Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Phosphorus-containing polycarbosilazanes: Synthesis via dehydrocoupling catalysis and flame-retardant properties[†]

Albert Soran,^{a,b,‡} Peter M. Chapple,^{a,‡} Claire Longuet,^c Rodolphe Sonnier,*^c

Marie Cordier,^a Jean-François Carpentier^{*a} and Yann Sarazin^{*a}

^a Dr. A. Soran, Dr. P. M Chapple, Dr. M. Cordier, Prof. Dr. J.-F. Carpentier, Dr. Y. Sarazin Univ Rennes, CNRS
ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
F-35000 Rennes (France)
E-mail: <u>yann.sarazin@univ-rennes.fr; jean-francois.carpentier@univ-rennes.fr</u>

^b Dr. A. Soran

Supramolecular Organic and Organometallic Chemistry Centre Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University RO-400028 Cluj-Napoca (Romania)

^c Dr. C. Longuet, Dr. R. Sonnier
IMT-Mines Ales, Polymers Hybrids and Composites (PCH)
6 Avenue De Clavières, CEDEX, F-30319 Alès (France)
E-mail: <u>rodolphe.sonnier@mines-ales.fr</u>

[†] Dedicated to Professor Cristian Silvestru, in celebration of his 70th birthday.

‡ These two co-authors have contributed equally to the work and must be considered as first coauthors.

Contents

General procedures	pp. 3-6
Synthesis & characterisation of model compounds	pp. 7-14
Synthesis & characterisation of polymeric materials	рр. 15-27
X-ray diffraction crystallography	pp. 28-29
References	p. 30
Author contributions	p. 30
NMR spectra for all compounds	pp. 31-68

General procedures.

All manipulations were performed under an inert atmosphere by using standard Schlenk techniques or in a dry, solvent-free glovebox (Jacomex; $O_2 < 1$ ppm, $H_2O < 3$ ppm). THF was distilled under argon from Na/benzophenone prior to use. Hexanes (petroleum ether), toluene, dichloromethane, and Et₂O were collected from MBraun SPS-800 purification alumina columns and thoroughly degassed with argon before being stored on 4 Å molecular sieves. Deuterated solvents (Eurisotop, Saclay, France) were stored in sealed ampoules over activated 3 Å molecular sieves and degassed by a minimum of three freeze-thaw cycles. Standard NMR spectra were recorded with Bruker AM-400 or AM-500 spectrometers. All chemical shifts (δ) [ppm] were determined relative to the residual signal of the deuterated solvent or to an external standard in $[D_6]$ benzene or $[D_8]$ toluene: Si(SiMe₃)₄ for ²⁹Si{¹H} NMR. Assignment of the signals was assisted by 1D (¹H, ¹³C) and 2D (COSY, HMBC, and HMQC) NMR experiments. (p-xylylene-N-methyldiamine 1,4-(HN(CH₃)CH₂)₂C₆H₄,¹diphenyl(ptolyl)phosphine,² phenylbis(*p*-tolyl)phosphine,² benzyldiphenylphosphine,³ 4-Ph₂P-C₆H₄CH₂NH₂⁴ (**B**) and $[Ba{N(SiMe_3)_2}_2]_2$ (1)⁵ were prepared by modification of literature procedures. Phenylsilane [PhSiH₃] was purified by distillation, stored in an ampoule under Ar and checked for purity by ¹H NMR twice per month. All other chemicals were provided by commercial suppliers and used as received. The polymers prepared herein where too sensitive and not soluble enough for characterisation by size exclusion chromatography. The determination of molecular weight was instead achieved by DOSY NPR analysis (see below).

Standard dehydrocoupling and dehydropolymerisation procedures

In a glovebox, the catalyst ([Ba(N{SiMe₃}₂)]₂, 5 or 10 mol% in Ba contents vs. the limiting substrate) was weighed directly into a Schlenk flask equipped with a stir bar. In a separate flask (also equipped with a stir bar), the amine (*p*-xylylene-*N*-methyldiamine, 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) or *p*-xylylenediamine, 1,4-(H₂NCH₂)₂-C₆H₄ was weighed into a flask, along with the phosphine-substituted silane 4-Ph₂P-C₆H₄SiH₃ (**A**) (if used). The two flasks were sealed, removed from the glovebox and attached to a Schlenk line. Phenylsilane [PhSiH₃] or diphenylsilane [Ph₂SiH₂] (if used) was added via syringe to the amine containing Schlenk flask. The contents were dissolved in solvent (benzene or toluene) that would give a final concentration of 0.34 M of the limiting reagent, and heated to the desired temperature using a water or oil bath. The catalyst solution was added via cannula to the monomer solution, resulting in significant gas evolution (assumed to be H₂). The flask was then sealed and left to stir for 16 h. After this time, the solution was concentrated to 1-2 mL and the polymer was precipitated with either wet pentane or wet hexanes. The solid was isolated by cannula filtration and washed again with wet pentane or wet hexanes. After another filtration, the polymer was dried under reduced pressure (1×10⁻³ mbar) at 55 °C to constant weight. The polymer was then transferred into a glovebox and stored at room temperature under inert atmosphere.

DOSY Measurements

The polymers were not suitable to be analysed via GPC, likely due to their hydrolytic sensitivity. However, by using the method previously described by Grubbs et al., the molecular weight of the polymers could be established using diffusion ordered NMR spectroscopy (DOSY).⁶ Molecular weights were estimated using the method described by Grubbs *et al.*, that has also been used specifically for the qualification of molecular weight of polycarbosilazanes previously, both by our group⁷ and by others.⁸ By using seven monodisperse polystyrene standards (traditionally for use in GPC calibration) of known molecular weight from 580 g mol⁻¹ to 70,500 g mol⁻¹, a monotonous correlation could be established between molecular weight (M_n) and diffusion coefficient (D). The plot of log D against log M_n produced a linear calibration curve (vide infra), to which our polycarbosilazanes were compared. Both the samples and the polystyrene standard were analysed at a concentration of approximately 1 mg mL⁻¹ in dry benzene[D₆]. The Bruker dstebpgp3s convection corrected pulse sequence was used, with a diffusion delay of $\Delta = 60$ ms and gradient pulse length of $\delta = 5$ ms. Spectra were obtained over a 16-step gradient range from 10% to 90%. Mathematical fittings were made of the diffusion data, and averaged to obtain the given diffusion coefficient D for each sample. Spectra were processed using the MestReNova Bayesian DOSY transform function at a resolution factor of 0.1, 5 repetitions, and 512 points in the diffusion dimension over the range from 1×10^{-7} to 1×10^{-4} cm²s⁻¹. The relationship log D = -0.5172 log $M_{\rm n} - 7.6921$ is similar to that of Grubbs *et. al.* (log D = -0.537 log $M_{\rm n} - 7.697$)⁶ and of Hill *et al.* (log D = $-0.5089 \log M_n - 7.8635$).⁸ The R² value of 0.9825 is slightly lower than that of Grubbs (R² = 0.9991), but still indicates the overall quality of the mathematical fit (Figure S1).

Figure S1. Graph of log D vs log M_n for a series of monodisperse polystyrene standards designed for GPC calibration.

Figure S2. Graph showing the polycarbosilazanes plotted on the DOSY calibration curve as a function of their diffusion coefficients D. The polystyrene calibration data points from Figure S1 are in red, the data points for the polycarbosilazanes of unknown molecular weights are in other colours.

Figure S3. Illustrative example of the DOSY ¹H NMR Spectrum of co-PhPZ-1 in benzene[D₆].

Flame retardancy analysis

A pyrolysis-combustion flow calorimeter (PCFC from *Fire Testing Technologies*) was used to study the flammability of the phosphorus-containing polycarbosilazanes. This apparatus allows for the separation of the anaerobic pyrolysis of the condensed phase from the combustion step in gas phase. Typically, small samples (around 3 mg) undergo anaerobic pyrolysis (heating rate 1 °C s⁻¹) from 100 to 750 °C under a nitrogen flow (100 mL min⁻¹). The gases produced during heating are sent to a second chamber, called combustor, where they are completely oxidized at 900 °C in excess of oxygen (nitrogen-oxygen mixture 80/20). The heat release rate (HRR) is calculated according to the well-known Huggett relation (1 g of oxygen consumed corresponds to 13.1 kJ of energy released⁹). The total heat release (THR) is the area under the curve in the plot of HRR versus temperature of pyrolysis. The residue content is measured at the end of the test. The heat of complete combustion Δh (kJ g⁻¹) is the ratio between the THR (i.e. the area) and the mass loss fraction.

Synthesis of Ph₂P(p-Si(OEt₃)₃C₆H₄)

A 250 mL round bottom flask was loaded with magnesium turnings (850 mg, 0.35 mmol), a stir bar and diethyl ether (150 mL). A small volume of diiodoethane was added to the flask which was briefly heated until ethane evolution was observed. A solution of $[Ph_2PC_6H_4Br]$ (10.0 g, 29.3 mmol) in diethyl ether (50 mL) was added dropwise, generating a slight orange

colour. After complete addition, a reflux condenser was attached to the flask and the contents were refluxed for 2.5 h, generating a dark 'cola' coloured suspension. The flask was cooled to room temperature, and the decanted solution was added dropwise to a solution of tetraethylorthosilicate (neat, 100 mL) in thf (100 mL) at 0 °C, generating a colourless solution. The solution was left to stir overnight. The solution was quenched with degassed H₂O (200 mL), and the organic phase was isolated by cannula, dried over MgSO₄ and filtered to give a clear solution (all under argon). Removal of the volatiles under reduced pressure (100 °C, 1×10^{-3} mbar) gave a slightly orange oil, consisting of a mixture of the desired product, along with the di- and tri- substituted orthosilicates as well. The desired compound was isolated by Kugelrohr distillation (280 °C, 1×10^{-3} mbar) to give the title compound as a colourless oil. Yield: 4.72 g (38%).

NMR spectra are provided below as Figures S6-S9.

¹**H** NMR (300.13 MHz, [D₆]benzene, 298 K): δ 7.77 (m, 2H, C₄**H**); 7.47 (m, 2H, C₅**H**); 7.41 (m, 4H, C₉**H**); 7.05 (m, 6H, C₈**H** + C₁₀**H**); 3.83 (q, ³*J*_{HH} = 7.0 Hz, 6H, C₂**H**); 1.15 (t, ³*J*_{HH} = 7.0 Hz, 9H, C₁**H**) ppm.

¹³C{¹H} NMR (75.48 MHz, [D₆]benzene, 298 K): δ 140.71 (d, ¹*J*_{CP} = 13.2 Hz, C₆); 137.73 (d, ¹*J*_{CP} = 12.1 Hz, C₇); 135.31 (d, ³*J*_{CP} = 6.3 Hz, C₄); 134.34 (d, ²*J*_{CP} = 19.9 Hz, C₈); 133.38 (d, ²*J*_{CP} = 18.8 Hz, C₅); 132.56 (C₃); 128.98 (C₁₀); 128.88 (d, ³*J*_{CP} = 6.9 Hz, C₉); 58.96 (C₂); 15.51 (C₁) ppm.

³¹**P** NMR (161.99 MHz, [D₆]benzene, 298 K): δ –5.18 (*J*_{PC} = 19.4 Hz) ppm.

²⁹Si{¹H} INEPT NMR (79.49 MHz, [D₆]benzene, 302 K): δ –58.79 ppm.

HRMS (**ESI**): (M+H)⁺ Calc(m/z): 425.16964 Found: 425.1696 (0 ppm).

Elemental Analysis: theoretical: C 67.90 H 6.89. Found: C 68.03 H 6.78.

Synthesis of 4-Ph₂P-C₆H₄SiH₃ (A)

To a suspension of LiAlH₄ (0.50 g, 13.1 mmol) in diethyl ether (150 mL) at 0 °C was added a solution of $[Ph_2P(p-Si(OEt_3)_3C_6H_4)]$ (5.00 g, 11.8 mmol) in diethyl ether (50 mL) dropwise. After the complete addition, the resulting suspension was left to stir overnight at room temperature. The volatiles were removed under reduced pressure, and the solid was

extracted with toluene or benzene (100 mL \times 3) and filtered to give a colourless solution. The combined fractions had the solvent evaporated under reduced pressure to give the title compound as a white solid. Yield: 3.32 g (96%). Recrystallisation from Et₂O gave a sample used for analytical results and XRD analysis.

NMR spectra are provided below as Figures S10-S13.

¹**H** NMR (300.13 MHz, [D₆]benzene, 299 K): δ 7.38 (m, 4H, C₈**H**); 7.19 (m, 4H, C₇**H**); 7.05 (overlapping m, 6H, C₃**H** + C₄**H** + C₉**H**); 4.17 (s, ¹*J*_{HSi} = 201.0 Hz, 3H, Si**H**) ppm.

¹³C{¹H} NMR (75.48 MHz, [D₆]benzene, 299 K): δ 140.40 (d, ¹*J*_{CP} = 13.6 Hz, C₅); 137.62 (d, ¹*J*_{CP} = 12.1 Hz, C₆); 136.19 (d, ³*J*_{CP} = 6.0 Hz, C₃); 134.27 (d, ²*J*_{CP} = 19.6 Hz, C₇); 133.61 (d, ²*J*_{CP} = 18.9 Hz, C₄); 129.05 (C₉); 128.89 (d, ³*J*_{CP} = 6.8 Hz, C₈); 128.70 (C₂) ppm.

³¹**P** NMR (121.50 MHz, [D₆]benzene, 300 K): δ –5.34 (*J*_{PC} = 19.4 Hz) ppm.

²⁹Si{¹H} INEPT NMR (79.49 MHz, [D₆]benzene, 300 K): δ –60.40 ppm.

HRMS (ESI): (M+H)⁺ Calc(m/z): 293.09099. Found: 293.0911 (0 ppm).

Elemental Analysis: theoretical: C 73.94 H 5.86. Found: C 73.15 H 5.80.

Single crystals were obtained, and the molecular solid-state structure of the compound was established by X-ray diffraction analysis (see below).

4-Ph₂P-C₆H₄CH₂NHSiPh₃

Following the standard procedure, the dehydrocoupling between **B** and excess triphenylsilane (2.1 equiv) catalysed by **1** (2.5 mol-%) in benzene- d_6 at 60 °C proceeded smoothly and quantitatively within 1 h to give the monocoupled silazane 4-Ph₂P-C₆H₄CH₂NHSiPh₃, see Scheme 3 in the manuscript. Single crystals of the title compound were obtained, and the molecular

solid-state structure of the compound was established by X-ray diffraction analysis (see XRD section below for details).

NMR spectra are provided below as Figures S15-S18.

¹**H** NMR (400.16 MHz, [D₆]benzene, 298 K): δ 7.67 (dd, ³*J*_{HH} = 7.4 and 2.1 Hz, 6H, C₂**H**); 7.43 (td, *J*_{HH} = 7.5 and 1.9 Hz, 4H, C₁₁**H**); 7.38 (t, ³*J*_{HH} = 7.8 Hz, 2H, C₈**H**); 7.20 (overlapping m, 8H, C₁₂**H** + C₁₃**H** + C₇**H**); 7.08 (overlapping m, 9H, C₁**H** + C₃**H**); 3.95 (d, ³*J*_{HH} = 7.9 Hz, 2H, C₅**H**); 1.25 (t, ³*J*_{HH} = 7.9 Hz, 1H, N**H**) ppm.

¹³C{¹H} NMR (100.63 MHz, [D₆]benzene, 298 K): δ 144.67 (C₆); 138.41 (d, ¹*J*_{CP} = 12.2 Hz, C₉); 136.01 (C₂); 135.98 (C₁₀, coupling not observable due to overlapping resonance); 134.38 (d, ²*J*_{CP} = 20.4 Hz, C₈); 134.16 (d, ²*J*_{CP} = 19.5 Hz, C₁₁); 129.96 (C₁); 128.81 (C₁₃); 128.81 (d, ³*J*_{CP} = 6.8 Hz, C₁₂); 128.22 (C₃); 127.69 (d, ³*J*_{CP} = 7.9 Hz, C₇); 46.65 (C₅) ppm. The resonance for C₄ could not be detected.

³¹**P** NMR (161.99 MHz, [D₆]benzene, 298 K): δ –5.99 ppm.

HRMS (ESI). (M+H)⁺ Calc(m/z): 550.21114. Found: 550.2115 (0 ppm).

4-Ph₂P-C₆H₄CH₂NHSiPh₂H

Following the standard procedure, the equimolar dehydrocoupling between **B** and excess diphenylsilane catalysed by **1** (2.5 mol-%) in benzene- d_6 at 60 °C proceeded smoothly and quantitatively within 1 h to give the monocoupled silazane 4-Ph₂P-C₆H₄CH₂NHSiPh₂H, see Scheme 3 in the manuscript. The final product was contaminated by another unassigned

compound, assumed to be the cyclic disilazane $[(4-Ph_2P-C_6H_4CH_2)NSiPh_2]_2$, although no conclusive evidence confirms this hypothesis.

NMR spectra are provided below as Figures S19-S21.

¹**H** NMR (500.13 MHz, [D₆]benzene, 300 K): δ 7.64 (dd, ³*J*_{HH} = 7.4 and 2.1 Hz, 4H, C₂**H**); 7.43 (td, *J*_{HH} = 7.5 and 1.9 Hz, 4H, C₁₁**H**); 7.40 (t, ³*J*_{HH} = 7.8 Hz, 2H, C₈**H**); 7.18 (m, 6H, C₁₂**H** + C₁₃**H**); 7.07 (overlapping m, 8H, C₁**H** + C₃**H** + C₇**H**); 5.59 (d, ³*J*_{HH} = 2.2 Hz, ¹*J*_{HSi} = 203.8 Hz, 1H, Si**H**); 3.80 (d, ³*J*_{HH} = 8.0 Hz, 2H, C₅**H**); 0.94 (m, 1H, N**H**) ppm.

¹³C{¹H} NMR (125.77 MHz, [D₆]benzene, 300 K): δ 144.47 (C₆); 138.41 (d, ¹*J*_{CP} = 12.2 Hz, C₉); 135.52 (C₁₀); 135.30 (C₂); 134.39 (d, ²*J*_{CP} = 20.0 Hz, C₈); 134.16 (d, ²*J*_{CP} = 19.5 Hz, C₁₁); 130.29 (C₁); 128.82 (C₁₃); 128.81 (d, ³*J*_{CP} = 6.8 Hz, C₁₂); 128.34 (C₃); 127.68 (d, ³*J*_{CP} = 7.2 Hz, C₇); 46.82 (C₅) ppm. The resonance for C₄ could not be detected.

³¹**P** NMR (202.46 MHz, [D₆]benzene, 300 K): δ –5.99 ppm.

²⁹Si{¹H} INEPT NMR (79.49 MHz, [D₆]benzene, 298 K): δ –16.81 ppm.

HRMS(ESI). (M+H)⁺ Calc (m/z): 474.18014. Found: 474.1801 (0 ppm).

4-PPh₂-C₆H₄SiH{N(Me)CH₂Ph}₂

Following the standard procedure, the dehydrocoupling of trihydrosilane **A** with a threefold excess of *N*-methylbenzylamine catalysed by **1** (2.5 mol-% vs. **A**) at 25 °C in benzene[D₆] generates the product of double dehydrocoupling, 4-PPh₂-C₆H₄SiH{N(Me)CH₂Ph}₂, isolated as a colourless oil. See Scheme 4 in the manuscript.

NMR spectra are provided below as Figures S22-S25.

¹**H** NMR (500.13 MHz, [D₆]benzene, 300 K): δ 7.62 (m, 2H, C₈**H**); 7.44 (overlapping m, 6H, C₁₂**H** + C₉**H**); 7.20 (m, 8H, C₂**H** + C₃**H**); 7.07 (m, 8H, C₁**H** + C₁₃**H** + C₁₄**H**); 5.32 (s, ¹*J*_{HSi} = 219.4 Hz, 1H, Si**H**); 3.97 (s. 4H, C₅**H**); 2.41(s, 6H, C₆**H**).

¹³C{¹H} NMR (125.77 MHz, [D₆]benzene, 300 K): δ 140.97 (s, C₄); 140.30 (d, ¹*J*_{CP} = 13.2 Hz, C₁₀); 137.79 (d, ¹*J*_{CP} = 12.1 Hz, C₁₁); 136.75 (s, C₇); 135.18 (d, ³*J*_{CP} = 6.2 Hz, C₈); 134.36 (d, ²*J*_{CP} = 19.6 Hz, C₁₂); 133.65 (d, ²*J*_{CP} = 18.8 Hz, C₉); 128.99 (s, C₁₄); 128.88 (d, ³*J*_{CP} = 6.9 Hz, C₁₃); 128.62 (s, C₂); 128.11 (s, C₃, partially obscured by residual solvent signal); 127.03 (s, C₁); 54.68 (s, C₅) 34.33 (s, C₆).

³¹P{¹H} NMR (202.46 MHz, [D₆]benzene, 300 K): δ –5.19 ppm.

Elemental Analysis: theoretical: C 76.95 H 6.65 N 5.28. Found: C 75.59 H 6.53 N 4.64. We could not obtain reproducible and reliable results, despite multiple attempts. We assume this is because of (1) the presence of Si atoms (known to form SiC and thus to lower C amounts), and (2) the hydrolytically sensitive nature of the sample.

NMR scale reaction of 1,4-{CH₂NHMe}₂-C₆H₄ (C) with 2 equivalents of Ph₂SiH₂

In the glove-box, the two substrates C (16.4 mg, 100 μ mol) and Ph₂SiH₂ (36.9 mg, 200 μ mol) were mixed in an NMR tube, and the precatalyst **1** (6.9 mg, 7.5 μ mol) was added. The tube was removed from the glove-box, and, using a Schlenk line and standard Schlenk techniques, [D₆]benzene was injected into the NMR tube, which was then sealed off. The mixture was stirred manually for a few seconds, and the immediate release of H₂ was observed. The reaction was pursued at 60 °C, using a stainless-steel heating block for temperature control. Conversion was monitored by

¹H NMR spectroscopy.

¹**H** NMR (400.13 MHz, [D₆]benzene, 300 K): δ 5.69 (s, ¹*J*_{SiH} = 204 Hz, 2H, Si**H**), 4.00 (s, 4H, NC**H**₂Ar), 2.45 (s, 6H, NC**H**₃) ppm. The spectrum also shows multiples resonances in the aromatic region (δ 7.84, 7.76, 7.68, 7.32-7.15 ppm) and resonances at 4.13 (s) and 2.60 (s) ppm which could not be assigned.

Figure S4. ¹H NMR spectrum ([D₆]benzene, 400.16 MHz, 298 K) of the monitoring (after 48 h) of the reaction between 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) with two equivalents of diphenylsilane, showing formation of the desired α,ω -disilazane 1,4-{CH₂N(Me)SiPh₂H}₂-C₆H₄ along another unidentified species in minor proportions (grey dots), and full consumption of the starting amine **C**. No presence of **C** (δ 3.55, 2.23 and 0.71 ppm, see Figure S14 below) can be seen.

NMR scale reaction of 1,4-{CH₂NHMe}₂-C₆H₄ (C) with 1 equivalent of Ph₂SiH₂

In the glove-box, the two substrates **C** (24.6 mg, 150 μ mol) and Ph₂SiH₂ (27.6 mg, 150 μ mol) were mixed in an NMR tube, and the precatalyst **1** (6.9 mg, 7.5 μ mol) was added. The tube was removed from the glove-box, and, using a Schlenk line and standard Schlenk techniques, [D₆]benzene was injected into the NMR tube, which was then sealed off. The mixture was stirred manually for a few seconds, and the immediate release of H₂ was observed. The reaction was pursued at 60 °C, using a stainless-steel

heating block for temperature control. Conversion was monitored by ¹H NMR spectroscopy. The absence of detectable endgroups is consistent with the formation of a cyclic chain.

¹**H** NMR (400.13 MHz, [D₆]benzene, 298 K): δ 7.83 (m, 4H, C₇**H**), 7.32 (m, 4H, C₂**H**), 7.21 (overlapping m, 6H, C₃**H** + C₄**H**), 4.14 (s, 4H, C₆**H**), 2.60 (s, 6H, C₅**H**) ppm.

Figure S5. ¹H NMR spectrum ([D₆]benzene, 400.16 MHz, 298 K) of the monitoring of the reaction between 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) with one equivalent of diphenylsilane, showing formation of the polycarbosilazane [-Ph₂Si-(Me)NCH₂-C₆H₄-CH₂NMe-]_n, with full consumption of the starting amine **C**. No residual presence of **C** (δ 3.55, 2.23 and 0.71 ppm, see Figure S14 below) can be seen. No endgroup can be detected, suggesting the formation of a cyclic chain.

co-PhPZ-0. NMR reaction of 4-Ph₂P-C₆H₄SiH₃ (A) and 1,4-(CH₂NHMe)₂-C₆H₄ (C)

In the glove-box, the two substrates **A** (29.9 mg, 102 μ mol) and **C** (16.8 mg, 102 μ mol) were mixed in an NMR tube, and the precatalyst **1** (6.9 mg, 7.5 μ mol, 15 mol-% in Ba) was added. The tube was removed from the glove-box, and, using a Schlenk line and standard Schlenk techniques, [D₆]benzene (0.5 ml) was injected into the NMR tube, which was then sealed off. The mixture was stirred manually for a few

seconds, and the immediate release of H_2 was observed. The reaction was carried out at 60 °C, using a stainless-steel heating block for temperature control. Conversion was monitored by ¹H NMR spectroscopy over the course of 37.5 h.

¹**H** NMR (300.13 MHz, [D₆]benzene, 298 K): δ 7.67-7.64 (m, 2H, arom-H), 7.49-7.42 (m, 6H, arom-H), 7.27 (s, 4H, C₁H + C₂H), 7.05 (m, 6H, arom-H), 5.37 (s, ¹J_{SiH} = 219 Hz, 1H, SiH), 4.03 (s, 4H, C₄H), 2.46 (4, 6H, C₅H) ppm.

¹³C{¹H} NMR (75.48 MHz, [D₆]benzene, 299 K): δ 140.27 (d, ¹*J*_{CP} = 12.8 Hz, C₈), 139.46 (s, C₂), 137.75 (d, ¹*J*_{CP} = 12.1 Hz, C₉), 136.80 (s, C₁), 135.21 (d, ³*J*_{CP} = 6.0 Hz, C₆), 134.31 (d, ²*J*_{CP} = 19.6 Hz, C₁₀), 133.64 (d, ²*J*_{CP} = 18.1 Hz, C₇), 129.01 (s, C₁₂), 128.89 (d, ³*J*_{CP} = 6.8 Hz, C₁₁), 128.29 (s, C₅), 54.49 (s, C₃), 34.41 (s, C₄) ppm.

³¹P{¹H} NMR (121.50 MHz, [D₆]benzene, 298 K): δ –5.26 ppm (see Figure 5 in the manuscript).

²⁹Si{¹H} INEPT NMR ([D₆]benzene, 79.49 MHz, 302 K): δ –15.22 ppm

Co-PhPZ-1. 100:100 polymerisation of 4-Ph₂P-C₆H₄SiH₃ (A) and 1,4-(CH₂NHMe)₂-C₆H₄ (C)

The reaction was conducted as per standard procedure, at 60 °C using A (607 mg, 2.08 mmol) and C (325 mg, 1.98 mmol), catalysed by 1 (90.7 mg, 99 µmol, 10 mol-% loading in Ba). Substrate conversion was quantitative according to ¹H NMR. Isolated yield after purification: 532 mg (58%). The relevant NMR spectra are provided below in Figures

S29-S32.

¹**H** NMR (500.13 MHz, [D₆]benzene, 300 K): δ 7.65 (m, 2H, C₆H); 7.47 (m, 2H, C₇H); 7.42 (m, 4H, C_{10} **H**); 7.27 (br s, 4H, C_1 **H**); 7.05 (m, 6H, C_{11} **H** + C_{12} **H**); 5.37 (s, ${}^{1}J_{HSi} = 218.1$ Hz, 1H, Si**H**); 4.03 (m, 4H, C₃H); 3.55 (d, ${}^{2}J_{HH} = 6.4$ Hz, C₂H terminal); 2.46 (s, 6H, C₄H); 2.22 (m, C₄H terminal); 0.62 (m, **NH** terminal) ppm.

¹³C{¹H} NMR (125.77 MHz, [D₆]benzene, 300 K): δ 140.28 (d, ¹*J*_{CP} = 13.2 Hz, C₈ terminal); 140.25 (d, ${}^{1}J_{CP} = 13.1$ Hz, C₈ backbone); 139.47 (s, C₂ backbone); 139.41 (s, C₂ terminal); 137.79 (d, ${}^{1}J_{CP} =$ 12.2 Hz, C_9 terminal); 137.78 (d, ${}^{1}J_{CP} = 12.2$ Hz, C_9 backbone); 136.87 (s, C_5 terminal); 136.81 (s, C_5 backbone); 135.22 (d, ${}^{3}J_{CP} = 6.2$ Hz, C₆); 134.37 (d, ${}^{2}J_{CP} = 19.7$ Hz, C₁₀); 133.65 (d, ${}^{2}J_{CP} = 18.8$ Hz, C₇); 129.00 (C_1); 128.90 (d, ${}^{3}J_{CP} = 7.1$ Hz, C_{11}); 128.29 (C_{12}); 56.17 (C_3 , terminal); 54.52 (C_3 , backbone); 36.22 (C₄, terminal); 34.40 (C₄, backbone) ppm.

 ${}^{31}P{}^{1}H$ NMR (161.99 MHz, [D₆]benzene, 298 K): δ –5.18 (major, backbone P), –5.40 (minor terminal P) ppm.

²⁹Si{¹H} INEPT NMR (79.49 MHz, [D₆]benzene, 302 K): δ –15.23 (major, backbone Si), –15.37 (minor, terminalSi)ppm.

DOSY molecular weight determination

Co-PhPZ-2. 100:80 polymerisation of 4-Ph₂P-C₆H₄SiH₃ (A) and 1,4-(CH₂NHMe)₂-C₆H₄ (C)

The reaction was conducted as per standard procedure, at 60 °C, using toluene as solvent, with **A** (300 mg, 1.03 mmol) and **C** (135 mg, 0.82 mmol), catalysed by **1** (37.6 mg, 41.0 μ mol, 10 mol-% loading in Ba). Conversion of the default substrate was quantitative according to ¹H NMR.

Isolated yield after purification: 271 mg (73%).

The NMR data for **Co-PhPZ-2** are essentially identical to those for **Co-PhPZ-1**, except for the absence of detectable endgroups

(see above and Figures S29-S32).

DOSY molecular weight determination

log D = -9.62, D = 2.33433 ×10⁻¹⁰ m² s⁻¹. Calculated M_n = 5629 g mol⁻¹.

Co-PhPZ-3. 95:100 polymerisation of 4-Ph₂P-C₆H₄SiH₃ (A) and 1,4-(CH₂NHMe)₂-C₆H₄ (C)

The reaction was conducted as per standard procedure, at 25 °C, with A (200 mg, 684 μ mol) and C (101 mg, 615 μ mol), catalysed by **1** (28.2 mg, 30.7 μ mol, 10 mol-% loading in Ba). Conversion of the default substrate was quantitative according to ¹H NMR.

Isolated yield after purification: 148 mg (48%).

The NMR data for **Co-PhPZ-2** are essentially identical to those for **Co-PhPZ-1** (see above and Figures S29-S32).

DOSY molecular weight determination

 $\log D = -9.73$, $D = 1.89033 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$. Calculated $M_n = 8465 \text{ g mol}^{-1}$.

Ter-PhCZ-4. 50:50:95 polymerisation of 4-Ph₂P-C₆H₄SiH₃ (A), PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (C)

The reaction was conducted as per standard procedure, at 25 °C, with **A** (188 mg, 642 μ mol), PhSiH₃ (75 mg, 693 μ mol) and **C** (210 mg, 1.28 mmol), catalysed by **1** (58.6 mg, 63.9 μ mol, 10 mol-% loading in Ba). Conversion of the default substrate was quantitative according to ¹H NMR. Isolated yield after purification: 274 mg (58%). It proved impossible to remove entirely all solvent residues.

NMR spectra are provided below as Figures S33-S36.

¹**H** NMR (500.13 MHz, [D₆]benzene, 300 K): δ 7.74 (m, C₂₂**H**); 7.64 (m, *J*_{HH} = 7.4 Hz, C₁₁**H**); 7.49-7.42 (m, arom-**H**); 7.37-7.22 (m, arom-**H**); 7.04 (m, C₁₆H + C₁₇H); 5.41 (m, ^{*1*}*J*_{HSi} = 217.9 Hz, 1H, Si₂₀**H**); 5.36 (m, ^{*1*}*J*_{HSi} = 219.1 Hz, Si₉**H**); 4.06 and 4.02 (m, C₇**H** and C₁₈**H**); 2.49 and 2.45 (s, C₈**H** and C₁₉**H**). A number of resonances could not be assigned. They belonged to unidentified impurities we could not remove, and potentially coming from degradation of the polymer during the work-up procedure.

¹³C{¹H}NMR (125.77 MHz, [D₆]benzene, 300 K): δ 139.53 (C₂₁); 139.48 (C₆); 137.79 (d, ¹*J*_{CP} = 12.2 Hz, C₁₅); 136.40 (C₂₁); 135.23 (d, ³*J*_{CP} = 6.2 Hz, C₁₁); 135.11 (C₂₂); 134.37 (d, ²*J*_{CP} = 20.0 Hz, C₁₅); 133.64 (d, ²*J*_{CP} = 18.8 Hz, C₁₂); 130.18 (C₂₄); 129.20, 129.00, 128.92, 128.85, 128.45 and other resonances hidden by the solvent (arom-C); 54.21 (br, C₇ + C₁₈); 34.39 (br, C₈ + C₁₉) ppm. A more detailed assignment could not be achieved.

³¹P{¹H} NMR (161.99 MHz, [D₆]benzene, 298 K): δ –5.21 ppm. A residual resonance at –6.40 could not be assigned.

²⁹Si{¹H} INEPT NMR (79.49 MHz, [D₆]benzene, 302 K): δ –14.77; –15.24 ppm.

DOSY molecular weight determination for Ter-PhCZ-4

log D = -9.92, D = 1.1975×10^{-10} m² s⁻¹.Calculated $M_n = 20,462$ g mol⁻¹.

Ter-PhCZ-5. 20:80:95 polymerisation of 4-Ph₂P-C₆H₄SiH₃ (A), PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (C)

The reaction was conducted as per standard procedure, at 25 °C, with **A** (75 mg, 256 μ mol), PhSiH₃ (111 mg, 1.02 mmol) and **C** (210 mg, 1.28 mmol), catalysed by **1** (58.6 mg, 63.9 μ mol, 10 mol-% loading in Ba). Isolated yield after purification: 136 mg (35%).

The NMR data for Ter-PhCZ-5 are similar to those for Ter-PhCZ-4 (see above and Figures S33-S36).

DOSY molecular weight determination

log D = -9.96, D = $1.09567 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$. Calculated $M_n = 24298 \text{ g mol}^{-1}$.

Ter-PhCZ-6. 5:95:95 polymerisation of 4-Ph₂P-C₆H₄SiH₃ (A), PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (C)

The reaction was conducted as per standard procedure, at 25° C, with **A** (51 mg, 174 µmol), PhSiH₃ (356 mg, 3.29 mmol) and **C** (568 mg, 3.46 mmol), catalysed by **1** (158 mg, 172 µmol, 10 mol-% loading in Ba). Isolated yield after purification: 480 mg (50%).

The NMR data for Ter-PhCZ-6 are similar to those for Ter-PhCZ-4 (see above and Figures S33-S36).

DOSY molecular weight determination

log D = -10.02, D = $9.56833 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$. Calculated $M_n = 31575 \text{ g mol}^{-1}$.

Ter-PhCZ-7. 1:99:100 dehydropolymerisation of 4-Ph₂P-C₆H₄SiH₃ (A), PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (C)

The reaction was conducted as per standard procedure, at 25 °C, with **A** (18 mg, 61.5 μ mol), PhSiH₃ (652 mg, 6.02 mmol) and **C** (1.00 g, 6.09 mmol), catalysed by **1** (278 mg, 303 μ mol, 10 mol-% loading in Ba).

Isolated yield after purification: 927 mg (56%).

The NMR data for **Ter-PhCZ-7** are similar to those for **Ter-PhCZ-4** (see above and Figures S33-S36). Note however that most of the carbon signals of the phosphine phenyl rings are so weak they could be clearly assigned after 8000 scans on a concentrated sample.

DOSY molecular weight determination

log D = -10.03, D = $9.2298 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$. Calculated $M_n = 33,853 \text{ g mol}^{-1}$.

Co-PZ-8. 100:100 dehydropolymerisation of PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (C)

The reaction was conducted as per standard procedure, at 25 °C, with PhSiH₃ (329 mg, 3.04 mmol) and **C** (500 mg, 3.04 mmol), catalysed by **1** (139 mg, 152 μ mol, 10 mol-% loading in Ba). Isolated yield after purification: 450 mg (55%).

NMR spectra are provided below as Figures S37-S39.

¹**H** NMR (500.13 MHz, [D₆]benzene, 300 K): δ 7.74 (m, 2H, C₆**H**); 7.29 (br s, 4H, C₁**H**); 7.22 (m, 3H, C₇**H** + C₈**H**); 5.41 (s, ¹*J*_{HS*i*} = 220 Hz, 1H, Si**H**); 4.06 (m, 4H, C₃**H**); 2.49 (s, 6H, C₄**H**) 2.21 (m, C₄**H** terminal) ppm.

¹³C{¹H} NMR (125.77 MHz, [D₆]benzene, 300 K): δ 139.53 (C₂); 136.41 (C₅); 135.11(C₆); 130.17 (C₈); 128.44 (C₇); 128.28 (C₁, obscured by solvent signal); 54.51 (C₃); 34.38 (C₄) ppm.

²⁹Si{¹H} INEPT NMR (79.46 MHz, [D₆]benzene, 300 K): δ – 14.78 ppm

DOSY molecular weight determination

log D = -10.05, D = 8.88783×10^{-10} m² s⁻¹. Calculated $M_n = 36,417$ g mol⁻¹.

Co-PZ-9. 100:80 dehydropolymerisation of PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (C)

The reaction was conducted as per standard procedure, at 25 °C, with PhSiH₃ (632 mg, 5.84 mmol) and **C** (800 mg, 4.87 mmol), catalysed by **1** (22.3 mg, 24.3 μ mol, 1 mol-% loading in Ba). Isolated yield after purification: 740 mg (56%).

The NMR data for Co-PZ-9 are identical to those for Co-Pz-8 (see Figures S37-S39 below).

DOSY molecular weight determination

log D = -9.93, D = $1.16267 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$. Calculated $M_n = 21,664 \text{ g mol}^{-1}$.

Co-PZ-10. 80:100 dehydropolymerisation of PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (C)

The reaction was conducted as per standard procedure, at 25 °C, with PhSiH₃ (527 mg, 4.87 mmol) and **C** (960 mg, 5.84 mmol), catalysed by **1** (22.3 mg, 24.3 μ mol, 1 mol-% loading in Ba). Isolated yield after purification: 200 mg (15%).

The NMR data for Co-PZ-10 are identical to those for Co-Pz-8 (see Figures S37-S39 below).

DOSY molecular weight determination

log D = -9.63, D = $2.37083 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$. Calculated $M_n = 5463 \text{ g mol}^{-1}$.

Co-PZ-11. 100:100 dehydropolymerisation of Ph₂SiH₂ and 1,4-(CH₂NHMe)₂-C₆H₄ (C)

The reaction was conducted as per standard procedure, at 25 $^{\circ}$ C, with Ph₂SiH₂ (921 mg, 5.00 mmol) and C (821 mg, 5.00 mmol), catalysed by **1** (229 mg, 250 µmol, 10 mol-% loading in Ba).

Isolated yield after purification: 1.06 g (62%).

NMR spectra are provided below as Figures S40-S42.

¹**H NMR** (500.13 MHz, [D₆]benzene, 300 K): δ 7.83 (m, 4H, C₆**H**); 7.32 (br s, 4H, C₁**H**); 7.21 (m, 6H, C₇**H** + C₈**H**); 4.14 (s, 4H, C₃**H**); 2.60 (s, 6H, C₄**H**) ppm.

¹³C{¹H} NMR (125.77 MHz, [D₆]benzene, 300 K): δ 139.60 (C₂); 136.26 (C₅); 136.15 (C₆); 129.84 (C₈); 128.62 (C₇); 128.36 (C₁); 54.79 (C₃); 35.66 (C₄) ppm.

²⁹Si{¹H} {INEPT} NMR (79.46 MHz, [D₆]benzene): δ –15.97 ppm

DOSY molecular weight determination

 $\log D = -9.96$, $D = 1.1064 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$. Calculated $M_n = 23,845 \text{ g mol}^{-1}$.

Co-PZ-12. 100:100 dehydropolymerisation of PhSiH₃ and 1,4-(CH₂NH₂)₂-C₆H₄

The reaction was conducted as per standard procedure, at 25 °C, with PhSiH₃ (329 mg, 3.83 mmol) and 1,4-(CH₂NH₂)₂-C₆H₄ (520 mg, 3.82 mmol), catalysed by **1** (175 mg, 191 μ mol, 10 mol-% loading in Ba). Isolated yield after work-up: 808 mg (96%).

The insolubility of this polymer in available solvents ($[D_8]$ thf. $[D_8]$ toluene, $[D_6]$ benzene, $[D_2]$ methylene chloride, $[D_1]$ chloroform,

[D6]DMSO, [D6]acetone, [D4]methanol) precluded its characterisation in solution and DOSY molecular weight estimation.

Co-PZ-13. 100:100 dehydropolymerisation of Ph₂SiH₂ and 1,4-(CH₂NH₂)₂-C₆H₄

The reaction was conducted as per standard procedure, at 25 °C, with Ph_2SiH_2 (735 mg, 3.99 mmol) and 1,4-(CH_2NH_2)₂- C_6H_4 (545 mg, 4.00 mmol), catalysed by **1** (183 mg, 200 µmol, 10 mol-% loading in Ba).

Isolated yield after work-up: 1.20 g (94%).

The insolubility of this polymer in available solvents ($[D_8]$ thf. [D₈]toluene, [D₆]benzene, [D₂]methylene chloride, [D₁]chloroform, [D6]DMSO, [D6]acetone, [D4]methanol) precluded its characterisation in solution and DOSY molecular weight estimation.

Crystallographic data

Compound	Compound label	Experiment number	CCDC number
4-Ph ₂ P-C ₆ H ₄ CH ₂ NHSiPh ₃	n/a	PC04160	2384912
$4-Ph_2P-C_6H_4SiH_3$	Α	0138alb	2384976

4-Ph₂P-C₆H₄CH₂NHSiPh₃ (C₃₇H₃₂NPSi); M = 549.69 g mol⁻¹. A suitable crystal for X-ray diffraction single crystal experiment (colourless plate, dimensions = 0.550 \times 0.420 \times 0.100 mm) was selected and mounted on the goniometer head of a D8 VENTURE Bruker AXS diffractometer equipped with a (CMOS) PHOTON 100 detector, using Mo-*Ka* **radiation (\lambda = 0.71073 Å, multilayer monochromator) at T = 150 K. The crystal structure was described in triclinic symmetry and** *P***-1 (I.T.#2) space group. Cell parameters have been refined as follows: a = 9.4488(11), b = 17.913(2), c = 17.982(2) Å, \alpha = 89.561(5), \beta = 79.782(5), \gamma = 83.183(4) °, V = 2973.8(6) Å³. The number of formula unit** *Z* **is equal to 4 and the calculated density** *d* **and absorption coefficient \mu values are 1.228 g cm⁻³ and 0.159 mm⁻¹ respectively. The structure was solved by dual-space algorithm using the** *SHELXT* **program,¹⁰ and then refined with full-matrix least-squares methods based on F^2 (***SHELXL***).¹¹ All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions and treated as riding on their parameters. H atoms were finally included in their (alculated positions and treated as riding on their parameters). H atoms were finally included in their (alculated positions and treated as riding on their parameters converged at \omega R_F^2 = 0.3788 (R_F = 0.1424) for 9426 observed reflections with I > 2\sigma(I).**

4-Ph₂P-C₆H₄SiH₃ (C₁₈H₁₇PSi); M = 292.37 g mol⁻¹. A suitable crystal for X-ray diffraction single crystal experiment (colourless block, dimensions = $0.196 \times 0.125 \times 0.020$ mm) was selected and mounted using a MiTeGen MicroMount loop, on the goniometer head of a D8 VENTURE Bruker AXS dual source diffractometer equipped with a (CPAD) PHOTON II detector, using Mo-Ka radiation from an IµS 3.0 source ($\lambda = 0.71073$ Å, multilayer optics) at T = 100 K. The crystal structure was solved in monoclinic symmetry and $P_{21/n}$ (I.T.#14) space group. Cell parameters have been refined as follows: a = 10.8294(9), b = 8.7426(7), c = 16.9192(10) Å, $a = 90, \beta = 91.869(3), \gamma = 90^{\circ}, V = 10.9192(10)$ 1601.0(2) Å³. The number of formula unit Z is equal to 4 and the calculated density d and absorption coefficient μ values are 1.213 g cm⁻³ and 0.234 mm⁻¹ respectively. The structure was solved by dualspace algorithm using the SHELXT program,¹⁰ and then refined with full-matrix least-squares methods based on F^2 (SHELXL)¹¹ within the APEX5 software suite.¹² All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters, except for the hydrogen atoms bonded to Si, which were found from the Fourier difference electron density map and their thermal parameters were freely refined. The residual bond electron densities were modelled using the IDEAL (Invariom Derived Electron Analysis)¹³ plugin within the APEX5 software suite. The final refinement on F^2 with 3981 unique intensities and 196 parameters converged at w $R_F^2 = 0.0541$ ($R_F = 0.0213$) for 3654 observed reflections with $I > 2\sigma(I)$.

References

- 1 PCT Int. Appl., 2015, WO 2015030071 A1 Mar 05, 2015.
- 2 Y-Y. Huang, H-L. Zhang, G-J. Deng, W-J. Tang, X-Y. Wang, Y-M. He and Q-H. Fan, *J. Mol. Catal. A: Chem.*, 2005, **227**, 91.
- 3 K. Izod, J. Stewart, E. R. Clark, W. McFarlane, B. Allen, W. Clegg and R. W. Harrington, *Organometallics*, 2009, **28**, 3327–3337.
- 4 R. C. Larock, *Comprehensive Organic Transformations A Guide to Functional Group Preparations*, 2nd edition, page 876, 1999, Wiley-VCH.
- 5 M. Westerhausen, *Inorg. Chem.*, 1991, **30**, 96.
- 6 W. Li, H. Chung, C. Daeffler, J. A. Johnson and R. H. Grubbs, *Macromolecules*, 2012, **45**, 9595.
- a) C. Bellini, J.-F. Carpentier, S. Tobisch and Y. Sarazin, *Angew. Chem. Int. Ed.*, 2015, 54, 7679;
 Angew. Chem., 2015, 127, 7789. b) C. Bellini, V. Dorcet, J.-F. Carpentier, S. Tobisch and Y. Sarazin, *Chem. Eur. J.*, 2016, 22, 4564.
- 8 L. J. Morris, G. R. Whittell, J.-C. Eloi, M. F. Mahon, F. Marken, I. Manners and M. S. Hill, *Organometallics*, 2019, **38**, 3629.
- 9 C. Huggett, *Fire Mater.*, 1980, **4**, 61.
- 10 G. M. Sheldrick, Acta Crystallogr. A, 2015, 71, 3.
- 11 G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3.
- 12 APEX5, Bruker AXS Inc., Madison, Wisconsin, USA, 2023.
- 13 J. Lübben, C. M. Wandtke, C. B. Hübschle, M. Ruf, G. M. Sheldrick and B. Dittrich, *Acta Crystallogr. A*, 2019, **75**, 50.

Author contributions

P. M. Chapple and A. Soran performed synthetic experimental work and data analysis, and assisted in the writing of the draft. participated to the design of experiments and analysis of experimental data. C. Longuet and R. Sonnier conducted the analysis of polymer properties, and participated to the preparation of the manuscript. J.-F. Carpentier and Y. Sarazin secured the funding, participated to the design of experiments, analysis of experimental data and writing of the draft.

Figure S6. ¹H NMR spectrum ([D₆]benzene, 300.13 MHz, 298 K) of Ph₂P(*p*-Si(OEt₃)₃C₆H₄).

 $\frac{1}{10} \frac{1}{20} \frac{1}{200} \frac{1}{200} \frac{1}{100} \frac{1}{1$

Figure S8. $^{29}Si\{^1H\}$ INEPT NMR spectrum ([D₆]benzene, 79.49 MHz, 302 K) of Ph_2P(p-Si(OEt_3)_3C_6H_4).

Figure S9. ³¹P{¹H} NMR spectrum ([D₆]benzene, 121.50 MHz, 298 K) of Ph₂P(*p*-Si(OEt₃)₃C₆H₄).

Figure S10. ¹H NMR spectrum ([D₆]benzene, 300.13 MHz, 299 K) of 4-Ph₂P-C₆H₄SiH₃ (A).

Figure S11. ¹³C{¹H} NMR spectrum ([D₆]benzene, 75.48 MHz, 299 K) of 4-Ph₂P-C₆H₄SiH₃ (**A**).

Figure S12. ³¹P{¹H} NMR spectrum ([D₆]benzene, 121.50 MHz, 300 K) of 4-Ph₂P-C₆H₄SiH₃ (A).

Figure S13. ²⁹Si{¹H} INEPT NMR spectrum ([D₆]benzene, 79.49 MHz, 302 K) of 4-Ph₂P-C₆H₄SiH₃ (**A**).

Figure S14. ¹H NMR spectrum ([D₆]benzene, 400.13 MHz, 298 K) of 1,4-(CH₂NHMe)₂-C₆H₄ (C).

Figure S15. ¹H NMR spectrum ([D₆]benzene, 400.16 MHz, 298 K) of 4-Ph₂P-C₆H₄CH₂NHSiPh₃.

Figure S16. ¹³C{¹H} NMR spectrum ([D₆]benzene, 100.63 MHz, 298 K) of 4-Ph₂P-C₆H₄CH₂NHSiPh₃.

Figure S17. 200 150 100 50 0 ${}^{-50}$ ${}^{-100}$ ${}^{-150}$ ${}^{-20}$ ${}^{-20}$ Figure S17. ${}^{31}P{}^{1}H{}$ NMR spectrum ([D₆]benzene, 161.99 MHz, 298 K) of 4-Ph₂P-C₆H₄CH₂NHSiPh₃.

Figure S18. ¹H NMR spectrum ($[D_6]$ benzene, 500.13 MHz, 300 K) of 4-Ph₂P-C₆H₄CH₂NHSiPh₂H. The final product is contaminated by another compound assumed to be $[(4-Ph_2P-C_6H_4CH_2)NSiPh_2]_2$ (*).

Figure S19. ${}^{13}C{}^{1}H$ NMR spectrum ([D₆]benzene, 125.77 MHz, 300 K) of 4-Ph₂P-C₆H₄CH₂NHSiPh₂H.

Figure S21. ²⁹Si{¹H} INEPT NMR spectrum ([D₆]benzene, 79.49 MHz, 298 K) of 4-Ph₂P-C₆H₄CH₂NHSiPh₂H.

 $C_6H_4SiH\{N(Me)CH_2Ph\}_2.$

Figure S23. ¹³C{¹H} NMR spectrum of 4-PPh₂-C₆H₄SiH{N(Me)CH₂Ph}₂ ([D₆]benzene, 125.77 MHz, 300 K).

240 220 200 180 160 100 60 40 20 0 -20 -40 -60 -100 -120 -140 -160 -180 -20 Figure S24. ${}^{31}P{}^{1}H$ NMR spectrum ([D₆]benzene, 202.46 MHz, 300 K) of 4-PPh₂- $C_6H_4SiH\{N(Me)CH_2Ph\}_2$. The minor impurity at δ_P –6.39 ppm could not be identified.

-80

80

140 120

Figure S25. ¹H NMR spectrum ([D₆]benzene, 300.13 MHz, 298 K) of **co-PhPZ-0**, product of the 1:1 dehydropolymerisation of 4-Ph₂P-C₆H₄SiH₃ (**A**) and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by [Ba{N(SiMe₃)₂}₂]₂ (7.5 mol-%).

Figure S26. ¹³C{¹H} NMR spectrum ([D₆]benzene, 75.48 MHz, 299 K) of **co-PhPZ-0**, product of the 1:1 dehydropolymerisation of 4-Ph₂P-C₆H₄SiH₃ (**A**) and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by [Ba{N(SiMe₃)₂}₂]₂ (7.5 mol-%).

Figure S27. ²⁹Si{¹H} INEPT NMR spectrum ([D₆]benzene, 79.49 MHz, 302 K) of **co-PhPZ-0**, product of the 1:1 dehydropolymerisation of 4-Ph₂P-C₆H₄SiH₃ (**A**) and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by [Ba{N(SiMe₃)₂}₂]₂ (7.5 mol-%).

Figure S28. ³¹P{¹H} NMR spectrum ([D₆]benzene, 121.50 MHz, 298 K) of **co-PhPZ-0**, product of the 1:1 dehydropolymerisation of 4-Ph₂P-C₆H₄SiH₃ (**A**) and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by [Ba{N(SiMe₃)₂}₂]₂ (7.5 mol-%).

Figure S29. ¹H NMR spectrum ([D₆]benzene, 300.13 MHz, 298 K) of **co-PhPZ-1**, product of the 1:1 dehydropolymerisation of 4-Ph₂P-C₆H₄SiH₃ (**A**) and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by [Ba{N(SiMe₃)₂}₂]₂ (10 mol-%).

Figure S30. ¹³C{¹H} NMR spectrum ([D₆]benzene, 125.77 MHz, 300 K) of **co-PhPZ-1**, product of the 1:1 dehydropolymerisation of 4-Ph₂P-C₆H₄SiH₃ (**A**) and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by [Ba{N(SiMe₃)₂}₂]₂ (10 mol-%).

85 80 35 30 25 -5 -10 -15 -20 -25 -30 -35 Figure S31. ³¹P{¹H} NMR spectrum ([D₆]benzene, 161.99 MHz, 298 K) of co-PhPZ-1, product of the 1:1 dehydropolymerisation of $4-Ph_2P-C_6H_4SiH_3$ (A) and $1,4-(CH_2NHMe)_2-C_6H_4$ (C) catalysed by

 $[Ba{N(SiMe_3)_2}_2]_2 (10 \text{ mol-}\%).$

Figure S32. ²⁹Si{¹H} INEPT NMR spectrum ([D₆]benzene, 79.49 MHz, 302 K) of **co-PhPZ-1**, product of the 1:1 dehydropolymerisation of $4-Ph_2P-C_6H_4SiH_3$ (**A**) and $1,4-(CH_2NHMe)_2-C_6H_4$ (**C**) catalysed by [Ba{N(SiMe_3)_2}_2] (10 mol-%).

Figure S33. ¹H NMR spectrum ([D₆]benzene, 400.16 MHz, 298 K) of **ter-PhCZ-4**, product of the 50:50:95 dehydropolymerisation of 4-Ph₂P-C₆H₄SiH₃ (**A**), PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by [Ba{N(SiMe₃)₂}₂]₂ (10 mol-%). A number of unidentified resonances (?) could not be assigned.

Figure S34. ¹³C{¹H} NMR spectrum ([D₆]benzene, 125.77 MHz, 300 K) of **ter-PhCZ-4**, product of the 50:50:95 dehydropolymerisation of 4-Ph₂P-C₆H₄SiH₃ (**A**), PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by [Ba{N(SiMe₃)₂}₂]₂ (10 mol-%).

Figure S35. ³¹P{¹H} NMR spectrum ([D₆]benzene, 161.99 MHz, 298 K) of **ter-PhCZ-4**, product of the 50:50:95 dehydropolymerisation of 4-Ph₂P-C₆H₄SiH₃ (**A**), PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by [Ba{N(SiMe₃)₂}₂]₂ (10 mol-%). The residual resonance at -6.40 could not be assigned.

Figure S36. ²⁹Si{¹H} INEPT NMR spectrum ([D₆]benzene, 79.49 MHz, 302 K) of **ter-PhCZ-4**, product of the 50:50:95 dehydropolymerisation of 4-Ph₂P-C₆H₄SiH₃ (**A**), PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by [Ba{N(SiMe₃)₂}₂]₂ (10 mol-%).

45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70

Figure S37. ¹H NMR spectrum ($[D_6]$ benzene, 500.13 MHz, 300 K) of **co-PZ-8**, product of the 100:100 dehydropolymerisation of PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by $[Ba{N(SiMe_3)_2}_2]_2$ (10 mol-%).

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5

Figure S38. ¹³C{¹H} NMR spectrum ([D₆]benzene, 125.77 MHz, 300 K) of **co-PZ-8**, product of the 100:100 dehydropolymerisation of PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by $[Ba{N(SiMe_3)_2}_{2}]_2$ (10 mol-%).

Figure S39. ²⁹Si{¹H} INEPT NMR spectrum ([D₆]benzene, 79.49 MHz, 302 K) of **co-PZ-8**, product of the 100:100 dehydropolymerisation of PhSiH₃ and 1,4-(CH₂NHMe)₂-C₆H₄ (C) catalysed by $[Ba{N(SiMe_3)_2}_2]_2$ (10 mol-%).

-90 -110 -130 -150 -170 -190

-10 -30 -50 -70

-2!

-230

-210

.50

130

110

90

70

50

30

10

Figure S40. ¹H NMR spectrum ([D₆]benzene, 500.13 MHz, 300 K) of **co-PZ-11**, product of the 100:100 dehydropolymerisation of Ph₂SiH₂ and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by $[Ba{N(SiMe_3)_2}_2]_2$ (10 mol-%).

Figure S41. ¹³C{¹H} NMR spectrum ([D₆]benzene, 125.77 MHz, 300 K) of **co-PZ-11**, product of the 100:100 dehydropolymerisation of Ph_2SiH_2 and $1,4-(CH_2NHMe)_2-C_6H_4$ (**C**) catalysed by $[Ba\{N(SiMe_3)_2\}_2]_2$ (10 mol-%).

Figure S42. ²⁹Si{¹H} INEPT NMR spectrum ([D₆]benzene, 79.49 MHz, 302 K) of **co-PZ-11**, product of the 100:100 dehydropolymerisation of Ph_2SiH_2 and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by $[Ba{N(SiMe_3)_2}_2]_2$ (10 mol-%).

-70

-90 -110 -130 -150 -170 -190

-210

-230 -25

-30 -50

.50 130

110

90

70

50

30

10

-10

Figure S43. 2D ROESY NMR spectrum of **co-PhPZ-3**, product of the 1:1 dehydropolymerisation of 4-Ph₂P-C₆H₄SiH₃ (**A**) and 1,4-(CH₂NHMe)₂-C₆H₄ (**C**) catalysed by $[Ba{N(SiMe_3)_2}_2]_2$ (10 mol-%). It shows clear through-bond coupling between the hydrosilane, methylene protons and methyl protons.