Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting information

Evaluation of dipole moment of polyhedral oligomeric silsesquioxane compounds

Naoki Watanabe^{a, b, c}, Hiroaki Imoto^a, Kensuke Naka^{a, b}

¹ Faculty of Molecular Chemistry and Engineering, Graduate School of Science and

Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku,

Kyoto 606-8585 (Japan)

² Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho,

Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.

^c JNC Petrochemical Corporation, 5-1, Goikaigan, Ichihara, Chiba 290-8551 Japan.

Corresponding Author: kenaka@kit.ac.jp

Contents:

- 1. Capacitance and dielectric constant of reference compound
- 2. α -plot and β -plot
- 3. Balls and sticks models
- 4. Illustrations of frontier molecular orbitals

1. Capacitance and dielectric constant of reference compound

Table S1. Capacitance and dielectric constant of toluene, acetone, methanol, and pure water.

	<i>C</i> [pF]	ε^a [-]	Eref ^b [-]
Toluene	7.7	3.8	2.4
Acetone	49.7	24.2	20.7
Methanol	76.2	37.0	32.7
Water	175.1	85.1	80.1

Measuring conditions; temperature: 25 °C, frequency: 1 kHz, voltage: 1 V, C: measured value of capacitance, ε^a : Measured value of dielectric constant, ε_{ref}^b : Reference value of dielectric constant to the solute, and subscript *12* to the solution.

2. α -plot and β -plot

Figure S1. Plot of limonene solution in benzene. (α); dielectric constant to weight fraction, (β); density to weight fraction.

Figure S2. Plot of methylbenzoate solution in benzene. (α); dielectric constant to weight fraction, (β); density to weight fraction.

Figure S3. Plot of nitrobenzene solution in benzene. (α); dielectric constant to weight fraction, (β); density to weight fraction.

Figure S4. Plot of 7B1Pr-POSS solution in benzene. (α); dielectric constant to weight fraction, (β); density to weight fraction.

Figure S5. Plot of 7B1AL-POSS solution in benzene. (α); dielectric constant to weight fraction, (β); density to weight fraction.

Figure S6. Plot of 7B1NH₂-POSS solution in benzene. (α); dielectric constant to weight fraction, (β); density to weight fraction.

Figure S7. Plot of 7B1Cl-POSS solution in benzene. (α); dielectric constant to weight fraction, (β); density to weight fraction.

Figure S8. Plot of 7Ph1AL-POSS solution in dichloromethane. (α); dielectric constant to weight fraction, (β); density to weight fraction.

Figure S9. Plot of 7B1AL-POSS solution in dichloromethane. (α); dielectric constant to weight fraction, (β); density to weight fraction.

Figure S10. Plot of 7F1AL-POSS solution in dichloromethane. (α); dielectric constant to weight fraction, (β); density to weight fraction.

3. Balls and sticks models

Figure S11. Balls and sticks models of 7Ph1AL-POSS, 7F1AL-POSS structure, optimized in vacuum, calculated from B3LYP 6-31G(d). The direction of the dipole vectors was described using blue arrow as a from their negative to their positive poles.

4. Illustrations of frontier molecular orbitals

Figure S12. Illustrations of frontier molecular orbitals HOMO and LUMO orbital of substituted POSS calculated B3LYP/6-31G(d) level of theory (isovalue: 0.02). The green lobes represent the negative lobe, and the red lobes represent the positive lobe. The structures are visualized with GaussView 6 software.

Figure S13. Illustrations of frontier molecular orbitals HOMO and LUMO orbital of substituted POSS calculated B3LYP/6-31G(d) level of theory (isovalue: 0.02). The green lobes represent the negative lobe, and the red lobes represent the positive lobe. The structures are visualized with GaussView 6 software.