Tetra-Coordinated Organoboron Complexes with Triaminoguanidine-Salicylidene based Ligands: Aggregation Induced Enhanced Emission and Mechanoresponsive Features

Balamurugan Tharmalingam,^{#a,b} Rajendran Kishore Kumar,^{#a} Ottoor Anitha,^a Werner Kaminsky,^c Jan Grzegorz Malecki,^d Balasubramanian Murugesapandian^{a,*}

^aDepartment of Chemistry, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India. E-mail: <u>mpandian@gmail.com</u>; <u>bmurugesapandian@buc.edu.in</u> Fax: +91-422-2422387; Tel: +91-422-2428312.

^bState Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (P. R. China) ^cDepartment of Chemistry, University of Washington, Seattle, WA 98195, USA.

^d Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland

[#] Equal contribution

Table of Contents

1	Table S1. Comparative table between previously reported organoboron AIE gen bearing ESIPT unit	S5, S6
2	Fig. S1. ¹ H NMR Spectrum of 6 in DMSO- d_6 .	S7
3	Fig. S2. ¹³ C NMR Spectrum of 6 in DMSO- d_6 .	S8
4	Fig. S3. ¹¹ B NMR Spectrum of 6 in DMSO- d_6 .	S8
5	Fig. S4. The HRMS of compound 6.	S9
6	Fig. S5. ¹ H NMR Spectrum of 7 in CDCl ₃ .	S10
7	Fig. S6. ¹³ C NMR Spectrum of 7 in DMSO- d_6 .	S11
8	Fig. S7. ¹¹ B NMR Spectrum of 7 in CDCl ₃ .	S11
9	Fig. S8. The HRMS of compound 7.	S12

10	Fig. S9. ¹ H NMR Spectrum of 8 in DMSO- d_6					
11	Fig. S10. ¹³ C NMR Spectrum of 8 in DMSO- d_6 .	S13				
12	Fig. S11. ¹¹ B NMR Spectrum of 8 in CDCl ₃ .	S14				
13	Fig. S12. The HRMS of compound 8.	S15				
14	Fig. S13. ¹ H NMR Spectrum of 9 in DMSO- d_6 .	S16				
15	Fig. S14. ¹³ C NMR Spectrum of 9 in DMSO- d_6 .	S16				
16	Fig. S15 ¹¹ B NMR Spectrum of 9 in CDCl ₃ .	S17				
17	Fig. S16. The HRMS of compound 9.	S18				
18	Fig. S17. ¹ H NMR Spectrum of 10 in DMSO- d_6 .	S19				
19	Fig. S18. ¹³ C NMR Spectrum of 10 in DMSO- d_6 .	S19				
20	Fig. S19. ¹¹ B NMR Spectrum of 10 in DMSO- d_6 .	S20				
21	Fig. S20. The HRMS of compound 10.	S21				
22	Fig. S21 Two-dimensional chain like supramolecular network of 6.	S22				
23	Fig. S22 Two-dimensional polymeric supramolecular network of 7.	S22				
24	Fig. S23 Two-dimensional polymeric supramolecular network of 8.	S23				
25	Fig. S24 Dimeric structure of compound 9.	S23				
26	Fig. S25 Two-dimensional supramolecular network of 9.	S24				
27	Fig. S26 Two-dimensional chain like supramolecular network of 10.	S24				
28	Fig. S27. Absorption spectra of boron compounds 6-10 (A - E) in various solvents	S25				

	with different polarities at room temperature.					
29	Fig. S28. Enol form of selected frontier molecular orbital of organoboron complexes 6-10 based on optimized ground state geometry. Calculation was performed at B3LYP/6-31G(d) level with Gaussian 16.	S26				
30	Fig. S29. Keto form of selected frontier molecular orbital of organoboron complexes 6-10 based on optimized ground state geometry. Calculation was performed at B3LYP/6-31G(d) level with Gaussian 16.					
31	Table S2. Selected bond lengths (A°) for [6-10] from X-ray and calculated structures using the B3LYP 6-31G method.	S27				
32	Table S3. Electronic transition for organoboron complexes 6-10 calculatedusing the B3LYP 6-31G method.	S27				
33	Table S4. UV-visible absorption and emission spectra of 6-10 in different solvents at room temperature.					
34	Fig. S30. (A) Emission spectra of 6 in different water fractions in THF and water mixture binary solvent; $\lambda_{ex} = 420$ nm. (B) Plots of emission intensity <i>vs</i> water fraction. (C) Fluorescent images in different water fractions (under UV light).					
35	Fig. S31 . (A) Emission spectra of 7 in different water fractions in THF and water mixture binary solvent; $\lambda_{ex} = 420$ nm. (B) Plots of emission intensity <i>vs</i> water fraction. (C) Fluorescent images of in different water fractions (under UV light).					
36	Fig. S32 . (A) Emission spectra of 8 in different water fractions in THF and water mixture binary solvent; $\lambda_{ex} = 420$ nm. (B) Plots of emission intensity <i>vs</i> water fraction. (C) Fluorescent images of in different water fractions (under UV light).					
37	Fig. S33 . UV-visible absorption spectra of compounds 6-10 (A-E) in THF-H ₂ O (0-90 %) mixture with different water fractions.	S32				
38	Fig. S34. DLS images of compounds (6-10) with particle size distribution in THF-H ₂ O mixture (A, B) 6 (60 & 90%), (C, D) 7 (70 & 90%), (E, F) 8 (50 & 70%), (G, H) 9 (70 & 90%) and (I, J) 10 (70 & 90%)	S33				
39	Table S5. Results from DLS for the complex 6-10.	S34				

40	Fig. S35. Emission spectra of 6 -10 in THF-H ₂ O and THF-glycerol.					
41	Fig. S36. (A). Images of the boron compounds (7 & 8) under UV-lamp. (B) Solid state emission spectra of compounds (7 & 8) crystals and ground samples.	S35				
42	Fig. S37. (A) Normalized spectrum of the compound 6 before and after grinding. (B) Normalized spectrum of the compound 9 before and after grinding. (C) Normalized spectrum of the compound 10 before and after grinding.	S36				
43	Fig. S38. SEM images of compounds 9 &10 (A&B) before and (C&D) after grinding respectively.	S36				
44	Table S6. Crystal parameters and structure refinement data for compound 6-10.	S37, S38				
45	References	S39				

Stock solution preparation for spectroscopic measurements

Stock solutions of 1×10^{-5} were prepared for the solvent effect studies of boron compounds 6-10. For aggregation studies, stock solutions of 1×10^{-4} were made using double-distilled ultrapure water and THF as solvents.

Computation Details

DFT calculations were performed by using the Gaussian 16 package.¹ The ground state geometries were optimized using DFT at the B3LYP/6-31G(d). The electronic excited state energies of the compounds were calculated by time-dependent DFT (TDDFT) with B3LYP functional and 6-31G(d) basis set based on the optimized ground state geometry.

Table S1. Comparative table between previously reported organoboron AIE genbearing ESIPT unit

S.No.	Compound	AIE with ESIPT	Reference
1. (a)	HO N O B DPDP	AIE Only	2
(b)	HO N N O B O DPDN	AIE Only	
2.	N-N N-B-O Ar	AIE Only	3

Fig. S1. ¹H NMR Spectrum of 6 in DMSO- d_6

Fig. S2. ¹³C NMR Spectrum of 6 in DMSO- d_6 .

Fig. S3. ¹¹B NMR Spectrum of 6 in DMSO- d_6 .

Fig. S4. The HRMS of compound 6.

Fig. S5. ¹H NMR Spectrum of 7 in CDCl₃.

Fig. S6. ¹³C NMR Spectrum of 7 in DMSO- d_6 .

Fig. S7. ¹¹B NMR Spectrum of 7 in CDCl₃.

Fig. S8. The HRMS of compound 7.

Fig. S9. ¹H NMR Spectrum of 8 in DMSO-d₆.

Fig. S10. ¹³C NMR Spectrum of 8 in DMSO-d₆.

Fig. S11. ¹¹B NMR Spectrum of 8 in CDCl₃.

Fig. S12. The HRMS of compound 8.

Fig. S13. ¹H NMR Spectrum of 9 in DMSO-d₆.

Fig. S14. ¹³C NMR Spectrum of 9 in DMSO-d₆.

Fig. S15¹¹B NMR Spectrum of 9 in CDCl₃.

Fig. S16. The HRMS of compound 9.

Fig. S17. ¹H NMR Spectrum of 10 in DMSO- d_6 .

Fig. S18. ¹³C NMR Spectrum of 10 in DMSO- d_6 .

-4.45

Fig. S19. ¹¹B NMR Spectrum of 10 in DMSO- d_6 .

Fig. S20. The HRMS of compound 10.

Fig. S21 Two-dimensional chain like supramolecular network of 6.

Fig. S22 Two-dimensional polymeric supramolecular network of 7.

Fig. S23 Two-dimensional polymeric supramolecular network of 8.

Fig. S24 Dimeric structure of compound 9.

Fig. S25 Two-dimensional supramolecular network of 9.

Fig. S26 Two-dimensional chain like supramolecular network of 10.

Fig. S27. Absorption spectra of boron compounds **6-10** (**A** - **E**) in various solvents with different polarities at room temperature.

Fig. S28. Enol form of selected frontier molecular orbital of organoboron complexes **6-10** based on optimized ground state geometry. Calculation was performed at B3LYP/6-31G(d) level with Gaussian 16.

Fig. S29. Keto form of selected frontier molecular orbital of organoboron complexes **6-10** based on optimized ground state geometry. Calculation was performed at B3LYP/6-31G(d) level with Gaussian 16.

	6	6 cal.	7	7 cal	8	8cal	9	9 cal	10	10cal
B1-N2	1.583(4)	1.582	1.574(2)	1.586	1.567(5)	1.578	1.520(3)	1.534	1.564(3)	1.574
B1-N3	1.566(4)	1.568	1.561(3)	1.566	1.542(3)	1.567	1.571(5)	1.593	1.561(1)	1.565
B1-O1	1.450(4)	1.468	1.459(3)	1.465	1.454(3)	1.469	1.462(4)	1.478	1.463(1)	1.472
B1-C23	1.597(3)	1.612	1.611(3)	1.566	1.605(5)	1.616	1.592(1)	1.593	1.607(2)	1.614
B1-N2							1.573(3)	1.587		
B1-N3							1.566(2)	1.579		
B1-O1							1.444(3)	1.462		
B1-C23							1.599(2)	1.612		

Table S2. Selected bond lengths (A°) for [6-10] from X-ray and calculated structures using the B3LYP 6-31G method.

Table S3. Electronic transition for organoboron complexes 6-10 calculated using the B3LYP 6-31G method.

Complexes	Transition	MO Contribution	Energy gap		Oscillator
			ev	nm	Strength (f)
6	S ₀ -S ₁	HOMO → LUMO	3.42	371	0.4242
7	S ₀ -S ₁	HOMO → LUMO	3.41	377	0.3129
8	S ₀ -S ₁	HOMO → LUMO	3.42	374	0.3617
9	S ₀ -S ₁	HOMO → LUMO	2.69	416	0.4507
10	S ₀ -S ₁	HOMO → LUMO	3.09	400	0.5116

Solvents		Toluene	CHCl ₃	THF	DMSO	DMF
	$\lambda_{abs}\left(nm\right)$	342, 409	343, 405	341, 409	342, 409	338, 432
6	$\lambda_{em} \left(nm \right)$	485, 507	487, 505	485, 502	479, 518	481, 515
	$\Phi_{ m F}$	0.006	0.010	0.001	0.016	0.020
	$\lambda_{abs}\left(nm\right)$	320,414	317,415	327,415	338,415	330,428
7	$\lambda_{em} (nm)$	500,535	499	510	496,544	498,463
	$\Phi_{ m F}$	0.008	0.007	0.004	0.009	0.014
	$\lambda_{abs}\left(nm\right)$	353, 416	354, 416	344, 415	352, 413	350, 428
8	$\lambda_{em} (nm)$	482, 522	481, 499	480, 501	482, 518	478, 533
	$\Phi_{ m F}$	0.016	0.017	0.006	0.004	0.040
	$\lambda_{abs}\left(nm ight)$	379, 439	380, 436	376, 441	386, 443	382, 440
9	$\lambda_{em} (nm)$	541	509, 560	503, 556	478,573	574
	$\Phi_{ m F}$	0.012	0.046	0.005	0.012	0.088
	$\lambda_{abs}\left(nm\right)$	330, 383, 441	331, 383, 441	329, 382, 441	332, 384, 437	329, 371, 492
10	$\lambda_{em} \left(nm \right)$	507, 533	501, 529	503,530	507,539	550
	$\Phi_{ m F}$	0.052	0.026	0.004	0.006	0.031

 Table S4. UV-visible absorption and emission spectra of 6-10 in different solvents at room temperature.

Fig. S30. (A) Emission spectra of 6 in different water fractions in THF and water mixture binary solvent; $\lambda_{ex} = 420$ nm. (B) Plots of emission intensity *vs* water fraction. (C) Fluorescent images in different water fractions (under UV light).

Fig. S31. (A) Emission spectra of 7 in different water fractions in THF and water mixture binary solvent; $\lambda_{ex} = 420$ nm. (B) Plots of emission intensity *vs* water fraction. (C) Fluorescent images of in different water fractions (under UV light).

Fig. S32. (A) Emission spectra of **8** in different water fractions in THF and water mixture binary solvent; $\lambda_{ex} = 420$ nm. (B) Plots of emission intensity *vs* water fraction. (C) Fluorescent images of in different water fractions (under UV light).

Fig. S33. UV-visible absorption spectra of compounds 6-10 (A-E) in THF-H₂O (0-90 %) mixture with different water fractions.

Fig. S34. DLS images of compounds (6-10) with particle size distribution in THF-H₂O mixture (A, B) **6** (60 & 90%), (C, D) **7** (70 & 90%), (E, F) **8** (50 & 70%), (G, H) **9** (70 & 90%) and (I, J) **10** (70 & 90%)

Complex	Percentage of water (%)	Particle size (nm)
6	60 & 90	89.17 & 472.2
7	70 & 90	220.2 & 812.09
8	50 & 70	171.04 & 1208.04
9	70 & 90	415 & 2312
10	70 & 90	339.20 & 1719

Table S5. Results from DLS for the complex 6-10.

Fig. S35. Emission spectra of 6 -10 in THF-H₂O and THF-glycerol.

Fig. S36. (A). Images of the boron compounds (7 & 8) under UV-lamp. (B) Solid state emission spectra of compounds (7 & 8) crystals and ground samples.

Fig. S37. (A) Normalized spectrum of the compound 6 before and after grinding. (B) Normalized spectrum of the compound 9 before and after grinding. (C) Normalized spectrum of the compound 10 before and after grinding.

Fig. S38. SEM images of compounds 9 &10 (A&B) before and (C&D) after grinding respectively.

Parameters	6	7	8
Empirical formula	$C_{28}H_{25}BN_6O_4$	C ₃₁ H ₂₉ BN ₆ O ₆ ,2(C ₂ H ₃ N),H ₂ O	C ₅₅ H ₇₅ B N _{7·50} O ₃
Formula weight	520.35	692.53	900.53
Temperature	100(2) K	295(2) K	100(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	P-1	P2 ₁ /c	P-1
Unit cell dimensions	a = 9.9278(5) Å	a= 12.1862(5) Å	a= 14.3032(13) Å
	b = 14.8243(8) Å	b = 28.1636(12) Å	b = 14.3886(14) Å
	c = 17.6465(10) Å	c = 10.6937(5) Å	c = 14.4404(14) Å
	$\alpha = 104.209(3)^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 93.878^{\circ}$
	$\beta = 91.481(3)^{\circ}$	$\beta = 107.529(4)^{\circ}$	$\beta = 113.614(4)^{\circ}$
	$\gamma = 94.206(3)^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90.966(5)^{\circ}$
Volume	2508.3(2) Å ³	3499.7(3) Å ³	2713.6(5) Å ³
Ζ	4	4	2
Density (calculated)	1.378 Mg/m ³	1.314 Mg/m ³	1.102 Mg/m ³
Absorption coefficient	0.094 mm ⁻¹	0.093 mm ⁻¹	0.069 mm ⁻¹
F(000)	1088	1456	974
Crystal size (mm ³)	0.45 x 0.30 x 0.080	0.32 x 0.12 x 0.09	0.45 x 0.20 x 0.17
Theta range for data collection	1.613 to 28.359°	3.75 to 28.75°	1.420 to 26.455°
	-13<=h<=13,	-16<=h<=12,	-17<=h<=16,
Index ranges	-19<=k<=19,	-28<=k<=38,	-17<=k<=17,
	-23<=1<=23	-10<=1<=14	-14<=1<=18
Reflections collected	21795	19478	15200
Independent reflections	21795[R(int) = 0.0572]	8402[R(int) = 0.0596]	10400 [R(int) = 0.0513]
Completeness to theta = 25.000°	99.3 %	96.7 %	94.3 %
Data / restraints / parameters	21795/7/727	8402/1/485	10400 / 105 / 672
Goodness-of-fit on F ²	1.024	1.026	1.013
FinalRindices[I>2sigma(I)]	R1 = 0.0650, wR2 = 0.1467	R1 = 0.0596, wR2 = 0.10896	R1 = 0.0704, wR2 = 0.1644
R indices (all data)	R1 = 0.1012, wR2 = 0.1665	R1 = 0.1089, wR2 = 0.1445	R1 = 0.1448, wR2 = 0.2010
Largest diff. peak and hole (e.Å ⁻³)	1.550, -0.462	0.194, -0.216	0.448, -0.283

 Table S6. Crystal parameters and structure refinement data for compound 6-10.

Parameters	9	10	
Empirical formula	$C_{46}H_{53}B_2 N_9O_3$	$C_{43}H_{36}BN_7O_4$	
Formula weight	801.59	725.60	
Temperature	100(2) K	100(2)K	
Wavelength	0.71073 Å	0.71073	
Crystal system	Triclinic	Triclinic	
Space group	P-1	P-1	
Unit cell dimensions	a = 13.9824(9) Å	a = 11.3918(7) Å	
	b = 19.1267(12) Å	b = 11.9970 (8) Å	
	c = 20.5066(13) Å	c = 13.9478 (8) Å	
	$\alpha = 90.406(4)^{\circ}$	$\alpha = 75.157(3)^{\circ}$	
	$\beta = 108.715(3)^{\circ}$	$\beta = 89.324(3)^{\circ}$	
	$\gamma = 90.449(3)^{\circ}$	$\gamma = 79.110(4)^{\circ}$	
Volume	5193.8(6) Å ³	1808.1(2) Å ³	
Ζ	4	2	
Density (calculated)	1.025Mg/m ³	1.333 Mg/m ³	
Absorption coefficient	0.065 mm ⁻¹	0.087 mm ⁻¹	
F(000)	1704	760	
Crystal size (mm ³)	0.29 x 0.15 x 0.10	0.30 x 0.12 x 0.07	
Theta range for data collection	1.487 to 25.027°	1.511 to 28.399°	
	-16<=h<=16,	-15<=h<=15,	
Index ranges	-22<=k<=22,	-16<=k<=15,	
	-24<=1<=24	-18<=1<=18	
Reflections collected	36644	17847	
Independent reflections	18339[R(int) = 0.0348]	8985 [R(int) = 0.0361]	
Completeness to theta = 25.000°	99.8 %	100.0 %	
Data / restraints / parameters	18339 /115/ 1096	8985 / 0 / 505	
Goodness-of-fit on F ²	1.047	1.030	
Final R indices [I>2sigma(I)]	R1 = 0.0682, wR2 = 0.1870	R1 = 0.0424, wR2 = 0.0989	
P indices (all data)	R1 = 0.1011,	$P_1 = 0.0675 \text{ w}P_2 = 0.1122$	
K mulces (an uata)	wR2 = 0.2119	$K_1 = 0.00/5, WK_2 = 0.1133$	
Largest diff. peak and hole (e ^{Å-3})	0.688, -0.404	0.314, -0.251	

Reference

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
 G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, Gaussian 16, Rev. C. 01,
 Gaussian, Inc., Wallingford, CT. 2016.
- 2. J. Jia and J. Wen, *Tetrahedron Lett.*, 2021, **71**, 153006.
- H. Wang, X. Guo, W. Bu, Z. Kang, C. Yu, Q. Wu, L. Jiao and E. Hao, *Dyes Pigm.*, 2023, 210, 111013.
- 4. M. M. Alcaide, F. M. Santos, V. n. F. Pais, J. I. s. Carvalho, D. Collado, E. Pérez-Inestrosa, J. s. F. Arteaga, F. Boscá, P. M. Gois and U. Pischel, *J. Org. Chem.*, 2017, **82**, 7151-7158.
- F. M. Santos, Z. Domínguez, J. P. Fernandes, C. Parente Carvalho, D. Collado, E. Pérez-Inestrosa, M. V. Pinto, A. Fernandes, J. F. Arteaga and U. Pischel, *Chem. Eur. J.*, 2020, 26, 14064-14069.
- C. Yu, G. Di, Q. Li, X. Guo, L. Wang, Q. Gong, Y. Wei, Q. Zhao, L. Jiao and E. Hao, *Inorg. Chem.*, 2024, 63, 21397-21409.