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Experiments

Chemicals

All chemicals were used without further purification. Copper acetate monohydrate 

(C4H6CuO4·H2O, Macklin), Zinc acetate (C4H6O4Zn, Macklin), Phytic acid solution 

(C6H18O24P6, Aladdin), Melamine (C3H6N6, Aladdin), Potassium hydroxide (KOH, 

Aladdin), Ethyl Alcohol (CH3CH2OH, Chron chemicals), Sulfuric acid (H2SO4, Hushi).

Synthesis of Cu-PA-Zn

Firstly, 3.67g zinc acetate was poured into 33.3 mL deionized water. 3.6 ml 70% 

phytic acid solution was added in 16.7 ml deionized water and 20 mg copper acetate 

monohydrate was added and stirred. The above two solution was dropwise mixed under 

stirring, and reacted for 2 h. After centrifugation and washing, solid substance was 

collected by drying overnight in a vacuum oven(noted as Cu-PA-Zn). 

Syntheses of PA-Zn and PA-Zn(Cu)

Similar to the preparation process of Cu-PA-Zn, PA-Zn was obtained without the 

addition of copper acetate monohydrate. The PA-Zn was then dispersed in 6 mL of 

ethyl alcohol containing 20 mg copper acetate monohydrate, followed by continuous 

grinding until the mixture was completely dry, the PA-Zn(Cu) sample was obtained.

Synthesis of Cu-P-N-C

Cu-PA-Zn with 0.5 g and melamine with 4 g were homogeneous mixed by grind.

The obtained substance was annealed in a tube furnace with an argon atmosphere. The 

heating process is: from room temperature to 550 °C(5 °C/min) and maintained 1 hour; 

subsequently, from 550 °C to 950 °C(5 °C/min) and maintained 2 hour, then cooled 

down. The sample was etched in a 0.5 M H2SO4 at 80°C and 6 hours. The Cu-P-N-C 

catalyst was prepared by a second annealing process at 950°C for 2 hours,

Similarly, the Cu-P-N-C(Cm) catalyst was prepared by pyrolyzing the mixture of 

PA-Zn(Cu) and melamine; P-N-C catalyst was fabricated without copper acetate 

monohydrate.
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Electrochemical Measurements

To test ORR activity, CHI 760E station, Hg/HgO reference electrode, glassy 

carbon working electrode, and carbon rod counter electrode were employed. The 0.1 M 

KOH was used as electrolytes. The catalyst ink was prepared by sonicating the mixture 

of carbon catalyst(5mg) and 1 ml of nafion/isopropanol (0.2 wt% Nafion). The working 

electrode was prepared through dropping catalyst ink (20 µL) over glassy carbon 

electrode(catalyst loading: 0.5 mg·cm-2). 

The cyclic voltammetry (CV) and linear scanning voltammetry (LSV) with 1600 

rpm are conducted in N2/O2-saturated 0.1 M KOH (10 mV·s-1). The hydrogen peroxide 

yield and electron transfer number (n) are obtained by RRDE technology.

H2O2 (%) = 200Ir (NId + Ir)-1          Id: disk current; Ir: ring current

n = 4 Id (Id+IrN-1)-1                  N: ring collection efficiency

Zn-air Battery 

The catalyst was coated on hydrophobic carbon paper(1 mg·cm-2) , as air cathode. 

The zinc plate was polished and washed, as anode. The electrolyte is 6 M KOH solution. 

The 760E workstation and NEWARE system was employed to test the assembled Zn-

air battery.
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Figure S1. SEM images of P-N-C.
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Figure S2. High-resolution TEM (HRTEM) images of Cu-P-N-C.
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Figure S3. HAADF image and elemental mapping of Cu-P-N-C (Cm).
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Figure S4. Cu 2p XPS spectra of (a) Cu-P-N-C and (b) Cu-P-N-C(Cm).
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Figure S5. O 1s XPS spectra of (a) Cu-P-N-C, (b) Cu-P-N-C(Cm) and (c) P-N-C.
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Figure S6. LSV curves of catalysts at different temperatures.
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Figure S7. Tafel curves of P-N-C-850 and P-N-C-1050.
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Figure S8. CV curves at various scan rates of (a) Cu-P-N-C, (b) Cu-P-N-C(Cm) and 
(c) P-N-C in 0.1 M KOH electrolyte.
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Figure S9. Chronoamperometric response curves of Cu-P-N-C(Cm) and P-N-C 
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Figure S10. Chronoamperometric response curves of Cu-P-N-C in O2-saturated 0.1 
M KOH solution at 4°C, 25°C, and 50°C.
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Figure S11. (a) Open circuit voltage. (b) Polarization and power density curves of 
Cu-P-N-C(Cm) and P-N-C based ZABs in 6M KOH.
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Figure S12. (a) Open circuit voltage. (b) Voltage-Time discharge curve of Cu-P-N-C based 
ZABs with electrolyte concentrations.
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Table S1. Comparison of ORR performances in alkaline electrolyte among recently 
reported the P and N co-doped ORR catalysts.

Catalyst E0

(V vs. RHE)
E1/2

(V vs. RHE)
Jd

(mA cm-2) Ref.

Cu-P-N-C 1.02 0.86 5.72 This work

P-N-C 0.99 0.851 5.51 This work

Co-N-P1.5-MC 1.02 0.84 5.51 1

2.5Co2P-NPC-CeO2 0.88 0.827 5.24 2

CNP-act825-4 0.925 0.838 4.53 3

PA-SS 900 0.96 0.82 4.47 4

CNFP-act 0.931 0.867 5.10 5

NPDC-1.09 0.94 0.84 6.01 6

N,P-SiCDC1 0.9 0.79 --- 7

M-PNC-1000 0.95 0.84 5.3 8

P-Fe3Co1@NC/CNTs 0.860 0.802 5.29 9

SWCNT@NPC --- 0.85 --- 10

FeCoP/C --- 0.849 --- 11

Co(PO3)2/NC 0.906 0.780 5.062 12

BP-CN-c --- 0.84 5.34 13

PANI-Fe/PA-N1050 --- 0.84 4.4 14

Fe-N/P-C-700 0.941 0.867 5.66 15

NPSP- 900 --- 0.83 --- 16
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Table S2. The comparison of zinc-air battery performance with Cu-P-N-C and the 
recently reported carbon catalysts as cathodes

Catalyst
Open 

voltage
(V)

Peak power
density

(mW·cm-2)

Specific 
capacity

(mAh·g-1)
Ref.

Cu-P-N-C 1.53 164.5 807
 (20 mA cm-2) This work

S-VN/Co/NS-MC 1.49 195.7 815.7 (20) 17

CNT@SAC-Co/NCP 1.45 172 --- 18

WN-Ni@pDC-750-0.02 1.40 165 748 (10) 19

CoP@NC-Ru 1.51 175 780 (50) 20

CeO2–Fe2N/NFC−2 1.43 133 --- 21

J-CeO2/ZCS 1.44 168.7 785.9 (10) 22

Fe-N4@NC-PCSs 1.465 207 819 (10) 23

CoS2 YSS@NC-0.5 1.4 202 772.5 (10) 24

Co/CoN4PCF 1.47 196 805 (10) 25

CoNi@NC 1.45 168.8 870 (10) 26

CoN/MnO@NC 1.56 153 718 (10) 27

Cu-Co/NC 1.45 295.9 694 (20) 28
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