Supporting information

to

Development of a water-soluble ouroboros-like calix[6]arenetrisimidazole-based ligand for enhanced binding of zinc

Romain Carpentier,^{&,f} Roy Lavendomme,^{f,§} Benoit Colasson,[#] Kristin Bartik,^{&,*} and Ivan Jabin^{f,*}

[&] Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.

[£] Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.

[§] Université libre de Bruxelles (ULB), Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Avenue F.D. Roosevelt 50, CP160/08, B-1050 Brussels, Belgium.

[#] Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France.

Kristin.Bartik@ulb.be, Ivan.Jabin@ulb.be

Table of contents

Characterization of compound 2	
Figure S1: ¹ H NMR spectrum of 2 in DMSO-d ₆	
Figure S2: COSY NMR spectrum of 2 in DMSO- d_6	S3
Figure S3: ¹³ C NMR spectrum of 2 in DMSO-d ₆	
Figure S4: HSQC NMR spectrum of 2 in DMSO-d ₆	
Figure S5: ATR-FTIR spectrum of 2	S5
Characterization of compound 3	
Figure S6: ¹ H NMR spectrum of 3 in DMSO-d ₆	
Figure S7: COSY NMR spectrum of 3 in DMSO-d ₆	
Figure S8: ¹³ C NMR spectrum of 3 in DMSO-d ₆	
Figure S9: HSQC NMR spectrum of 3 in DMSO-d ₆	
Figure S10: ATR-FTIR spectrum of 3	
Titrations for formation of the complexes in CDCl ₃ /CD ₃ CN 1:1	
Figure S11: titration with 2 and Zn(OTf) ₂	
Figure S12: titration with 3 and Zn(OTf) ₂	

Characterization of complex 2-Zn ²⁺ in CDCl ₃ /CD ₃ CN 1:1	. S10
Figure S13: ¹ H NMR spectrum of 2-Zn ²⁺ in CDCl ₃ /CD ₃ CN 1:1	. S10
Figure S14: COSY NMR spectrum of 2-Zn ²⁺ in CDCl ₃ /CD ₃ CN 1:1	. S10
Figure S15: HSQC NMR spectrum of 2-Zn ²⁺ in CDCl ₃ /CD ₃ CN 1:1	. S11
Figure S16: HMBC NMR spectrum of 2-Zn ²⁺ in CDCl ₃ /CD ₃ CN 1:1	. S11
Characterization of complex 3-Zn ²⁺ in CDCl ₃ /CD ₃ CN 1:1	. S12
Figure S17: ¹ H NMR spectrum of 3 -Zn ²⁺ 1	. S12
Figure S18: COSY NMR spectrum of 3-Zn ²⁺	. S12
Figure S19: ¹³ C NMR spectrum of $3-Zn^{2+}$. S13
Figure S20: HSQC NMR spectrum of 3-Zn ²⁺	. S13
Figure S21: HMBC NMR spectrum of 3-Zn ²⁺	. S14
Figure S22: ATR-FTIR spectrum of 3-Zn ²⁺	. S14
Figure S23: EXSY experiment for 3-Zn ²⁺	. S15
Titrations for formation of the complexes in DMSO	. S16
Figure S24: titration with 2 and Zn(OTf) ₂	. S16
Figure S25: titration with 3 and Zn(OTf) ₂	. S16
Formation and characterization of complex 4-Zn ²⁺ in CDCl ₃ /CD ₃ CN 1:1	. S17
Figure S26: post-functionalization of 3-Zn2+ upon addition of phenylisocyanate	. S17
Figure S27: ¹ H NMR spectrum of 4-Zn ²⁺	. S17
Figure S28: COSY NMR spectrum of 4-Zn ²⁺	. S18
Figure S29: HSQC NMR spectrum of 4-Zn ²⁺	. S18
Figure S30: HMBC NMR spectrum of 4-Zn ²⁺	. S19
Competition experiments in CDCl ₃ /CD ₃ CN 1:1	. S20
Figure S31: competition between $2-Zn^{2+}$ and $3-Zn^{2+}$. S20
Figure S32: competition between HexNH ₂ -2- Zn^{2+} and 3- Zn^{2+}	. S20
Figure S33: competition between 3- Zn^{2+} and 4- Zn^{2+}	. S21
Characterization of complex 3-Zn ²⁺ in D ₂ O	. S22
Figure S34: ¹ H NMR spectrum of 3 -Zn ²⁺	. S22
Figure S35: COSY NMR spectrum of 3-Zn ²⁺	. S22
Figure S36: HSOC NMR spectrum of 3-Zn ²⁺	. S23
Figure S37: HMBC NMR spectrum of $3-7n^{2+}$. S23
Figure S38: EXSY experiment spectrum of 3-Zn ²⁺	. S24
Titrations for formation of the complexes in D2O	.S25
Figure S39: titration with 3 and $Zn(ClO_4)_2$. S25
Figure S40: pH optimization for 3-Zn ²⁺	. S26
Figure S41: titration with 3 and Zn(OAc) ₂	. S27

Characterization of 2

Figure S1. ¹H NMR spectrum (298K, 400 MHz, DMSO-*d*₆) of **2**. s: residual solvent, w: water.

Figure S2. COSY NMR spectrum (298K, 400 MHz, DMSO-*d*₆) of 2.

¹³C NMR characterization was attempted but only small signals could be detected after a prolonged analysis time and over 5000 scans (Figure S3). However, a HSQC spectrum allowed the assignment of some of the ¹³C signals (Figure S4).

Figure S3. ¹³C NMR spectrum (298K, 400 MHz, DMSO-*d*₆) of 2.

Figure S4. Edited HSQC NMR spectrum (298K, 400 MHz, DMSO-*d*₆) of 2.

Figure S5. ATR-FTIR spectrum of 2.

Characterization of 3

Figure S6. ¹H NMR spectrum (298K, 400 MHz, DMSO-*d*₆) of **3**. s: residual solvent, w: water.

Figure S7. COSY NMR spectrum (298K, 400 MHz, DMSO-*d*₆) of 3.

¹³C NMR characterization was attempted but only small signals could be detected after a prolonged analysis time and over 5000 scans (Figure S8). However, a HSQC spectrum allowed the assignment of some of the ¹³C signals (Figure S9).

Figure S8. ¹³C NMR spectrum (298K, 400 MHz, DMSO-d₆) of 3.

Figure S9. Edited HSQC NMR spectrum (298K, 400 MHz, DMSO-*d*₆) of 3.

Figure S10. ATR-FTIR spectrum of 3.

Figure S11. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 1:1) of a) **2** (1 mM), b) **2** (1 mM) + \sim 0.4 equiv. of Zn(OTf)₂, c) **2** (1 mM) + \sim 1.0 equiv. of Zn(OTf)₂. s = residual solvents, w = water, g = grease.

Figure S12. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3CN$ 1:1) of a) **3** (1 mM), b) **3** (1 mM) + ~0.4 equiv. of $Zn(OTf)_2$, c) **3** (1 mM) + ~1.0 equiv. of $Zn(OTf)_2$. s = residual solvents, w = water, g = grease.

Figure S13. ¹H NMR spectrum (298K, 400 MHz, CDCl₃/CD₃CN 1:1) of **2**-Zn²⁺ (1 mM). s: residual solvent, w: water, g = grease.

Figure S14. COSY NMR spectrum (298K, 400 MHz, CDCl₃/CD₃CN 1:1) of 2-Zn²⁺ (1 mM).

Figure S15. Edited HSQC NMR spectrum (298K, 400 MHz, CDCl₃/CD₃CN 1:1) of $2-Zn^{2+}$ (1 mM). The ¹³C NMR spectrum has not been recorded for $2-Zn^{2+}$.

Figure S16. HMBC NMR spectrum (298K, 400 MHz, $CDCl_3/CD_3CN$ 1:1) of 2-Zn²⁺ (1 mM). The ¹³C NMR spectrum has not been recorded for 2-Zn²⁺.

Characterization of complex 3-Zn²⁺ in CDCl₃/CD₃CN 1:1

Figure S17. ¹H NMR spectrum (298K, 400 MHz, CDCl₃/CD₃CN 1:1) of **3-**Zn²⁺ (1 mM). s: residual solvent, w: water, g = grease.

Figure S18. COSY NMR spectrum (298K, 400 MHz, CDCl₃/CD₃CN 1:1) of 3-Zn²⁺ (1 mM).

¹³C NMR characterization was attempted but only small signals could be detected after a prolonged analysis time and over 5000 scans (Figure S19). However, a HSQC spectrum allowed the assignment of some of the ¹³C signals (Figure S20).

Figure S19. ¹³C NMR spectrum (298K, 400 MHz, CDCl₃/CD₃CN 1:1) of 3-Zn²⁺.

Figure S20. Edited HSQC NMR spectrum (298K, 400 MHz, CDCl₃/CD₃CN 1:1) of 3-Zn²⁺ (1 mM).

Figure S21. HMBC NMR spectrum (298K, 400 MHz, CDCl₃/CD₃CN 1:1) of 3-Zn²⁺ (1 mM).

Figure S22. ATR-FTIR spectrum of 3-Zn²⁺.

Figure S23. ¹H NMR spectra (298 K, 600 MHz, CDCl₃/CD₃CN 1:1) of a) **3-**Zn²⁺, b) 1D EXSY spectra (at various mixing times) after selective excitation of the β_{in} signal at -0.61 ppm.

Titrations for the formation of the complexes in DMSO

Figure S24. ¹H NMR spectra (298 K, 400 MHz, DMSO-*d*₆) of a) **2** (2 mM), b) **2** (2 mM) + \sim 27 equiv. of Zn(OTf)₂. s = residual solvents, w = water.

Figure S25. ¹H NMR spectra (298 K, 400 MHz, DMSO- d_6) of a) **3** (2 mM), b) **3** (2 mM) + ~27 equiv. of Zn(OTf)₂. s = residual solvents, w = water.

Figure S26. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 1:1) of a) **3** (2 mM)) + ~1.0 equiv. of Zn(OTf)₂, b) **3** (2 mM)) + ~1.0 equiv. of Zn(OTf)₂ + ~0.6 equiv. phenylisocyanate, c) **3** (2 mM)) + ~1.0 equiv. of Zn(OTf)₂ + ~2 equiv. phenylisocyanate \rightarrow **4**-Zn²⁺. s = residual solvents, w = water, g = grease.

Figure S27. ¹H NMR spectrum (298K, 400 MHz, CDCl₃/CD₃CN 1:1) of 4-Zn²⁺ (2 mM). s: residual solvent, w: water, g = grease.

Figure S28. COSY NMR spectrum (298K, 400 MHz, CDCl₃/CD₃CN 1:1) of 4-Zn²⁺ (2 mM).

Figure S29. Edited HSQC NMR spectrum (298K, 400 MHz, $CDCl_3/CD_3CN 1:1$) of 4-Zn²⁺ (2 mM). The ¹³C NMR spectrum has not been recorded for 4-Zn²⁺.

Figure S30. HMBC NMR spectrum (298K, 400 MHz, $CDCl_3/CD_3CN$ 1:1) of 4-Zn²⁺ (2 mM). The ¹³C NMR spectrum has not been recorded for 4-Zn²⁺.

Competition experiments in CDCl₃/CD₃CN 1:1

Figure S31. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 1:1) of a) **2** (1 mM), b) **2** (1 mM) + 1 equiv. Zn(OTf)₂ \rightarrow **2**-Zn²⁺, c) **3** (1 mM) + 1 equiv. Zn(OTf)₂ \rightarrow **3**-Zn²⁺, d) **2** (1 mM) + **3** (1 mM) + 1 equiv. Zn(OTf)₂ (1 mM) \rightarrow only **3**-Zn²⁺. s = residual solvents, w = water, g = grease. = **3**-Zn²⁺ signals (some of them, of interest) and = free **2**.

Figure S32. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 1:1) of a) **2** (1 mM), b) **2** (1 mM) + 1.6 equiv. HexNH₂ + 1 equiv. Zn(OTf)₂ → HexNH₂⊂**2**-Zn²⁺, c) **2** (1 mM) + 1 equiv. HexNH₂ + 1 equiv. Zn(OTf)₂ + 0.5 equiv. **3** (0.5 mM) → HexNH₂⊂**2**-Zn²⁺ (50%) and **3**-Zn²⁺ (50%), d) **2** (1 mM) + 1 equiv. HexNH₂ + 1 equiv. Zn(OTf)₂ + 1 equiv. **3** (1 mM) → only **3**-Zn²⁺, e) **2** (2 mM) + 1 equiv. HexNH₂ (2 mM) + 0.5 equiv. Zn(OTf)₂ + 0.5 equiv. **3** (1mM) → only **3**-Zn²⁺, f) **3** (1 mM) + 1 equiv. Zn(OTf)₂ → **3**-Zn²⁺ (spectrum for comparison). s = residual solvents, w = water, g = grease. = HexNH₂⊂**2**-Zn²⁺, V = **3**-Zn²⁺ signals (some of them, of interest) and ∇ = free **2**.

Figure S33. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 1:1) of a) **4** (2 mM) + 1 equiv. Zn(OTf)₂ \rightarrow **4**-Zn²⁺, b) **4** (2 mM) + 1 equiv. Zn(OTf)₂ + 1 equiv. **3** \rightarrow **4**-Zn²⁺ (50%) and **3**-Zn²⁺ (50%), c) **3** (1 mM) + 1 equiv. Zn(OTf)₂ \rightarrow **3**-Zn²⁺, d) **3** (1 mM). s = residual solvents, w = water, g = grease. \blacksquare = **4**-Zn²⁺, \square = free **4**, \blacksquare = **3**-Zn²⁺ \square = free **3**.

Characterization of complex 3-Zn²⁺ in D₂O

Figure S34. ¹H NMR spectrum (298K, 400 MHz, D₂O) of 3-Zn²⁺ (5 mM). w: water.

Figure S35. COSY NMR spectrum (298K, 400 MHz, D₂O) of 3-Zn²⁺ (5 mM).

Figure S36. Edited HSQC NMR spectrum (298K, 400 MHz, D₂O) of 3-Zn²⁺ (5 mM).

Figure S37. HMBC spectrum (298K, 400 MHz, D₂O) of 3-Zn²⁺ (5 mM).

Figure S38. ¹H NMR spectra (298 K, 600 MHz, D₂O) of a) **3**-Zn²⁺, b) 1D EXSY spectra (at various mixing times) after selective excitation of the β_{in} signal at -0.57 ppm.

Titrations for the formation of the complexes in D₂O

Figure S39. ¹H NMR spectra (298 K, 400 MHz, D₂O) of a) **3** (1 mM) + ~1 equiv. of $Zn(ClO_4)_2$ at pH = 3–4, b) **3** (1 mM) + ~1 equiv. of $Zn(ClO_4)_2$ + TMAOH (pH = 7.8). * = TMA⁺, w = water.

Figure S40. High field region of ¹H NMR spectra (298 K, 400 MHz, D₂O) of **3** (1 mM) + \sim 1 equiv. of Zn(ClO₄)₂ at various pH, changed by addition of TMAOH/DCl aliquots. At pH 9.2 and 10, a precipitate was observed in the NMR tube.

Figure S41. ¹H NMR spectra (298 K, 400 MHz, D₂O) of a) **3** (1 mM), b) **3** (1 mM) + \sim 0.4 equiv. of Zn(OAc)₂, b) **3** (1 mM) + \sim 1.1 equiv. of Zn(OAc)₂, all in HEPES 10 mM, pH 7.9. * = HEPES signals, w = water.

The formation constants, K_a^{eff} and $K'_a(pH)$, of the complex $3 \cdot 2H^+ - Zn^{2+}$ are defined according to equilibrium (1):

$$3 \cdot 3H^{+} + Zn^{2+} + H_{2}0 \rightleftharpoons 3 \cdot 2H^{+} - Zn^{2+} + H_{3}0^{+}$$
(1)
$$K_{a}^{eff} = \frac{[3 \cdot 2H^{+} - Zn^{2+}][H_{3}0^{+}]}{[Zn^{2+}][3 \cdot 3H^{+}]}$$
and
$$K_{a}'(pH) = \frac{[3 \cdot 2H^{+} - Zn^{2+}]}{[Zn^{2+}][3 \cdot 3H^{+}]}$$

From the two above spectra in Figure S41, the binding affinity $K'_a(7.9)$ can be calculated by integration of the different signals of interests ($\mathbf{3} \cdot 2\mathbf{H}^+ \cdot 2\mathbf{n}^{2+}$, $\mathbf{3} \cdot 3\mathbf{H}^+$ and AcO⁻). The ¹H NMR signals of $\mathbf{3} \cdot 3\mathbf{H}^+$ being rather broad, the experimental error was estimated on a wide range.

Therefore, $K'_a(7.9) = 42900$ and 30700 M^{-1} were determined respectively for spectra b and c. Taking in account the experimental error, we estimated $log K'_a(7.9) = 4.5 \pm 0.3$.

Knowing the pH and therefore $[H_30^+]$, we were able to calculate $K_a^{eff} = 5.4 \cdot 10^{-4}$ and $3.8 \cdot 10^{-4}$. Therefore, $pK_a^{eff} = 3.4 \pm 0.3$ as the pseudo-p K_a of the amino leg.