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1 NMR spectra of the cryptand and the cryptates 
 

1.1 NMR spectrum of the cryptand, Li  

 

 

Figure S1. 1H NMR spectrum of the literature macrocyclic ligand, Li (400 MHz, CDCl3, 298 K), included here for ease of comparison 
with the spectra of the new cryptates.  
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1.2 NMR spectra of the mono-zinc cryptate, [ZnIILi](BF4)2 

  

 

Figure S2. 1H NMR spectrum of [ZnIILi](BF4)2.0.5H2O (500 MHz, CD3CN, 298 K). δ (ppm) =  8.89 (m, 1H, H3), 8.33 (dd, 1H, H8), 8.08 

(tt, 1H, H5), 7.35 (m, 1H, H6), 4.18 (tdd, 1H, H2b), 3.83 (m, 2H, H2a and H9b), 3.24 (m, 3H, H9a H1a and H1b), 2.95 (dd, 1H, H10a), 2.50 

(m, 1H, H10b). 

H3 
H8 

H5 

H6 

H2b 

H2a 
H9b 

H9a, H1a, H1b 

H10a H10b 



S4 
 

 

 

Figure S4. HSQC NMR spectrum of [ZnIILi](BF4)2.0.5H2O (500 MHz, CD3CN, 298 K). 
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Figure S3. 13C NMR spectrum of [ZnIILi](BF4)2.0.5H2O (500 MHz, CD3CN, 298 K). δ = 162.02 (C3), 159.30 (C4), 158.64 (C6), 151.29 

(C7), 130.96 (C5), 127.27 (C8), 59.71 (2), 55.05 (C9), 54.32 (C10), 52.28 (C1). 



S5 
 

 

Figure S5. 1H COSY NMR spectrum of [ZnIILi](BF4)2.0.5H2O (500 MHz, CD3CN, 298 K).  
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1.3 NMR spectra of the heterobimetallic cryptate, [ZnIICuILi](BF4)3 

 
Figure S6. 1H NMR spectrum of [ZnIICuILi](BF4)3 (500 MHz, solvent CD3CN, 298 K):  8.93 (d, 1H, H3), 8.37 (d, 1H, H8), 8.13 (d, 1H, 
H5), 7.40 (s, 1H, H6), 4.23 (t, 1H, H2b), 3.90 (m, 2H, H2a and H9b), 3.34 (t, 1H, H9a ), 3.27 (t, 1H, H1a ), 3.21 (td, 1H, H1b), 3.0 (t, 1H, 
H10a), 2.54 (dd, 1H, H10b). 
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Figure S7. 13C NMR spectrum of [ZnIICuILi](BF4)3 (500 MHz, CD3CN, 298 K). δ (ppm) = 162.02 (C3), 159.30 (C4), 158.64 (C6), 151.29 

(C7), 130.96 (C5), 127.27 (C8), 59.71 (2), 55.05 (C9), 54.32 (C10), 52.28 (C11).  
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Figure S8. HSQC NMR spectrum of [ZnIICuILi](BF4)3 (500 MHz, CD3CN, 298 K). 

 

Figure S9. 1H COSY NMR spectrum of [ZnIICuILi](BF4)3 (500 MHz, CDCl3, 298 K). 
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Figure S10. Stack plot of 1H NMR spectrum of [ZnIILi](BF4)2.0.5H2O (top) and [ZnIILi](BF4)2 (bottom) (400 MHz, CD3CN, 298 K). 
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2 ESI-MS spectra of the cryptates 

2.1 ESI-MS spectrum of the heterobimetallic cryptate, [ZnIICuILi](BF4)3 

  
Figure S11. The ESI-MS of red needles (solvatomorph 1) of [ZnIICuILi](BF4)3. Inset: found (blue) and stimulated (red) spectrum for 

the peaks corresponding to the expansion and fit of the characteristic peaks.  
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Figure S12. The ESI-MS of red blocks (solvatomorph 2) of [ZnIICuILi](BF4)3. Inset: found (blue) and stimulated (red) spectrum for 
the peaks corresponding to the expansion and fit of the characteristic peaks. 
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2.2 ESI-MS spectrum of the mono-zinc cryptate, [ZnIILi](BF4)2 
 

 

 

Figure S13. Top: The ESI-MS of [ZnIILi](BF4)2·0.5H2O with peaks highlighted in yellow. Bottom: found (blue) and stimulated (red) 
spectrum for the peaks corresponding to the expansion and fit of the characteristic peaks. 
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3 X-ray crystallography on the new cryptates 
 

X-ray crystallographic data were collected on an Oxford Diffraction SuperNova diffractometer 

with Atlas CCD, equipped with a Cryostream N2 open-flow cooling device, using mirror 

monochromated micro-focus Cu-Kα (1.54 Å) radiation at 100 K. A complete set of unique 

reflections to a maximum resolution of 0.82 Å was collected. Raw frame data (including data 

reduction, inter-frame scaling, unit cell refinement and absorption corrections) were processed 

using CrysAlis Pro.1 The structure was solved and refined against all F2 data using SHELXL-2014.2 

OLEX23 was used as the interface to visualise the structure during the refinement process. All 

non-H atoms were refined anisotropically unless otherwise stated. Hydrogen atoms were 

inserted at calculated positions with U(H) = 1.2 U (attached atom). High resolution pictures were 

prepared using Mercury4 and POVray5 software.  

 

 

Figure S14. The two different crystals of [ZnIICuILi]3+, red needles (left, solvatomorph 1) and red blocks (right, solvatomorph 2) 
obtained by vapour diffusion of diethyl ether into a MeCN solution of this mixed metal cryptate. 
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3.1 X-ray crystallography of mixed metal cryptate, [ZnIICuILi](BF4)3 

3.1.1 X-ray crystallography of mixed metal cryptate – solvatomorph 1 

 

Crystal data for red needles of [ZnIICuILi](BF4)3⸱ ½MeCN⸱ ½H2O (solvatomorph 1)  

The two whole cryptates in the asymmetric unit were both ‘end-for-end’ disordered (Figure S17): 

in the first cryptate Zn01 and Cu02 are 0.85 occupancy (Zn1 and Cu2 minor occupancy, 0.15) and 

in the second cryptate, Zn04 and Cu3 are 0.55 occupancy (Zn03 and Cu1 minor occupancy, 0.45). 

Consequently, the pyridazine rings of all strands are also somewhat disordered and this too is 

modelled, with the partial occupancy C atoms kept isotropic; FLAT, ISOR, and EADP were used to 

restrain the atoms in the disordered pyridazine rings.  
 

 

Figure S15. Perspective view of the asymmetric unit of the red needles of [ZnIICuILi](BF4)3⸱½MeCN⸱½H2O (solvatomorph 1) 
showing only the major occupancy form of the two independent cryptates, plus the 6 independent counter ions (BF4), 1 MeCN 
and 1 H2O in the asymmetric unit. For clarity, H atoms not shown. 
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Table S1 Crystal data and structure refinement details for the red needles, [Zn IICuILi](BF4)3⸱½MeCN⸱½H2O 

(solvatomorph 1) 

 

 ([ZnIICuILi](BF4)3)2H2OCH3CN 

Empirical formula C62H77B6Cu2F24N29OZn2 (two indpt dinuclear cryptates) 

Formula weight 2023.20  (two indpt dinuclear cryptates, so halve this) 

Temperature/K 100.00(10) 

Crystal system monoclinic 

Space group P21/n 

a/Å 12.44760(10) 

b/Å 26.5877(2) 

c/Å 24.0965(2) 

α/° 90 

β/° 96.2500(10) 

γ/° 90 

Volume/Å3 7927.41(11) 

Z 4 (8 cryptates per unit cell) 

ρcalcg/cm3 1.695 

μ/mm-1 2.354 

F(000) 4096 

Crystal size/mm3 0.821 × 0.081 × 0.072 

Radiation Cu Kα (λ = 1.54184) 

2θ range for data collection/° 7.382 to 145.768 

Index ranges -15 ≤ h ≤ 13, -32 ≤ k ≤ 32, -29 ≤ l ≤ 29 

Reflections collected 73000 

Independent reflections 15528 [Rint = 0.0636, Rsigma = 0.0348] 

Data/restraints/parameters 15528/21/1209 

Goodness-of-fit on F2 1.147 

Final R indexes [I>=2σ (I)] R1 = 0.0850, wR2 = 0.1903 

Final R indexes [all data] R1 = 0.0913, wR2 = 0.1941 

Largest diff. peak/hole / e Å-3 0.89/-1.07 
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Table S2 Selected bond lengths [Å] and angles (°) for major occupancy form of red needles, [ZnIICuILi](BF4)3⸱ ½MeCN⸱ ½H2O 
(solvatomorph 1) for each of the two cryptates in the asymmetric unit. 

 

 

  

Cryptate 1  Cryptate 2 

Bond Length [Å]  Bond Length [Å] 

Zn01-N5 2.110 (4)  Zn04-N24 2.127 (5) 

Zn01-N9 2.138 (4)  Zn04-N17 2.138 (4) 

Zn01-N13 2.150 (4)  Zn04-N25 2.147 (4) 

Zn01-N8 2.165 (3)  Zn04-N16 2.152 (5) 

Zn01-N12 2.187 (3)  Zn04-N20 2.156 (5) 

Zn01-N4 2.263 (3) 

 

 Zn04-N21 2.175 (4) 

Cu02-N2 1.988 (5)  Cu3-N27 1.970 (5) 

Cu02-N6 2.021 (4)  Cu3-N23 1.998 (5) 

Cu02-N10 2.032 (4)  Cu3-N19 2.017 (5) 

Cu02-N1 2.321 (4)  Cu3-N8 2.380 (5) 

Zn01-Cu02 5.098 (2)   Zn04-Cu3 4.969 (3) 

Bond Angle [°]  Bond Angle [°] 

Bond Angle [°] 
N5-Zn01-N9 101.63(17)  N16-Zn04-N20 99.56(18) 

N5-Zn01-N13 107.99(17)  N16-Zn04-N21 93.8(2) 

N5-Zn01-N12 97.58(15)  N24-Zn04-N16 107.53(18) 

N5-Zn01-N8 153.67(17)  N24-Zn04-N20 105.48(18) 

N5-Zn01-N4 73.65(14)  N24-Zn04-N21 157.9(2) 

N9-Zn01-N13 104.86(17)  N24-Zn04-N25 75.28(17) 

N9-Zn01-N12 159.94(16)  N24-Zn04-N17 97.0(2) 

N9-Zn01-N8 74.24(14)  N20-Zn04-N21 75.48(18) 

N9-Zn01-N4 92.50(16)  N25-Zn04-N16 161.8(2) 

N13-Zn01-N12 74.19(15)  N25-Zn04-N20 96.8(2) 

N13-Zn01-N8 98.10(15)  N25-Zn04-N21 82.7(2) 

N13-Zn01-N4 161.58(16)  N17-Zn04-N16 76.15(19) 

N12-Zn01-N4 87.40(12)  N17-Zn04-N20 157.3(2) 

N8-Zn01-N12 85.98(12)  N17-Zn04-N21 82.5(2) 

N8-Zn01-N4 80.49(12)  N17-Zn04-N25 85.7(2) 

N6-Cu02-N10 114.74(18)  N27-Cu3-N23 122.8(2) 

N6-Cu02-N1 81.78(15)  N27-Cu3-N19 116.0(2) 

N10-Cu02-N1 80.12(16)  N27-Cu3-N28 80.17(17) 

N2-Cu02-N6 115.66(18)  N23-Cu3-N19 112.1(2) 

N2-Cu02-N10 122.99(18)  N23-Cu3-N28 80.48(17) 

N2-Cu02-N1 82.32(17)  N19-Cu3-N28 78.85(17) 
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3.1.2 X-ray crystallography of mixed metal cryptate – solvatomorph 2 

 

Crystal data for red blocks of [ZnIICuILi](BF4)3(solvatomorph 2)  

No solvent of crystallisation in this solvatomorph. As for solvatomorph 1, the mixed metal 

cryptate in the asymmetric unit showed ‘end-for-end’ disorder (Figure S17): Zn1 and Cu1 are 0.80 

occupancy (Zn2 and Cu2 minor occupancy, 0.20).  Consequently, the pyridazine rings of all strands 

are also disordered and this too is modelled, with the partial occupancy C atoms kept isotropic; 

FLAT and ISOR were used to restrain the atoms in the disordered pyridazine rings. 

 

 

Figure S16. Perspective view of only the major occupancy form of the cryptate in the asymmetric unit for the red blocks of 
[ZnIICuILi](BF4)3 (solvatomorph 2).  
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Table S3 Crystal data and structure refinement details for the red blocks, [ZnIICuILi](BF4)3 (solvatomorph 2). 

 [ZnIICuILi](BF4)3 

Empirical formula C30H36B3CuF12N14Zn 

Formula weight 982.07 

Temperature/K 100.01(10) 

Crystal system monoclinic 

Space group P21/n 

a/Å 14.2639(4) 

b/Å 14.9629(3) 

c/Å 18.6926(6) 

α/° 90 

β/° 109.360(4) 

γ/° 90 

Volume/Å3 3764.0(2) 

Z 4 

ρcalcg/cm3 1.733 

μ/mm-1 2.445 

F(000) 1984 

Crystal size/mm3 0.26 × 0.226 × 0.16 

Radiation Cu Kα (λ = 1.54184) 

2Θ range for data collection/° 7.748 to 145.298 

Index ranges -17 ≤ h ≤ 17, -17 ≤ k ≤ 18, -23 ≤ l ≤ 22 

Reflections collected 34554 

Independent reflections 7378 [Rint = 0.0422, Rsigma = 0.0326] 

Data/restraints/parameters 7378/19/663 

Goodness-of-fit on F2 1.136 

Final R indexes [I>=2σ (I)] R1 = 0.0601, wR2 = 0.1421 

Final R indexes [all data] R1 = 0.0789, wR2 = 0.1513 

Largest diff. peak/hole / e Å-3 1.19/-0.48 
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Table S4 Selected bond lengths [Å] and angles (°) for the major occupancy form of the cryptate in the red needles of 
[ZnIICuILi](BF4)3 (solvatomorph 2). 

Bond Length [Å] 

Zn1-N5 2.117 (3) 

Zn1-N7 2.160 (4) 

Zn1-N14 2.204 (4) 

Zn1-N8 2.205 (4) 

Zn1-N4 2.219 (4) 

Zn1-N13 2.280 (4) 

Cu1-N2 1.988 (4) 

Cu1-N11 1.990 (4) 

Cu1-N10 2.001 (4) 

Cu1-N1 2.355 (3) 

Zn1-Cu1 5.115 (14) 

Bond Angle [°] 

N5-Zn1-N14 101.25(13) 

N5-Zn1-N7 105.21(14) 

N5-Zn1-N4 74.94(14) 

N5-Zn1-N8 103.66(14) 

N5-Zn1-N13 159.87(16) 

N14-Zn1-N4 100.94(16) 

N14-Zn1-N13 73.54(14) 

N7-Zn1-N14 97.32(14) 

N7-Zn1-N4 161.35(16) 

N7-Zn1-N8 75.51(15) 

N7-Zn1-N13 94.81(15) 

N4-Zn1-N13 86.82(16) 

N8-Zn1-N14 155.09(14) 

N8-Zn1-N4 86.27(17) 

N8-Zn1-N13 83.20(15) 

N11-Cu1-N10 117.30(15) 

N11-Cu1-N1 81.14(13) 

N10-Cu1-N1 80.99(14) 

N2-Cu1-N11 120.49(16) 

N2-Cu1-N10 114.85(15) 

N2-Cu1-N1 80.58(13) 
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Figure S17. The “end-for-end” disorder, major occupancy (orange) and minor occupancy (light blue), observed in both crystal 
structures of [ZnIICuILi]3+.  

 

3.2 X-ray crystallography of mono-zinc cryptate, [ZnIILi](BF4)2 

 

 

 

Figure S18.  The clear pale blocks of [ZnIILi]2+, obtained by vapour diffusion of diethyl ether into a MeCN solution of cryptate. 
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Figure S19. Perspective view of the asymmetric unit of [ZnIILi](BF4)2, containing two cryptates and four counter ions.  
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Table S5 Crystal data and structure refinement details for [ZnIILi](BF4)2 

 [ZnIILi](BF4)2 

Empirical formula C30H36B2F8N14Zn 

Formula weight 831.72 

Temperature/K 100.01(10) 

Crystal system triclinic 

Space group P-1 

a/Å 9.5340(2) 

b/Å 13.1923(4) 

c/Å 28.9592(6) 

α/° 85.359(2) 

β/° 87.624(2) 

γ/° 76.780(2) 

Volume/Å3 3533.21(15) 

Z 4 

ρcalcg/cm3 1.564 

μ/mm-1 1.755 

F(000) 1704 

Crystal size/mm3 0.231 × 0.201 × 0.177 

Radiation Cu Kα (λ = 1.54184) 

2θ range for data collection/° 6.902 to 145.844 

Index ranges -11 ≤ h ≤ 11, -16 ≤ k ≤ 16, -33 ≤ l ≤ 35 

Reflections collected 52456 

Independent reflections 13811 [Rint = 0.0279, Rsigma = 0.0218] 

Data/restraints/parameters 13811/0/992 

Goodness-of-fit on F2 1.207 

Final R indexes [I>=2σ (I)] R1 = 0.0611, wR2 = 0.1526 

Final R indexes [all data] R1 = 0.0650, wR2 = 0.1544 

Largest diff. peak/hole / e Å-3 0.82/-0.50 

 

 

Crystal data for [ZnIILi](BF4)2 

PLATON indicated the presence of twinning so the suggested TWIN -1 0 0 0 -1 0 0 0 1 and 

BASF 0.09 commands were used to model this.  
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Table S6 Selected bond lengths [Å] and angles (°) for two of the [ZnIILi](BF4)2
 (Cryptate A and B) in the asymmetric unit. 

Cryptate A Cryptate B 

Bond Length [Å]  Bond Length [Å] 

Zn01-N00T 2.089 (4)  Zn02-N00X 2.085 (4) 

Zn01-N00O 2.095 (4)  Zn02-N00H 2.087 (4) 

Zn01-N00Z 2.100 (4)  Zn02-N00R 2.106 (4) 

Zn01-N00J 2.303 (4)  Zn02-N00L 2.295 (4) 

Zn01-N00Y 2.322 (4)  Zn02-N00V 2.389 (4) 

Zn01-N00I 2.362 (4) 

 

 

 

 

 

 

 

 

 

 Zn02-N00Q 2.441 (4) 

Bond Angle [°]  Bond Angle [°] 

N00J-Zn01-N00I 78.71(12)  N00H-Zn02-N00L 92.56(13) 

N00J-Zn01-N00U 78.61(12)  N00H-Zn02-N00Q 72.03(13) 

N00O-Zn01-N00I 93.02(12)  N00H-Zn02-N00R 111.22(14) 

N00O-Zn01-N00J 151.99(13)  N00H-Zn02-N00V 148.79(13) 

N00O-Zn01-N00U 73.54(13)  N00L-Zn02-N00Q 78.27(12) 

N00O-Zn01-N00Z 109.56(13)  N00L-Zn02-N00V 77.60(12) 

N00T-Zn01-N00I 72.87(13)  N00R-Zn02-N00L 74.38(13) 

N00T-Zn01-N00J 92.07(13)  N00R-Zn02-N00Q 152.55(13) 

N00T-Zn01-N00O 111.20(14)  N00R-Zn02-N00V 94.75(13) 

N00T-Zn01-N00U 151.78(13)  N00V-Zn02-N00Q 76.96(12) 

N00T-Zn01-N00Z 110.88(14)  N00X-Zn02-N00H 111.02(14) 

N00U-Zn01-N00I 79.17(12)  N00X-Zn02-N00L 150.00(13) 

N00Z-Zn01-N00I 152.64(13)  N00X-Zn02-N00Q 91.26(13) 

N00Z-Zn01-N00J 74.12(13)  N00X-Zn02-N00R 111.45(14) 

N00Z-Zn01-N00U 92.29(13)  N00X-Zn02-N00V 72.64(13) 
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4 Electrochemistry and electrocatalytic HER  

4.1 General electrochemistry details 

 

General method: All electrochemical measurements were carried out in a three neck H-shaped 

electrochemical (Figure S19) cell under an argon atmosphere (all solutions were purged with Ar for 20-30 

min prior to study), using an IVIUMSATT.XRE potentiostat, a glassy carbon (3 mm diameter, surface area = 

0.071 cm2) as the working electrode, 0.01 M AgNO3/Ag as the reference electrode, platinum sheet as the 

counter electrode. The working electrode compartment was filled with 8 mL of 0.1 M Bu4NPF6 acetonitrile 

solution, and the rest of the “H” was filled with ca. 10 mL of 0.1 M Bu4NPF6 acetonitrile solution. 

Ferrocene was used as an internal reference check.  

Acetonitrile was freshly distilled over calcium hydride. Bu4NPF6 (99 %, for electrochemical analysis) was 

purchased from Sigma Aldrich and used without further purification.  

The working electrode was cleaned before each measurement by: rinsing with water and acetone, then 

polishing with alumina slurry, and finally rinsing with acetone and drying.  

The three neck H-shaped electrochemical cell and Pt counter electrode were carefully cleaned and dried 

between studies as follows: filled and soaked in hydrochloric acid (1 hour), rinsed thoroughly with 

copious water, filled and soaked in water (2 hours), rinsed with water, acetonitrile and acetone, soaked in 

dry MeCN for 24 hours, emptied and dried in an oven overnight before use.  

Cyclic Voltammetry (CV): CVs where carried out on 1 mM, 8 mL acetonitrile solutions of cryptates or the 

salt CuI(MeCN)4(BF4), and 0.1 M Bu4NPF6
 electrolyte. An internal reference check to the 

ferrocene/ferrocenium cation couple (Fc+/0) was carried out at the conclusion of every study, and was 

consistently observed at E1/2 = 0.09 ± 0.01 V, with ΔE = 0.09 V, vs 0.01 M AgNO3/Ag. Prior to each study, 

the purity of the electrolyte and solvent and the cleanliness of the cell setup was first checked by 

recording the CV from 0 to 2.0 to -2.0 to 0 V to confirm negligible background current was observed, 

before adding the respective copper complex and commencing the study. 

Controlled Potential Electrolysis (CPE): CPE measurements were conducted using same cell described 

above, but in this case the working compartment was filled with 8 mL of 0.1 M Bu4NPF6 acetonitrile 

solution containing the specified amount of acid (0.08 M unless otherwise stated) and 1 mM in the 

copper complex. The remainder of the ‘H’ was filled with ca. 10 mL of 0.1 M Bu4NPF6 acetonitrile solution. 

Glassy carbon electrode (0.071 cm2) and the 0.01 M AgNO3/Ag reference electrode were placed into the 

working compartment, and the Pt sheet counter electrode was placed in the auxiliary compartment. The 

reported, very modest, TON values were calculated assuming that the Faradaic efficiency (FE) is 100%. - 

the observed activity was insufficient to warrant additional, offsite, electrochemical studies with a gas 

chromatograph attached to quantify the hydrogen evolved and determine the FE. 

Additional reference electrode checks: The check was done by taking the reference electrode out, rinsing 

it and placing it into a separate electrochemical cell containing 1 mM ferrocene in the same electrolyte 

solution and running the CV. These checks on the reference electrode, before and after CVs and CPE 

experiments on cryptates with acid present, showed that no drift was observed during these 

experiments, as E1/2(Fc+/Fc) = 0.09 ± 0.01 V vs 0.01 M AgNO3/Ag, with ΔE = 0.09 ± 0.01 V, in all cases 

(Figure S21). 
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Figure S20. Schematic representation of the electrochemical H-cell used for experiments. 

 

 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-20

-10

0

10

20

30

C
u

rr
e

n
t 

(µ
A

)

Potential vs 0.01 M AgNO3/Ag (V)

 Fc before

 Fc after

 

Figure S21. Exemplar of the before and after reference checks showing there is no drift before and after collecting CVs and CPE 
experiments: E1/2(Fc+/Fc) = 0.09 ± 0.01 V vs 0.01 M AgNO3/Ag, with ΔE = 0.09 ± 0.01 V. Conditions: 0.1 M (Bu4N)PF6, 3 mm glassy 
carbon working (A = 0.071 cm2) and Pt counter electrode, 100 mV/s.  
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4.2 Cyclic voltammetry of cryptates; scan rate studies  

 

Figure S22. CV’s from 0→-1.9→0 V, at varying scan rates, for 1 mM MeCN solution of [ZnIICuILi]3+, and plots of cathodic peak 

current versus the square root of the scan rate (𝝊𝟏/𝟐) for the 3 redox events at Epc = -1.29 V (diffusion coefficient (D) = 1.52 × 10-8 
cm2 s-1), Epc = -1.54 V (D = 1.94 × 10-8 cm2 s-1), and Epc = -1.84 V (D = 3.64 ×10-8 cm2 s-1).  
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Figure S23. CV’s from 0→-1.9→0 V, at varying scan rates, for 1 mM MeCN solution of [ZnIILi]2+, and and plots of cathodic peak 

current versus the square root of the scan rate (𝝊𝟏/𝟐) for the 4 redox events at Epc = -1.28 V (Diffusion coefficient, (D) = 9.04 × 10-

9 cm2 s-1), Epc = -1.45 V (D = 1.08 × 10-8 cm2 s-1), Epc = -1.54 V (D = 1.69 × 10-8 cm2 s-1), and Epc = -1.82 V (D = 2.76 × 10-8 cm2 s-1). 
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Figure S24. CV’s from 0→0.7→-1.9→0 V, at varying scan rates, for 1 mM MeCN solution of [CuIICuILi]3+, and and plots of cathodic 

peak current versus the square root of the scan rate (𝝊𝟏/𝟐) for the 4 redox events at Epc = -0.34 V (Diffusion coefficient, (D) = 9.75 
× 10-9 cm2 s-1), Epc = -1.29 V (D = 1.07 × 10-8  cm2 s-1), Epc = -1.52 V (D = 1.94 × 10-8cm2 s-1), and Epc = -1.77 V (D = 1.67 × 10-8cm2 s-1). 
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Figure S25. CV’s from 0→-1.9→0 V, at varying scan rates, for 1 mM MeCN solution of [CuIILi]2+ and and plots of cathodic peak 

current versus the square root of the scan rate (𝝊𝟏/𝟐) for the redox event at Epc = -0.40 V (Diffusion coefficient, (D) = 1.92 × 10-8 
cm2 s-1). 
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Figure S26. CV’s from 0→-1.9→0 V, at varying scan rates, for 1 mM MeCN solution of [CoIICuILi]3+, and and plots of cathodic peak 

current versus the square root of the scan rate (𝝊𝟏/𝟐) for the 4 redox events at Epc = -1.11 V (Diffusion coefficient, (D) = 1.67 × 10-

8 cm2 s-1), Epc = -1.46 V (D = 1.25 × 10-8 cm2 s-1), Epc = -1.59 V (D = 2.37 × 10-8 cm2 s-1), and Epc = -1.76 V (D = 3.03 × 10-8 cm2 s-1). 
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Figure S27. CV’s from 0→-1.9→0 V, at varying scan rates, for 1 mM MeCN solution of [CoIILi]2+, and and plots of cathodic peak 

current versus the square root of the scan rate (𝝊𝟏/𝟐) for the 3 redox events at Epc = -1.18 V (Diffusion coefficient, (D) = 3.23 × 10-

8 cm2 s-1), Epc = -1.63 V (D = 2.68 × 10-8 cm2 s-1), and Epc = -1.78 V (D = 3.10 × 10-8 cm2 s-1). 
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Figure S28. CV’s from 0→-1.9→0 V, at varying scan rates, for 1 mM MeCN solution of [FeIICuILi]3+, and and plots of cathodic peak 

current versus the square root of the scan rate (𝝊𝟏/𝟐) for the 3 redox events at Epc = -1.08 V (Diffusion coefficient, (D) = 1.34 ×10-8 
cm2 s-1), Epc = -1.28 V (D = 1.94 × 10-8 cm2 s-1), and Epc = -1.56 V (D = 2.89 × 10-8 cm2 s-1). 
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Figure S29. CV’s from 0→-1.9→0 V, at varying scan rates, for 1 mM MeCN solution of [FeIILi]3+, and and plots of cathodic peak 

current versus the square root of the scan rate (𝝊𝟏/𝟐) for the 2 redox events at Epc = -1.15 V (Diffusion coefficient, (D) = 3.95 × 10-

9 cm2 s-1), Epc = -1.45 V (Diffusion coefficient, (D) = 6.24 × 10-9 cm2 s-1). 
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4.2.1 Table comparing the E1/2
 values obtained herein for the 6 literature cryptates with 

those previously reported in the literature.  

 

Table S7  Summary of electrochemical processes at negative potentials (at 100 mVs-1 vs 0.01 M AgNO3/Ag) for the cryptates, 
comparing the data obtained herein (bold black; obtained from analysis of scans from 0 V to the negative limit and back to 0 V) 
with those reported previously (black; obtained from analysis of scans from 0 V to negative limit then to positive limit and back to 
0 V) for the 6 literature cryptates (only [ZnIICuILi]3+ and [ZnIILi]2+ are new).6-8 Note: E½(Fc/Fc+) = 0.09 ± 0.01 V with ΔE = 0.09 V in 
the H-cell used herein.  

 

[a] IR = irreversible so the value provided is Epc; R = reversible; QR = quasi-reversible based using ΔE(Fc+/Fc) = 0.09 V as the standard for a 

reversible process in the cell used herein. [b] not reported in literature CV, but was scanned over a different range. 

  

Cryptates  E1/2 (ΔE)[a] (V) 

[ZnIILi]2+ This work -1.18IR        1.25 (0.07)QR        -1.41 (0.07)QR        -1.50 (0.07)QR         -1.75 (0.09) QR 

 Literature N/A (new cryptate) 

[CuIILi]2+ This work -0.34 (0.09)R         -1.39 (0.11) 

 Literature -0.38 (0.08)          -1.37QR 

[CoIILi]2+ This work -1.14 (0.08)QR      -1.58 (0.10)R      -1.72 (0.11)R  

 Literature -1.14 (0.07)         -1.56 (0.08)        -1.71QR 

[FeIILi]2+ This work -1.11 (0.08)R        -1.40 (0.09)R       -1.84 (0.13)QR 

 Literature -1.13 (0.07)         -1.42 (0.07)         -1.87 (0.11)QR 

[ZnIICuILi]3+ This work -1.05IR      -1.24 (0.10)R      -1.49 (0.09)R      -1.79 (0.10)R 

 Literature N/A (new cryptate) 

[CuIICuILi]3+ This work -0.32 (0.10)R      -1.08 (0.05)    -1.24 (0.10)R          -1.43 (0.17)QR        -1.92 (0.12)QR 

 Literature -0.34 (0.08)          [b]                    -1.27QR                -1.44QR                    -1.98QR 

[CoIICuILi]3+re This work -0.95 (0.17)          -1.14 (0.08)QR              -1.42 (0.08)OR        -1.56 (0.08)OR      -1.71 (0.10)   

 Literature -0.88 (0.06)QR      -1.15 (0.07)QR               -1.41 (0.10)QR      -1.55 (0.08)QR      [b] 

[FeIICuILi]3+ This work -1.04 (0.08)R         -1.25(0.09)R         -1.54 (0.10)R            -1.84QR 

 Literature -1.07 (0.09)          -1.27 (0.07)          -1.55 (0.07)             -1.89QR 
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4.2.2 Diffusion coefficient calculations 

 

To calculate the diffusion coefficient, D, the Randles–Sevcik equation9 is: 

𝑖𝑝     = 0.4463𝑛𝐹𝐴𝐶0 (
𝑛𝐹𝜐𝐷

𝑅𝑇
)

1

2
                           (1) 

 

Where 

𝑖𝑝 is the peak current (A), 

𝑛 is number of electrons transferred, 

𝐴  is electrode surface area (cm2),  

𝐶0 is analyte concentration (mol cm-3),  

υ is scan rate (V/s),  

𝐷 is diffusion coefficient (cm2 s-1),  

𝐹 is Faraday’s constant (C mol-1),  

R is gas constant (J K-1 mol-1) and  

𝑇 is temperature (K). 

 

Rearranging eqn 1 slightly gives: 

𝑖𝑝   = [0.4463𝑛𝐹𝐴𝐶0 (
𝑛𝐹𝐷

𝑅𝑇
)

1/2

] 𝜐
1
2                            

So the slope of a plot of 𝑖𝑝versus 𝜐
1

2      is given by: 

𝑠𝑙𝑜𝑝𝑒  = 0.4463𝑛𝐹𝐴𝐶0 (
𝑛𝐹𝐷

𝑅𝑇
)

1

2
   (2) 

Enabling easy calculation of D the diffusion coefficient from the slope by rearranging eqn 2: 

𝐷 = (
𝑠𝑙𝑜𝑝𝑒

0.4463𝑛𝐹𝐴𝐶0
)

2 𝑅𝑇

𝑛𝐹
 

Then substituting 𝑛 = 1, 𝐴 = 0.071 cm2, 𝐶0 = 1x10-6 (mol cm-3), 𝐹 = 96,485 (C mol-1), R = 8.314(J K-

1 mol-1 and 𝑇 = 293 K: 

𝐷 = 2700(𝑠𝑙𝑜𝑝𝑒)2  cm2s-1 
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Table S8 Diffusion coefficients (D, cm2s-1) calculated using Randles–Sevcik equation9, 10 (previous section), from the slopes in the 
plots of square root of scan rate vs peak cathodic current (Figure S23-S29) at each Epc noted for each of the cryptates.  

 Heterobinuclear cryptates  

 

Mononuclear cryptates  

 [ZnIICuILi]3+ [ZnIILi]2+ 

Epc(V) -1.29 -1.54 -1.84  -1.28 -1.45 -1.54 -1.82 

D, cm2s-1 1.52 × 10-8 1.94 × 10-8 3.64 × 10-8  9.04 × 10-9 1.08 × 10-8 1.69 × 10-8 2.76 × 10-8 

 

[FeIICuILi]3+ [FeIILi]2+ 

Epc (V) -1.08 -1.28 -1.56  -1.15 -1.45   

D, cm2s-1 1.34 ×10-8 1.94 × 10-8 2.89 × 10-8  3.95 × 10-9 6.24 × 10-9   

 

[CoIICuILi]3+ [CoIILi]2+ 

Epc (V) -1.11 -1.46 -1.59 -1.76 -1.18 -1.63 -1.78  

D, cm2s-1 1.67 × 10-8 1.25 × 10-8 2.37 × 10-8 3.03 × 10-8 3.23 × 10-8 2.68 × 10-8 3.10 × 10-8  

 

[CuIICuILi]3+ [CuIILi]2+ 

Epc (V) -0.34 -1.29 -1.52 -1.77 -0.40    

D, cm2s-1 9.75 × 10-9 1.07 × 10-8  1.94 × 10-8    1.67 × 10-

8 

1.92 × 10-8    
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4.3 CVs with successive additions of acetic acid 
 

 
Figure S30. CVs, 0 → −2.0 ± 0.2 → 0 V vs. 0.01 M AgNO3/Ag, for a 1 mM MeCN solution of [ZnIICuILi]3+ (top left), [CuIICuILi]3+ (top 
right), [FeIICuILi]3+ (bottom left), and [CoIICuILi]3+ (bottom right) all with successive additions of 10 or 20 equivalents of acetic acid, 
up to a total of 80 equivalents = 80 mM, with increasing [acid] leading to increasing catalytic wave currents. Conditions: 0.1 M 
(NBu4)PF6, glassy carbon working electrode (d = 3 mm, A = 0.071 cm2), scan rate 100 mVs−1. 
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Figure S31. CVs, 0 → −2.0 ± 0.2 → 0 V vs. 0.01 M AgNO3/Ag, for a 1 mM MeCN solution of [ZnIILi]2+ (top left), [CuIILi]2+(top right), 
[FeIILi]2+ (bottom left), and [CoIILi]2+ (bottom right) all with successive additions of 10 or 20 equivalents of acetic acid, up to a total 
of 80 equivalents = 80 mM, with increasing [acid] leading to increasing catalytic wave currents. Conditions: 0.1 M (NBu4)PF6, 
glassy carbon working electrode (d = 3 mm, A = 0.071 cm2), scan rate 100 mVs−1. 
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4.4 Controlled potential electrolysis of cryptates and controls, at -1.6 V, and rinse tests 
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Figure S32. Controlled potential electrolysis (CPE) at −1.60 V of an 8 mL solution of 80 mM acetic acid in the presence of 1 mM of  
[ZnIILi]2+ (green), [CuIILi]2+ (navy blue), [FeIILi]2+ (orange), and [CoIILi]2+ (red). 
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Figure S33. Multiple CPE experiments at −1.60 V on an 8 mL solution of 80 mM acetic acid in the presence of 1 mM of [FeIICuILi]3+ 
showing similar activity (left), with pictures on top showing the deposits on the working electrode after 2 hours of CPE. (Right) 
The plot providing total charge transferred and TON for each CPE experiment. Conditions: 0.1 M (NBu4)PF6, glassy carbon 
working electrode (d = 3 mm, A = 0.071 cm2), scan rate 100 mVs−1. 
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Figure S34. Two rinse test CPE experiments for [FeIICuILi]3+  at −1.60 V in presence of 80 mM acetic acid in 0.1 M (NBu4)PF6 
solution (left), with pictures on top showing the deposits on the working electrode after 2 hours of the rinse test. (Right) The plot 
providing total charge transferred and TON for each rinse test. Conditions: glassy carbon working electrode (d = 3 mm, A = 0.071 
cm2), scan rate 100 mVs−1.  
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Figure S35. Multiple CPE experiments at −1.60 V on an 8 mL solution of 80 mM acetic acid in the presence of 1 mM of [CoIICuILi]3+ 
with two runs (run 1 and run 2) showing similar activity and run 3 showing slightly higher activity but within the experimental 
errors (left), with pictures on top showing the deposits on the working electrode after 2 hours of CPE. (Right) The plot providing 
total charge transferred and TON for each CPE experiment. Conditions: 0.1 M (NBu4)PF6, glassy carbon working electrode (d = 3 
mm, A = 0.071 cm2), scan rate 100 mVs−1. 
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Figure S36. Two rinse test CPE experiments for [CoIICuILi]3+ at −1.60 V in presence of 80 mM acetic acid in 0.1 M (NBu4)PF6 
solution (left), with pictures on top showing the deposits on the working electrode after 2 hours of the rinse test. (Right) The plot 
providing total charge transferred and TON for each rinse test. Conditions: glassy carbon working electrode (d = 3 mm, A = 0.071 
cm2), scan rate 100 mVs−1. 
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Figure S37. Multiple CPE experiments at −1.60 V on an 8 mL solution of 80 mM acetic acid in the presence of 1 mM of [ZnIICuILi]3+ 
showing similar activity within experimental errors (left), with pictures on top showing the deposits on the working electrode 
after 2 hours of CPE. (Right) The plot providing total charge transferred and TON for each CPE experiment. Conditions: 0.1 M 
(NBu4)PF6, glassy carbon working electrode (d = 3 mm, A = 0.071 cm2), scan rate 100 mVs−1. 
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Figure S38. Two rinse test CPE experiments for [ZnIICuILi]3+ at −1.60 V in presence of 80 mM acetic acid in 0.1 M (NBu4)PF6 
solution (left), with pictures on top showing the deposits on the working electrode after 2 hours of the rinse test. (Right) The plot 
providing total charge transferred and TON for each rinse test. Conditions: glassy carbon working electrode (d = 3 mm, A = 0.071 
cm2), scan rate 100 mVs−1. 
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Figure S39. Multiple CPE experiments at −1.60 V on an 8 mL solution of 80 mM acetic acid in the presence of 1 mM of [CuIICuILi]3+ 
showing similar activity within experimental errors (left), with pictures on top showing the deposits on the working electrode 
after 2 hours of CPE. (Right) The plot providing total charge transferred and TON for each CPE experiment. Conditions: 0.1 M 
(NBu4)PF6, glassy carbon working electrode (d = 3 mm, A = 0.071 cm2), scan rate 100 mVs−1. 
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Figure S40. Two rinse test CPE experiments for [CuIICuILi]3+ at −1.60 V in presence of 80 mM acetic acid in 0.1 M (NBu4)PF6 
solution (left), with pictures on top showing the deposits on the working electrode after 2 hours of the rinse test. (Right) The plot 
providing total charge transferred and TON for each rinse test. Conditions: glassy carbon working electrode (d = 3 mm, A = 0.071 
cm2), scan rate 100 mVs−1. 
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Figure S41. The averaged CPE data (see above Figures for individual runs) at -1.60 V of an 8 mL solution of 80 mM acetic acid in 
the presence of 1 mM of [FeIICuILi]3+ (navy blue), [CoIICuILi]3+ (green), [ZnIICuILi]3+ (red), and [CuIICuILi]3+ orange). 
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Figure S42. CV, 0→ 2.0→ -2.0→ 0 V vs 0.01 M AgNO3/Ag, for a 1 mM MeCN solution of CuI(MeCN)4BF4 (red)  and background 
(black). Conditions: 0.1 M (NBu4)PF6, glassy carbon working electrode (d = 3 mm, A = 0.071 cm2 ), scan rate 100 mVs -1.  
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Figure S43. CVs, 0→ -2.3→ 0 V vs 0.01 M AgNO3/Ag, for a 1 mM MeCN solution of CuI(MeCN)4BF4, with successive additions of 
10 or 20 equivalents of acetic acid (see key), up to a total of 80 equivalents = 80 mM. Conditions: 0.1 M (NBu4)PF6, glassy carbon 
working electrode (d = 3 mm, A = 0.071 cm2 ), scan rate 100 mVs-1. 
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Figure S44. (Left) Multiple CPE experiments at −1.60 V on an 8 mL solution of 80 mM acetic acid in the presence of 1 mM of 
[CuI(MeCN)4BF4] over 2 hours showing similar activity within experimental errors. (Right) The plot providing total charge 
transferred and TON for each CPE experiment. Conditions: 0.1 M (NBu4)PF6, glassy carbon working electrode (d = 3 mm, A = 
0.071 cm2), scan rate 100 mVs−1.  
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4.5  Repeat of CVs and CPE on literature complex [CuIILEt](BF4); pretreatment of electrode  

 

Given [CuIILEt](BF4) has been studied in depth as an HER electrocatalyst,11, 12 it was used as 

a reference compound for the present study. But when the CV of [CuIILEt](BF4) was carried 

out to test that the new sample of this literature complex13 was pure, an additional bump 

was persistent in the CV (Figure S45, dark blue curve), regardless of our confidence in the 

purity of the sample. The ‘bump’ reduced in size on subsequent scans (Figure S45, other 

curves), becoming negligible by about the 5th cycle (Figure S45, red curve) but this was 

unsatisfactory. 

 

Hence the working electrode was instead pre-treated, to remove any adsorbed species, 

as recommended by Dempsey and co-workers.10 This involved first running five CVs with 

the glassy carbon electrode in a blank electrolyte solution, 0→ 2.0→ -2.0→ 0 V vs 0.01 M 

AgNO3/Ag (Figure S46).   

 

Only after doing that was the working electrode used to obtain CVs in the working 

solution of the complex of interest, in this case [Cu IILEt]BF4, which resulted in the desired 

outcome, a CV with no ‘bump’ present (Figure S47, orange curve).   

 

This study highlights the importance of pre-treating the electrode, as recommended by 

Dempsey and co-workers,10 before running electrochemistry experiments.  

 

CPE runs on this literature [CuIILEt](BF4) complex were also repeated herein, as this 

complex provides a useful reference system for the present studies. Lower HER activity 

than that reported (7.3 C, and TON2h = 4.7)12 was consistently observed herein (4.2 C and 

TON2h = 2.4; Figure S48). Furthermore, visible deposits were noted during and after CPE, 

either on the glassy carbon working electrode or detaching from the working electrode 

and floating to the bottom of the cell (Figure S48). This is consistent with the results seen 

more recently for this complex in water,11 providing further evidence that, like in water, 

the active catalyst in acetic acid/MeCN is also likely to be the heterogenous product 

formed from decomposition of the cryptate – not the cryptate itself. 
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Figure S45. (Top) Five cycles of CVs without pretreatment,  0→ 1.0→ -2.0→ 0 V vs 0.01 M AgNO3/Ag, for a 1 mM MeCN solution 
of [CuIILEt]BF4. Conditions: 0.1 M (NBu4)PF6, glassy carbon working electrode (d = 3 mm, A = 0.071 cm2), scan rate 100 mVs-1. 

(Bottom) Zoomed up CV showing the redox process with the ‘bump’ on it diminishing as the cycles continued. 
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Figure S46. (Top) Five cycles of pretreatment CVs, 0→ 2→ -2→ 0 V vs 0.01 M AgNO3/Ag, for a 0.1 M (NBu4)PF6 MeCN solution, 
with a glassy carbon working electrode (d = 3 mm, A = 0.071 cm2 ),  scan rate 100 mVs -1. See text for details and discussion. 
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Figure S47. (Top) CVs, 0→ 1.0→ -2.0→ 0 V vs 0.01 M AgNO3/Ag, for a 1 mM MeCN solution of [CuIILEt]BF4 1st cycle (blue), 2nd cycle 
(green) and CV after treatment of the working electrode (details in text) as per the recommendations by Dempsey and co-
workers10 (orange). Conditions: 0.1 M (NBu4)PF6, glassy carbon working electrode (d = 3 mm, A = 0.071 cm2 ), scan rate 100 mVs -

1. (Bottom) zoom in on the ‘bump’ region. 

 



S54 
 

0.0 0.5 1.0 1.5 2.0

-700

-600

-500

-400

-300

-200

C
u

rr
e

n
t 

(µ
A

)

Time (h)

 [CuLEt]+ run 1

 [CuLEt]+ run 2

 [CuLEt]+ run 3

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 [CuLEt]+ run 1

 [CuLEt]+ run 2

 [CuLEt]+ run 3

Time (hours)

T
O

N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
h

a
rg

e
 (

C
)

 

 

Figure S48. (Left) Multiple CPE experiments at −1.60 V of an 8 mL solution of 80 mM acetic acid in the presence of 1 mM of  
[CuIILEt]BF4 over 2 hours showing similar activity within experimental errors. (Right) The plot providing total charge transferred 
and TON for each CPE experiment. Conditions: 0.1 M (NBu4)PF6, glassy carbon working electrode (d = 3 mm, A = 0.071 cm2), scan 
rate 100 mVs−1. (Bottom) Glassy carbon electrode surface pictures showing visible deposit on the electrode surface, and working 
electrode deposits detached and settled at the bottom of the cell.   
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