Electronic Supplementary Information

for the manuscript entitled

Acceptorless oxidant-free dehydrogenation of amines catalyzed by Ruhydride complexes of amide-acid/ester ligands

Samanta Yadav and Rajeev Gupta*

Department of Chemistry, University of Delhi, Delhi 110007, India

E-mail: rgupta@chemistry.du.ac.in

Figure S1. FTIR spectrum of ligand HL1.

Figure S2. FTIR spectrum of ligand HL2.

Figure S3. FTIR spectrum of ligand HL3.

Figure S4. FTIR spectrum of ligand HL4.

Figure S5. FTIR spectrum of complex 1.

Figure S6. FTIR spectrum of complex 2.

Figure S7. FTIR spectrum of complex 3.

Figure S8. FTIR spectrum of complex 4.

Figure S9. ¹H NMR spectrum of ligand HL1 in CDCl₃. # and * represent CDCl₃ and residual solvent/ H_2O peak, respectively.

Figure S10. ¹H NMR spectrum of ligand HL2 in DMSO- d_6 . # and * represent DMSO- d_6 and residual solvent/ H₂O peak, respectively.

Figure S12. ¹H NMR spectrum of ligand HL4 in DMSO- d_6 . # and * represent DMSO- d_6 and residual solvent/ H₂O peak, respectively.

Figure S13. ¹H NMR spectrum of complex 1 in $CDCl_3$. # and * represent $CDCl_3$ and residual solvent/ H_2O peak, respectively.

Figure S14. ¹H NMR spectrum of complex 2 in $CDCl_3$. * represents $CDCl_3$ /residual solvent/ H_2O peak.

Figure S15. ¹H NMR spectrum of complex 3 in CDCl₃. # represents CDCl₃.

Figure S16. ¹H NMR spectrum of complex **4** in CDCl₃. * represents CDCl₃ /residual solvent/ H₂O peak.

Figure S18. ¹³C NMR spectrum of ligand HL2 in DMSO-d₆. # Represent DMSO-d₆.

Figure S19. ¹³C NMR spectrum of ligand HL3 in CDCl₃. # Represents CDCl₃.

Figure S21. ¹³C NMR spectrum of complex 1 in CDCl₃. * represents CDCl₃.

Figure S22. ¹³C NMR spectrum of complex 2 in DMSO- d_6 . * represents DMSO- d_6 .

Figure S23. ¹³C NMR spectrum of complex 3 in CDCl₃. * represents CDCl₃.

Figure S24. ¹³C NMR spectrum of complex 4 in $CDCl_3$. # and * represent $CDCl_3$ and residual solvent, respectively.

Figure S25. ³¹P NMR spectrum of complex 1 in CDCl₃.

Figure S26. ³¹P NMR spectrum of complex 2 in DMSO- d_6 .

Figure S27. ³¹P NMR spectrum of complex 3 in CDCl₃.

Figure S28. ³¹P NMR spectrum of complex 4 in CDCl₃.

Figure S29. UV-Vis spectra of complexes 1-4 recorded in MeOH.

Figure S30. ESI+-MS spectrum of ligand HL1 in MeOH.

Figure S32. ESI⁺-MS spectrum of ligand HL3 in MeOH.

Figure S33. ESI⁺-MS spectrum of ligand HL4 in MeOH.

Figure S34. ESI⁺-MS spectrum of complex **1** in MeOH. Inset: Experimental (green) and simulated (red) patterns for the molecular ion peak at m/z = 925.1894 [M–Cl]⁺ for complex **1**.

Figure S35. ESI⁺-MS spectrum of complex **2** in MeOH. Inset: Experimental (green) and simulated (red) patterns for the molecular ion peak at m/z = 897.1577 [M–Cl]⁺ for complex **2**.

Figure S36. ESI⁺-MS spectrum of complex **3** in MeOH. Inset: Experimental (green) and simulated (red) patterns for the molecular ion peak at m/z = 925.1942 [M–Cl]⁺ for complex **3**.

Figure S37. ESI⁺-MS spectrum of complex **4** in MeOH. Inset: Experimental (green) and simulated (red) patterns for the molecular ion peak at m/z = 897.1632 [M–Cl]⁺ for complex **4**.

Figure S38. Cyclic voltammograms for complexes 1 - 4. Conditions: solvent, DMF; complex, ca. 1 mM; supporting electrolyte, TBAP, ca. 100 mM; working electrode, glassy carbon; reference electrode, Ag/Ag⁺; auxiliary electrode, Pt wire; scan rate, 100 mV/s.

Figure S39. ¹H NMR spectrum of complex 5 in $CDCl_3$. # and * represent $CDCl_3$ and residual solvent/ H_2O peak, respectively.

Figure S40. ¹³C NMR spectrum of complex 5 in CDCl₃. # represents CDCl₃.

Figure 41. ³¹P NMR spectrum of complex 5 in CDCl₃.

Figure S42. ¹H NMR spectrum of butyronitrile (table 2, entry 1) in CDCl₃. * represents CDCl₃ peak.

Figure S43. ¹H NMR spectrum of octanenitrile (table 2, entry 2) in CDCl₃. * represents CDCl₃ peak.

2.36 2.34 2.32 2.32 1.45 1.45 1.45 1.43 1.41 1.41 1.32 1.30

CN

Figure S44. ¹H NMR spectrum of 2-morpholinoacetonitrile (table 2, entry 3) in CDCl₃. * represents CDCl₃ peak.

Figure S45. ¹H NMR spectrum of 2-phenoxyacetonitrile (table 2, entry 4) in CDCl₃. * represents CDCl₃ peak.

Figure S46. ¹H NMR spectrum of benzonitrile (table 3, entry 1) in CDCl₃. * and # represent CDCl₃ and H₂O peaks, respectively.

Figure S47. ¹H NMR spectrum of 4-methylbenzonitrile (table 3, entry 2) in CDCl₃. * and # represent CDCl₃ and H_2O peaks, respectively.

Figure S48. ¹H NMR spectrum of 2-aminobenzonitrile (table 3, entry 3) in CDCl₃. * and # represent CDCl₃ and H₂O peaks, respectively.

Figure S49. ¹H NMR spectrum of 4-aminobenzonitrile (table 3, entry 4) in CDCl₃. * and # represent CDCl₃ and H_2O peaks, respectively.

Figure S50. ¹H NMR spectrum of 2-hydroxybenzonitrile (table 3, entry 5) in CDCl₃. * and # represent CDCl₃ and H_2O peaks, respectively.

Figure S51. ¹H NMR spectrum of 4-nitrobenzonitrile (table 3, entry 6) in CDCl₃. * and # represent CDCl₃ and H_2O peaks, respectively.

Figure S52. ¹H NMR spectrum of 4-chlorobenzonitrile (table 3, entry 7) in CDCl₃. * and # represent CDCl₃ and H₂O peaks, respectively.

7 358 7 354 7 354 7 354 7 354 7 354 7 354 7 354 7 355 7 355 7 355 7 355 7 355 7 355 7 355 7 355 7 355 7 355 7 355 7 355 8 355 7 355 8 355 7 355 8 355 7 355 8 355 7 355 8 355 7 355 8 355 7 355 8 355 7 355 8 355 7 355 8 355 7 355 8 355 7 355 8 355 7 355 8 355 7 355 8 355 7 355 8 355 7 3555

Figure S53. ¹H NMR spectrum of 2-chlorobenzonitrile (table 3, entry 8) in CDCl₃. * and # represent CDCl₃ and H_2O peaks, respectively.

Figure S54. ¹H NMR spectrum of 3-fluorobenzonitrile (table 3, entry 9) in CDCl₃. * and # represent CDCl₃ and H_2O peaks, respectively.

Figure S55. ¹H NMR spectrum of 4-bromobenzonitrile (table 3, entry 10) in CDCl₃. * and # represent CDCl₃ and H₂O peaks, respectively.

7.67 7.66 7.61 7.50 7.48 7.48

Figure S56. ¹H NMR spectrum of 3-bromobenzonitrile (table 3, entry 11) in CDCl₃. * and # represent CDCl₃ and H₂O peaks, respectively.

Figure S57. ¹H NMR spectrum of picolinonitrile (table 3, entry 12) in CDCl₃. * and # represent CDCl₃ and H_2O peaks, respectively.

Figure S58. ¹H NMR spectrum of nicotinonitrile (table 3, entry 13) in CDCl₃. * and # represent CDCl₃ and H_2O /residual solvent peaks, respectively.

Figure S59. ¹H NMR spectrum of isonicotinonitrile (table 3, entry 14) in CDCl₃. * and # represent CDCl₃ and H_2O peaks, respectively.

Figure S60. ¹H NMR spectrum of 1-naphthonitrile (table 3, entry 15) in CDCl₃. * and # represent CDCl₃ and H_2O peaks, respectively.

Figure S61. ¹H NMR spectrum of *N*-(pyridin-2-yl)methanimine (table 4, entry 1) in CDCl₃. * and # represent CDCl₃ and H₂O peaks, respectively.

Figure S62. ¹H NMR spectrum of *N*-(pyridin-4-yl)methanimine (table 4, entry 2) in CDCl₃. * and # represent CDCl₃ and H₂O peaks, respectively.

Figure S63. ¹H NMR spectrum of *N*-benzyl-1-phenylmethanimine (table 4, entry 7) in CDCl₃. * represents CDCl₃ peak.

Figure S64. Plot of absorbance at $\lambda = 400$ nm against concentration for the titration of complex 2 with benzylamine.

Figure S65. Molecular docking of complex **2** with a molecule of benzylamine (shown in yellow color) exhibiting hydrogen bonding, dihydrogen bonding, and $\pi_{arene} \cdots \pi_{arene}$ interactions (shown by red dots). Only selected hydrogen atoms (in orange color) are shown for clarity. Selected heteroatom separations (Å): (a) O3...N, 3.41, Ru1...N, 2.8, $\pi_{arene} \cdots \pi_{arene}$, 2.62.

Figure S66. A comparison of ¹H NMR spectra of complex **2** (brown trace) and a 1:1 mixture of complex **2** + benzylamine (green trace) recorded in CDCl₃.

Figure S67. GC calibration plot for benzylamine and benzonitrile.

Scheme S1. Proposed reaction mechanism for the double dehydrogenation of benzylamine catalyzed by complex 2. A gas chromatogram for the in-situ generated H_2 is shown adjacent to panel 'B'.

	2·CH₃OH	3·3CH ₃ OH·H ₂ O
CCDC No.	2402741	2402742
Empirical formula	$C_{52}H_{49}N_2O_6P_2RuCl$	$C_{55}H_{59}N_2O_8P_2RuCl$
Formula weight	996.43	1073.55
Temperature (K)	293(2)	293(2)
Wavelength (Å)	0.71073	0.71073
Crystal system	Triclinic	Monoclinic
Space group	Pī	$P2_{1}/n$
<i>a</i> (Å)	11.3027(3)	15.0241(2)
b(Å)	12.3655(4)	19.0497(3)
<i>c</i> (Å)	17.0464(5)	17.0542(3)
<i>α</i> (°)	82.161(2)	90
β (°)	83.388(2)	97.7020(10)
γ(°)	77.112(3)	90
Volume (Å ³)	2291.87(12)	4836.96(13)
Ζ	2	4
Density Mg/m ³ (calculated)	1.397	1.345
Absorption coefficient mm ⁻¹	0.516	0.491
<i>F</i> (000)	956	2008
Crystal size (mm ³)	0.24 x 0.20 x 0.16	0.25 x 0.19 x 0.16
Theta range for data collection	3.403 to 24.998°	3.116 to 27.455°
Index ranges	-13<=h<=13, -14<=k<=14, -20<=l<=20	-18<=h<=19, -24<=k<=24, -22<=l<=21
Reflections collected	27963	73595
Independent reflections	8085 [R(int) = 0.0362]	11070 [R(int) = 0.0454]
Completeness to theta = 25°	99.8 %	99.8 %
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	8085 / 176 / 579	10535 / 932 / 563
Goodness of-fit on F^2	1.039	1.072
Final R indices [I>2sigma(I)] ^{a,b}	$R_1 = 0.0416, wR_2 = 0.0966$	$R_1 = 0.0315, wR_2 = 0.0824$
R indices (all data)	$R_1 = 0.0493, wR_2 = 0.1004$	$R_1 = 0.0405, wR_2 = 0.0859$
Largest diff. peak and hole (e.Å ⁻³)	1.081 and -0.607	0.382 and -0.437

Table S1. X-ray diffraction data collection and structure refinement parameters for complexes2 and 3.

 ${}^{\mathrm{a}}R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; {}^{\mathrm{b}}wR = \{ \Sigma [w(F_o{}^2 - F_c{}^2)^2] / \Sigma [wF_o{}^4] \}^{1/2}$

Bond Length (Å)	2	3
Ru(1)-C(1)	1.843(4)	1.800(2)
Ru(1)-N(1)	2.175(2)	2.174(15)
Ru(1)-O(1)	2.153(2)	2.164(11)
Ru(1)-P(1)	2.3584(8)	2.3579(5)
Ru(1)-P(2)	2.3460(8)	2.3565(5)
Ru(1)-H(1)	1.619(10)	1.621(16)

Table S2. Selected bond distances (Å) and bond angles (°) for complexes 2 and 3.

Bond Angles (°)	2	3
C(1)-Ru(1)-O(1)	172.52(12)	173.49(7)
C(1)-Ru(1)-N(1)	98.54(13)	99.38(8)
O(1)-Ru(1)-N(1)	74.19(8)	74.16(5)
C(1)-Ru(1)-P(1)	89.54(11)	92.69(7)
O(1)-Ru(1)-P(1)	89.31(6)	88.76(3)
N(1)-Ru(1)-P(1)	94.51(7)	94.96(4)
C(1)-Ru(1)-P(2)	91.01(11)	92.01(7)
O(1)-Ru(1)-P(2)	91.11(6)	87.69(3)
N(1)-Ru(1)-P(2)	92.95(7)	94.06(4)
P(1)-Ru(1)-P(2)	172.36(3)	169.016(19)
C(1)-Ru(1)-H(1)	91.6(15)	86.4(6)
O(1)-Ru(1)-H(1)	95.9(15)	100.0(6)
N(1)-Ru(1)-H(1)	167.0(15)	174.2(6)
P(1)-Ru(1)-H(1)	93.8(16)	85.5(5)
P(2)-Ru(1)-H(1)	78.6(15)	84.9(6)

S.No.	Concentration	Absorbance	Extinction Coefficient, ε
	(M)*10 ⁻⁶	(a.u.)	$(M^{-1} cm^{-1})$
1	70	0.07011	1001.57
2	80	0.08254	1031.75
3	90	0.09021	1003.33
4	100	0.09923	992.3
5	110	0.1151	1046.36
6	120	0.1189	990.83
7	130	0.1241	954.61
8	140	0.1352	965.71
9	150	0.1445	963.33
10	160	0.1491	931.87
11	170	0.1528	898.82
12	180	0.1642	911.66

Table S3. Calculation of extinction coefficient using the concentration and absorbance at $\lambda = 400$ nm for the titration of complex **2** with benzylamine.

Table S4. Computational data for the molecular docking studies of complex **2** with a molecule of benzylamine.

$\label{eq:clst} \begin{array}{ccc} Clst & E_{total} & E_{shape} & E_{force} & E_{air} & Bmp \ RMS \end{array}$				
1 1264 1264 0.0 0.0 1 1.00				
1 -120.4 -120.4 0.0 0.0 1 1.00				
REMARK Docked receptor coordinates REMARK Docked ligand coordinates				
REMARK model "benzylamine", ID: 004a011a00080006 REMARK model "complex 2", ID: 004a011a00080006				
HETATM 1 N 1 1.928 1.675 0.265 1.00 99.99	HETATM 18 Ru1 UNK 1 4.605 -1.471 1.290 1.00 2.58			
HETATM 2 C 1 1.223 1.096 -0.887 1.00 99.99	HETATM 19 P2 UNK 1 6.430 -0.098 0.751 1.00 2.55			
HETATM 3 C 1 0.212 0.089 -0.391 1.00 99.99	HETATM 20 P1 UNK 1 2.611 -2.691 1.613 1.00 2.67			
HETATM 4 C 1 0.413 -1.233 -0.537 1.00 99.99	HETATM 21 O2 UNK 1 4.004 -0.129 2.862 1.00 2.83			
HETATM 5 C 1 -0.491 -2.120 -0.092 1.00 99.99	HETATM 22 N2 UNK 1 3.685 0.106 5.082 1.00 3.06			
HETATM 6 C 1 -1.612 -1.693 0.507 1.00 99.99	HETATM 23 H6 UNK 1 3.925 -0.145 5.868 1.00 3.63			
HETATM 7 C 1 -1.824 -0.377 0.659 1.00 99.99	HETATM 24 O4 UNK 1 -0.339 4.795 3.654 1.00 5.88			
HETATM 8 C 1 -0.916 0.505 0.212 1.00 99.99	HETATM 25 H7 UNK 1 -0.991 5.292 3.634 1.00 8.84			
HETATM 9 H 1 2.462 2.514 -0.020 1.00 99.99	HETATM 26 N1 UNK 1 5.556 -2.215 3.098 1.00 2.74			
HETATM 10 H 1 1.238 2.009 0.961 1.00 99.99	HETATM 27 O3 UNK 1 -1.419 3.927 5.377 1.00 6.88			
HETATM 11 H 1 1.963 0.642 -1.586 1.00 99.99	HETATM 28 C10 UNK 1 2.795 2.138 4.051 1.00 3.15			
HETATM 12 H 1 0.702 1.909 -1.443 1.00 99.99	HETATM 29 H10 UNK 1 3.543 2.194 3.502 1.00 3.79			
HETATM 13 H 1 1.331 -1.601 -1.025 1.00 99.99	HETATM 30 C11 UNK 1 1.790 3.078 3.950 1.00 3.17			
HETATM 14 H 1 -0.311 -3.201 -0.218 1.00 99.99	HETATM 31 H11 UNK 1 1.862 3.770 3.334 1.00 3.79			
HETATM 15 H 1 -2.356 -2.420 0.874 1.00 99.99	HETATM 32 C45 UNK 1 1.157 -1.745 2.179 1.00 3.06			
HETATM 16 H 1 -2.744 -0.020 1.152 1.00 99.99	HETATM 33 C12 UNK 1 0.668 2.992 4.769 1.00 3.28			
HETATM 17 H 1 -1.102 1.584 0.344 1.00 99.99	HETATM 34 C27 UNK 1 7.923 -0.565 1.663 1.00 2.71			
	HETATM 35 C9 UNK 1 2.683 1.107 4.973 1.00 2.96			
	HETATM 36 C23 UNK 1 6.981 -0.098 -1.004 1.00 3.00			
	HETATM 37 C33 UNK 1 1.948 -3.619 0.173 1.00 3.12			
	HETATM 38 O1 UNK 1 5.584 -3.591 -0.574 1.00 6.02			
	HETATM 39 C15 UNK 1 6.174 1.686 1.047 1.00 3.30			
	HETATM 40 C38 UNK 1 2.272 -3.221 -1.106 1.00 3.64			
	HETATM 41 H38 UNK 1 2.860 -2.511 -1.235 1.00 4.34			
	HETATM 42 C50 UNK 1 1.105 -0.376 2.031 1.00 3.35			

HETATM	43	H50 UNK	1	1.838 0.066 1.665 1.00 4.03
HETATM	44	C37 UNK	1	1.721 -3.878 -2.209 1.00 4.29
HETATM	45	H37 UNK	1	1.948 -3.607 -3.071 1.00 5.13
HETATM	46	C7 UNK	1	4.273 -0.461 4.034 1.00 2.72
HETATM	47	C26 UNK	1	7.774 0.053 -3.660 1.00 4.72
HETATM	48	H26 UNK	1	8.033 0.110 -4.551 1.00 5.68
HETATM	49	C5 UNK	1	7.087 -3.556 4.328 1.00 4.81
HETATM	50	H3 UNK	1	7.697 -4.258 4.340 1.00 5.76
HETATM	51	C34 UNK	1	1.069 -4.664 0.331 1.00 4.30
HETATM	52	H34 UNK	1	0.833 -4.945 1.185 1.00 5.13
HETATM	53	C13 UNK	1	0.596 1.981 5.716 1.00 4.13
HETATM	54	H13 UNK	1	-0.138 1.934 6.287 1.00 4.97
HETATM	55	C28 UNK	1	8.195 -0.054 2.924 1.00 3.53
HETATM	56	H28 UNK	1	7.675 0.636 3.269 1.00 4.26
HETATM	57	C42 UNK	1	3,708 - 5,735 4,826 1,00 13,72
HETATM	58	H42 UNK	1	3.995 -6.332 5.481 1.00 16.50
HETATM	59	C39 UNK	1	2,864 -3,962 2,873 1,00 4,30
HETATM	60	C20 UNK	1	7 221 2 560 1 222 1 00 4 51
HETATM	61	H20 UNK	1	8.092 2.238 1.260 1.00 5.45
HETATM	62	C21 LINK	1	6 186 -0 621 -2 004 1 00 4 06
HETATM	62	H21 UNK	1	5 375 -1 021 -1 788 1 00 4 82
HETATM	64	C36 UNK	1	0.862 _4.908 _2.035 1.00 4.50
HETATM	65	H36 UNK	1	0.497 -5.342 -2.773 1.00 4.39
HETATM	66	C22 LINK	1	8 189 0 499 _1 257 1 00 3.33
HETATM	67	H22 UNK	1	8 743 0 852 0 600 1 00 4 66
HETATM	607	CE UNK	1	6.745 0.852 -0.099 1.00 4.00
HETATM	60	U2 UNK	1	6.445 -5.221 5.161 1.00 5.02
HETATM	70	C2 UNK	1	0.034 -3.704 2.388 1.00 4.34
HEIAIM	70	US UNK	1	5.901 -1.831 5.425 1.00 4.16
HEIAIM	/1	H5 UNK	1	5./06 -1.33/ 6.189 1.00 4.9/
HEIAIM	72	C32 UNK	1	8.703 -1.606 1.180 1.00 3.66
HEIAIM	73	H32 UNK	1	8.524 -1.966 0.340 1.00 4.42
HETATM	74	C24 UNK	1	6.591 -0.551 -3.328 1.00 4.88
HEIAIM	75	H24 UNK	1	6.055 -0.917 -3.995 1.00 5.84
HETATM	76	C2 UNK	1	5.281 -1.549 4.237 1.00 2.86
HETATM	77	C25 UNK	1	8.566 0.569 -2.690 1.00 4.44
HETATM	78	H25 UNK	1	9.372 0.974 -2.921 1.00 5.29
HETATM	79	C30 UNK	1	10.024 -1.589 3.166 1.00 4.89
HETATM	80	H30 UNK	1	10.741 -1.915 3.659 1.00 5.84
HETATM	81	C8 UNK	1	1.606 1.039 5.819 1.00 3.85
HETATM	82	H8 UNK	1	1.556 0.366 6.459 1.00 4.66
HETATM	83	C31 UNK	1	9.747 -2.115 1.941 1.00 4.65
HETATM	84	H31 UNK	1	10.261 -2.818 1.613 1.00 5.61
HETATM	85	C49 UNK	1	-0.002 0.356 2.408 1.00 4.68
HETATM	86	H49 UNK	1	-0.018 1.280 2.295 1.00 5.61
HETATM	87	C1 UNK	1	5.200 -2.771 0.110 1.00 3.83
HETATM	88	C14 UNK	1	-0.469 3.946 4.646 1.00 3.97
HETATM	89	C29 UNK	1	9.243 -0.572 3.677 1.00 4.66
HETATM	90	H29 UNK	1	9.418 -0.232 4.525 1.00 5.61
HETATM	91	C16 UNK	1	4.876 2.197 1.009 1.00 4.00
HETATM	92	H16 UNK	1	4.159 1.615 0.902 1.00 4.82
HETATM	93	C4 UNK	1	6.824 -2.856 5.473 1.00 5.27
HETATM	94	H4 UNK	1	7.258 -3.066 6.267 1.00 6.32
HETATM	95	C35 UNK	1	0.532 -5.302 -0.779 1.00 5.06
HETATM	96	H35 UNK	1	-0.060 -6.009 -0.661 1.00 6.08
HETATM	97	C47 UNK	1	-1.058 -1.653 3.113 1.00 6.41
HETATM	98	H47 UNK	1	-1.793 -2.087 3.482 1.00 7.66
HETATM	99	C46 UNK	1	0.057 -2.386 2.726 1.00 4.89
HETATM	100	H46 UNK	1	0.065 -3.309 2.833 1.00 5.84
HETATM	101	C48 UNK	1	-1.076 -0.293 2.951 1.00 6.12
HETATM	102	H48 UNK	1	-1.825 0.192 3.213 1.00 7.34
HETATM	103	C19 UNK	1	6.976 3.940 1.342 1.00 6.10
HETATM	104	H19 UNK	1	7.683 4.534 1.450 1.00 7.34

HETATM 105	5 C40 UNK	1	3.499 -5.121 2.516 1.00 6.84
HETATM 106	6 H40 UNK	1	3.667 -5.305 1.620 1.00 8.21
HETATM 107	7 C17 UNK	1	4.640 3.547 1.123 1.00 5.33
HETATM 108	8 H17 UNK	1	3.770 3.873 1.083 1.00 6.40
HETATM 109	9 C18 UNK	1	5.680 4.402 1.297 1.00 6.39
HETATM 110	0 H18 UNK	1	5.515 5.313 1.387 1.00 7.66
HETATM 111	1 C44 UNK	1	2.670 -3.669 4.199 1.00 6.73
HETATM 112	2 H44 UNK	1	2.253 -2.878 4.457 1.00 8.05
HETATM 113	3 C41 UNK	1	3.890 -6.016 3.490 1.00 11.95
HETATM 114	4 H41 UNK	1	4.284 -6.820 3.242 1.00 14.37
HETATM 115	5 C43 UNK	1	3.118 -4.600 5.160 1.00 11.11
HETATM 116	6 H43 UNK	1	2.993 -4.407 6.060 1.00 13.34
HETATM 117	7 H1 UNK	1	3.918 -0.404 -0.132 1.00 -0.08
HETATM 118	8 Cl1 UNK	1	3.780 -0.997 8.113 1.00 5.76
HETATM 112 HETATM 113 HETATM 114 HETATM 116 HETATM 117 HETATM 118	 H44 UNK C41 UNK H41 UNK C43 UNK H43 UNK H1 UNK C11 UNK 	1 1 1 1 1 1	2.253 -2.878 4.457 1.00 8.05 3.890 -6.016 3.490 1.00 11.95 4.284 -6.820 3.242 1.00 14.37 3.118 -4.600 5.160 1.00 11.11 2.993 -4.407 6.060 1.00 13.34 3.918 -0.404 -0.132 1.00 -0.08 3.780 -0.997 8.113 1.00 5.76