature of the dataset, a box plot for the same would not provide any useful insight and 
hence is not included here. As is evident from the figure, the Frequency feature of the dataset has a 
considerable number of outliers that could adversely affect prediction performance if not addressed. 
Additionally, the figure also provides some other valuable information, such as the range, median, and 
mean values of the features among others, which proved beneficial for further analysis in this study.

    Figure S2.  Box plots illustrating the distributions of two input features: temperature and frequency



3

3.2. Outlier Handling

Figure S3. Probability plot of: (a) Original Frequency, (b) Square transformed Frequency, (c) Square 
Root-transformed Frequency, (d) Log transformed Frequency.

Figure S3 illustrates the transformation of the frequency feature's distribution. The frequency column in 
our dataset measured from 1 MHz to 1 Hz, created challenges due to the significant presence of outliers 
in observed real and imaginary values, leading to skewed distributions. To handle outliers and mitigate 
their impact on predictions, we used various mathematical transformations (i.e. log, square and square 
root), which offer an effective method for addressing outliers by compressing the range of values and 
reducing their influence whose further information is provided through the figure S3. While square and 
square root transformations reduced the number of outliers, the log transformation proved to be the most 
effective. Mathematically, the log transformation stabilizes variance by reducing the magnitude of larger 
values more aggressively than smaller ones.2 This normalization brings the data closer to a Gaussian 
distribution and enhances the overall performance of ML model.3 As shown in figure S3, the transformed 
frequency data align closely with a red line indicating reduced range and fewer outlier after applying the 
log transformation. There are two ways this can impact the model performance. First, the reduced 
influence of outliers allows the model to focus on the underlying patterns in the data, rather than being 
skewed by extreme values. Second, the normalized scale ensures better convergence during model 
training, as features with more uniform distributions contribute equally to the learning process.3 After 
transforming the data, it was crucial to ensure that each feature contributed equally during the training 
and testing stages. Since the features initially had varying ranges, this required scaling the dataset to a 
consistent range to prevent any single feature from disproportionately affecting the model's 
performance. We chose the Min-Max scaling technique to scale the transformed data to the default range 
of [0,1], further improving the training process. Ideally, the feature scaling, or normalization, is an 
essential step in data preprocessing, particularly when features like the frequency in our dataset have a 
much larger scale compared to others. By using Python’s sklearn library and applying the MinMax 
Scaler, we effectively rescaled the features to a consistent range, enhancing the model’s ability to learn 
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from the data. While other scaling techniques are available, we opted for Min-Max scaling due to its 
simplicity and interpretability.

4.  Performance Comparison and Model Optimization:
4.1.  Performance Comparison

Figure S4. Visualization of error metrics (MAE, MSE, RMSE) of different regression algorithms based 
on (a) Validation Data, (b) Test Data of MHPSCs, MAPbBr3 and MAPbI3 respectively.                                                                      

In our analysis of six algorithms—Linear Regression, Gradient Boosting, Gaussian Process Regressor, 
Random Forest, Decision Tree, and XGBoost, Figure S4 presents performance comparison based on 
three performance metrics (MAE, MSE, RMSE) on the validation dataset in S4(a), and on the test dataset 
in S4(b). The Decision Tree (DT) model was excluded due to overfitting, as its zero error on the training 
dataset and significantly higher error on the validation dataset (Figure. S4). This difference in error 
highlights that the model was overly focused on capturing specific details and noise in the training data, 
leading to a lack of generalization. Instead of learning broader patterns, the DT model memorized 
specific pattern to the training set, which resulted in poor performance when applied to unseen data.4 
While hyperparameter tuning partially mitigated this issue, with a reduction in max_depth compared to 
the base model suggesting early stopping, these adjustments were insufficient. The DT model’s 
performance on the validation and test datasets still lagged behind that of Gradient Boosting (GB), 
Random Forest (RF), and XGBoost (XGB). Therefore, the DT model was discarded from further testing 
on unseen data.

4.2.  Error metrics

Mean Squared Error (MSE): MSE is a cost function that calculates the average of the squares of the 
errors .i.e., the average squared difference between the estimated values and the actual value. 

𝑀𝑆𝐸 =  
1
𝑛

𝑛

∑
𝑖 = 1

(𝑦𝑖 ‒ ȳ𝑖)
2

   where  is the actual value,  is the predicted value, and n is the number of 𝑦𝑖 ȳ𝑖

observations.

(1)

https://vitalflux.com/mean-square-error-r-squared-which-one-to-use/
https://vitalflux.com/loss-function-vs-cost-function-vs-objective-function-examples/
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Mean Absolute Error (MAE): MAE is the average absolute errors in a set of predictions, ignoring the 
direction of the errors. It’s computed as:

where  is the actual value,  is the predicted value, and n is the 

𝑀𝐴𝐸 =  
1
𝑛

𝑛

∑
𝑖 = 1

|𝑦𝑖 ‒ ȳ𝑖|
𝑦𝑖 ȳ𝑖

number of observations.

Root Mean Squared Error (RMSE): RMSE is a cost function that can be represented as the square 
root of the mean square error, bringing the scale of the errors to be the same as the scale of targets. 

𝑅𝑀𝑆𝐸 =  
1
𝑛

𝑛

∑
𝑖 = 1

(𝑦𝑖 ‒ ȳ𝑖)
2

where  is the actual value,  is the predicted value, and n is the number of observations.𝑦𝑖 ȳ𝑖

R-Squared (R²): R-Squared indicates the proportion of the variance in the dependent variable that is 
predictable from the independent variables.

𝑅2 = 1 ‒

𝑛

∑
𝑖 = 1

(𝑦𝑖 ‒ ȳ𝑖)
2

𝑛

∑
𝑖 = 1

(𝑦𝑖 ‒ 𝑦'𝑖)
2

where  is the actual value,    is the predicted value, and  is the mean of the actual values, and n is 𝑦𝑖 ȳ𝑖 𝑦'𝑖
the number of observations.

4.3.   Model Optimization

                                                      

                                                                                                                                                

Table S1. Tuned parameter of Chosen model Random Forest Regression

The top-performing models from the performance comparison were further optimized using Grid Search 
CV, with Random Forest emerging as the preferred regression method due to its lowest error rates. After 
hyperparameter tuning with GridSearchCV, the details for Random Forest are provided in Table S1.

Random Forest Regression

Hyperpara
meters

max_depth: 30
n_estimators: 500 
random_state: 42

(2)

(4)

(3)
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4.4.  Comparison of Actual and Predicted data

Figure S5. Comparison of actual and predicted Nyquist plots using RF regressor for  at (a) 𝑀𝐴𝑃𝑏𝐼3

, (b) , (c) , (d) 268 𝐾 293 𝐾 298 𝐾 328 𝐾

Figure S5 illustrates the comparison between actual and predicted Nyquist plots at four distinct 
temperatures, none of which were included in the training, validation or test data for the machine 
learning model. The data at these temperatures were entirely unseen by the Random Forest Regressor 
during model development. The plots offer a clear visual representation of the model's predictive 
accuracy and performance across different conditions, effectively demonstrating the strong capability 
of the Random Forest Regressor to generalize and make accurate predictions even for data outside the 
range used for training.
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5. Fitted Nyquist plots and Parameter Extraction at unseen temperatures:
5.1. Fitting Nyquist plots at unseen temperatures on the predicted data

Figure S6. Fitted Nyquist plots for  based on predicted data at (a) , (b) , (c) 𝑀𝐴𝑃𝑏𝐼3 268 𝐾 293 𝐾
, (d) 298 𝐾 328 𝐾

Figure S6 illustrates the fitted Nyquist plots for  based on the data predicted at the unseen 𝑀𝐴𝑃𝑏𝐼3

temperatures using the Random Forest Regressor. Fitting was carried out using the “custom circuit” 
function from the impedance library to match the expected circuit shape for which the (R- (R, CPE) - 
(R, CPE)) Circuit was used. Initial estimates were provided for the fitting parameters to initiate the 
curve-fitting effectively and subsequent optimized fitting parameters were extracted from the same.
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5.2.  Parameter extraction of circuit fitting at unseen temperatures

Table S3. Extracted Fitting Parameters for the (R- (R, CPE) - (R, CPE)) Circuit at  of  333 𝐾
𝑀𝐴𝑃𝑏𝐵𝑟3

Table S4. Extracted Fitting Parameters for the (R- (R, CPE) - (R, CPE)) Circuit at  of  333 𝐾 𝑀𝐴𝑃𝑏𝐼3

Table S5. Extracted Fitting Parameters for the (R- (R, CPE) - (R, CPE)) Circuit at  of 293 𝐾 𝑀𝐴𝑃𝑏𝐼3

Parameter Parameter Value Standard Deviation ( ± )
R_0 3.08e+03 1.17e+02 𝑜ℎ𝑚

CPE_1_0 2.87e-10 4.91e-11 𝐹/𝑠(𝑎�0)

a0 0.993
R_1 6.12e+04 1.98e+02  𝑜ℎ𝑚
R_2 3.85e+04 1.23e+01  𝑜ℎ𝑚

CPE_2_0 5.82e-06  1.37e-07  𝐹/𝑠(𝑎1)

a1 0.813  

Parameter Parameter Value Standard Deviation 
( ± )

R_0 1.07e+04   4.63e+02 𝑜ℎ𝑚
CPE_1_0 1.12e-09 1.69e-10  𝐹/𝑠(𝑎�0)

a0 0.770   
R_1 1.32e+05  2.86e+02  𝑜ℎ𝑚
R_2 1.91e+05  2.07e+01  𝑜ℎ𝑚

CPE_2_0 8.68e-07 2.32e-08  𝐹/𝑠(𝑎1)

a1 0.832  

Parameter Parameter Value Standard Deviation ( ± )
R_0 5.53e+03 9.19e+02  𝑜ℎ𝑚
R_1 8.60e+04 1.96e+03 𝑜ℎ𝑚

CPE_1_0 2.10e-10 3.32e-10  𝐹/𝑠(𝑎�0)

a0 0.999  
R_2 4.20e+04 2.79e+02 𝑜ℎ𝑚

CPE_2_0 4.84e-06 8.17e-07  𝐹/𝑠(𝑎1)

a1 0.724   

Parameter Parameter Value Standard Deviation ( ± )
R_0 9.51e+03 6.45e+02 𝑜ℎ𝑚
R_1 9.35e+04 1.15e+01 𝑜ℎ𝑚
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Table S6. Extracted Fitting Parameters for the (R- (R, CPE) - (R, CPE)) Circuit at  of 268 𝐾 𝑀𝐴𝑃𝑏𝐼3

Table S7. Extracted Fitting Parameters for the (R- (R, CPE) - (R, CPE)) Circuit at  of 298 𝐾 𝑀𝐴𝑃𝑏𝐼3

Table S8. Extracted Fitting Parameters for the (R- (R, CPE) - (R, CPE)) Circuit at  of 328 𝐾 𝑀𝐴𝑃𝑏𝐼3

CPE_1_0 2.75e-10 1.30e-10  𝐹/𝑠(𝑎�0)

a0 0.967   
R_2 1.92e+05 9.24e+00 𝑜ℎ𝑚

CPE_2_0 2.62e-06 7.33e-08  𝐹/𝑠(𝑎1)

a1 0.415

Parameter Parameter Value Standard Deviation ( ± )
R_0 7.24e+03 3.52e+02   𝑜ℎ𝑚
R_1 7.21e+04 6.33e+02  𝑜ℎ𝑚

CPE_1_0 3.29e-10 1.37e-10   𝐹/𝑠(𝑎�0)

a0 0.974  
R_2 3.29e+04 1.24e+02  𝑜ℎ𝑚

CPE_2_0 3.68e-06 2.81e-07   𝐹/𝑠(𝑎1)

a1 0.786   

Parameter Parameter Value Standard Deviation  ( ± )
R_0 4.92e+03 2.89e+02  𝑜ℎ𝑚
R_1 6.05e+04 6.97e+02  𝑜ℎ𝑚

CPE_1_0 2.24e-10 1.60e-10   𝐹/𝑠(𝑎�0)

a0 1.00    
R_2 3.23e+04 1.23e+02  𝑜ℎ𝑚

CPE_2_0 7.32e-06 5.23e-07   𝐹/𝑠(𝑎1)

a1 0.619
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