ELECTRONIC SUPPLEMENTARY MATERIAL

Push-pull effect – how to effectively control photoinduced intramolecular charge transfer processes in rhenium(I) chromophores with ligands of D–A or D– π –A structure

Katarzyna Choroba^{*}, Joanna Palion-Gazda, Anna Kryczka, Ewa Malicka, and Barbara Machura^{*}

Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland

Table of contents

Computational Details	2
Figure S1. Electron density plots of the frontier molecular orbitals for complexes 1–6. Calculated with the Gaussian-16 software (PBE1PBE/def2-TZVPD/def2-TZVP/PCM/acetonitrile).	4
Figure S2. Percentage contribution of selected molecular fragments to the frontier molecular orbitals for complexes 1–6. Calculated with the Gaussian-16 software (PBE1PBE/def2-TZVPD/def2-TZVP/PCM/acetonitrile)	6
Table S1. The relevant electrochemical data of 1–6.	7
Table S2. The absorption and emission properties of complexes 1–6.	8
Table S3. The spectroscopic and electrochemical properties of complexes 7–46.	10
Table S4. The spectroscopic and electrochemical properties of complexes 47–58.	13
Table S5. The spectroscopic and electrochemical properties of complexes 59–71.	15
Table S6. The spectroscopic and electrochemical properties of complexes 72–86.	16
Supplementary References	17

Computational Details

Theoretical DFT and TD-DFT calculations of **1**–**6** have been performed using the GAUSSIAN-16 (C.01) program package¹ with the PBE1PBE hybrid exchange-correlation functional^{2,3}, and the def2-TZVPD basis set for rhenium and def2-TZVP basis set for other elements^{4–6}. For all compounds, X-ray structural parameters were used as a starting point for the singlet ground-state optimization. After optimization of the singlet geometry, vibrational frequencies were calculated to verify the minimum on the potential energy surface. All the further calculations were obtained based on the optimized geometries. Absorption properties were calculated by the TD-DFT method. In all calculations, the polarizable continuum model (PCM) correction was used to simulate the acetonitrile solvent environment for all calculations^{7–9}. The calculations have been carried out using resources provided by Wroclaw Centre for Networking and Supercomputing (<u>http://wcss.pl</u>).

	1a	1b	2	3	4	5	6
H–5							
H4				No.			
Н–3							
Н–2							
H–1							
<u>HOMO</u>							

Figure S1. Electron density plots of the frontier molecular orbitals for complexes **1–6**. Calculated with the Gaussian-16 software (PBE1PBE/def2-TZVPD/def2-TZVP/PCM/acetonitrile).

4

40

номо

69.82

18.26

11.87

0.04

H-1

65.03

17.71

15.83

1.43

60

LUMO

8.34

2.57

88.92

0.16

L+5

L+4

L+3

L+2

L+1

H-1

H-2

Н-3 Н-4

H-5

coordinated rings 31.97

Re(CO)3

distal atoms

CI

H-5

12.31

53.43

2.28

H-4

0.51

1.07

77.87

20.55

20

H-3

86.01

1.95

10.95

1.09

H-2

15.10

5.12

62.56

17.22

lumo homo

Figure S2. Percentage contribution of selected molecular fragments to the frontier molecular orbitals for complexes **1–6**. Calculated with the Gaussian-16 software (PBE1PBE/def2-TZVPD/def2-TZVP/PCM/acetonitrile).

	[ReCl(CO) ₃ (bipy)] (Ia)		
medium ^a	E_{red} , peak [V] (ΔE [mV]) or $E_{1/2red}$	E _{ox} , peak [V] or E _{1/2ox}	Ref.
MeCN 0.1 M TBAP	$E_{1/2} = -1.41$	+1.35	10
MeCN 0.1 M TBATFB	$E_{1/2} = -1.32$	$E_{1,2} = \pm 1.36$	11
MeCN 0.1 M TBAPF.	$E_{1/2} = -1.32$	$E_{1/2} = +1.50$ $E_{1/2} = \pm 1.38$	12
MaCN 0.1 M TDAI 16	$E_{1/2} = -1.33$	+1 22im	13
MICH 0.1 M TBAP	$E_{1/2} = -1.54$	+1.55111	14
MeCN 0.2 M TBATFB	-1.35irr	+1.321fr	15
THF 0.1 M TBAPF ₆	-1.91 (110), -2.38	—	15
DMF 0.1 M TBAPF ₆	$-1.83 / E_{1/2} = -1.21$	+1.55	16
DMF 0.1 M TBAP	$E_{1/2} = -1.74$ (70), -2.20	-	17
MeCN 0.05 M TEATFB -54 °C	$E_{1/2} = -1.30, -1.95$	$E_{1/2} = +1.39$	19
DMF 0.05 M TEATEB -54 °C	$E_{1/2} = -1.38$	$E_{1,2} = \pm 1.40$	10
DMA 0.1 M TRAPE.	1.77 - 2.42 interval	$E_{1/2} = +1.10$	19
DMA 0.1 M TBAFF6	-1.77, -2.42111	_	20
DMF 0.1 M IBAPF ₆	$E_{1/2} = -1.13$		21
MeCN 0.1 M TBAPF ₆	-	$+1.41 / E_{1/2} = +1.82$	21
MeCN 0.1M TEATBF	$E_{1/2} = -1.67$	_	22
MeCN 0.1 M TBAPF ₆	$E_{1/2} = -1.34, -1.725$ irr	-	23
DMF 0.1 M TBAPF ₆	-1.78, -2.20	_	24
MeCN 0.1 M TBAPE	-1 40 -1 78	_	25
MaCN 0.1 M TDADE	E = 1.72 + 2.00irr		26
DME 0.1 M TDAP	$E_{1/2} = -1.73, -2.0911$	_	27
DMF 0.1 M IBAP	$-1.26(80)/E_{1/2} = -1.30$	—	20
MeCN 0.1 M TBAP	-1.77 (70), -2.04	-	20
MeCN 0.1 M TBAPF ₆	$E_{1/2} = -1.27, -1.57$ irr	+1.47irr, +1.89	29
DMF 0.1 M TBAPF ₆	-1.80, -2.25irr	-	30
DCM 0.1 M TBAPF ₆	-1.79, -2.10	+0.87, +1.15	31
MeCN 0.1 M TBAPE	-1.792.15	_	32
DME 0.1 M TBAPE.	$F_{re} = -1.75(75) -2.22irr$	_	
M-CN 0.1 M TDA DE	$E_{1/2} = -1.75(75), -2.22111$	_	33
MECN 0.1 M TBAPF ₆	$E_{1/2} = -1.77(75), -2.18$ Iff	-	3/
DMF 0.1 M TBAPF ₆	-1.79, -2.24	+1.01	35
DMF 0.1 m TBAPF ₆	-1.69	—	35
DMF 0.1 M TBAPF ₆	$E_{1/2} = -1.84, -2.34$ irr	_	36
DMF 0.1 M TBAPF ₆	$E_{1/2} = -1.275$	_	37
	$[ReC](CO)_{2}(ternv-\kappa^{2}N)]$ (1b)		
medium ^a	$\mathbf{E} \rightarrow \mathbf{neak} [\mathbf{V}] (\mathbf{AE} [\mathbf{mV}]) \mathbf{or} \mathbf{E}_{\mathbf{m}}$	E neak [V]	Ref
DMETRAD		L_{0x} , peak [t]	Kei.
	-1.40	-	38
	_	+1.19	
DI CI O A M CIDA D			17
DMF 0.1 M TBAP	E _{1/2} = -1.75 (60), -2.24irr		17
DMF 0.1 M TBAP MeCN 0.1 M TBAPF ₆	E _{1/2} = -1.75 (60), -2.24irr -1.741	- +0.786irr	17 39
DMF 0.1 M TBAP MeCN 0.1 M TBAPF ₆ DCM 0.1 M TBAPF ₆	$\begin{array}{c c} E_{1/2} = -1.75 \ (60), -2.24 \text{irr} \\ \hline & -1.741 \\ \hline & -1.71, -2.15 \end{array}$	+0.786irr +0.60, +0.85, +1.03	17 39 31
DMF 0.1 M TBAP MeCN 0.1 M TBAPF ₆ DCM 0.1 M TBAPF ₆	$E_{1/2} = -1.75 (60), -2.24 \text{irr}$ -1.741 $-1.71, -2.15$ [ReCl(CO) ₃ (phen)] (2)		17 39 31
MeCIVIN 16 DMF 0.1 M TBAP MeCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a	$E_{1/2} = -1.75 (60), -2.24 \text{ irr}$ -1.741 $-1.71, -2.15$ [ReCl(CO) ₃ (phen)] (2) Ered, peak [V] (AE [mV]) or E _{1/2} red		17 39 31 Ref.
MCCN N 16 DMF 0.1 M TBAP McCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a McCN 0.1 M TBAP	$E_{1/2} = -1.75 (60), -2.24 \text{ irr}$ -1.741 $-1.71, -2.15$ [ReCl(CO) ₃ (phen)] (2) E _{red} , peak [V] (ΔE [mV]) or $E_{1/2red}$ E _{1/2} = -1.34	+0.786irr +0.60, +0.85, +1.03 E_{ax} , peak [V] or $E_{1/2ax}$ $E_{1/2} = \pm 1.33$	17 39 31 Ref. 40
McCN KI T6 DMF 0.1 M TBAP McCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a McCN 0.1 M TBAP McCN 0.1 M TBAP	$E_{1/2} = -1.75 (60), -2.24 \text{irr}$ -1.741 $-1.71, -2.15$ [ReCl(CO) ₃ (phen)] (2) E _{red} , peak [V] (AE [mV]) or E _{1/2red} E _{1/2} = -1.34 E _{1/2} = -1.35	+0.786irr +0.60, +0.85, +1.03 E_{ox} , peak [V] or $E_{1/2ox}$ $E_{1/2} = +1.33$	17 39 31 Ref. 40 10
MeCrVKIT6 DMF 0.1 M TBAP MeCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a MeCN 0.1 M TBAP MeCN 0.1 M TBAP MeCN 0.1 M TBAP MeCN 0.1 M TBAP	$E_{1/2} = -1.75 (60), -2.24 \text{irr}$ -1.741 $-1.71, -2.15$ [ReCl(CO) ₃ (phen)] (2) E _{red} , peak [V] (AE [mV]) or E _{1/2red} E _{1/2} = -1.34 E _{1/2} = -1.35 E _{1/2} = -1.27	+0.786irr +0.60, +0.85, +1.03 $E_{ox}, peak [V] \text{ or } E_{1/2ox}$ $E_{1/2} = +1.33$ $+1.33irr$	17 39 31 Ref. 40 10 11
Image: Mecri Mittig DMF 0.1 M TBAP MeCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a MeCN 0.1 M TBAP	$E_{1/2} = -1.75 (60), -2.24irr$ -1.741 $-1.71, -2.15$ [ReCl(CO) ₃ (phen)] (2) E _{red} , peak [V] (AE [mV]) or E _{1/2red} E _{1/2} = -1.34 E _{1/2} = -1.35 E _{1/2} = -1.27	+0.786irr +0.60, +0.85, +1.03 $E_{ox}, peak [V] \text{ or } E_{1/2ox}$ $E_{1/2} = +1.33$ $+1.33irr$ $E_{1/2} = +1.36$	17 39 31 Ref. 40 10 11
MeCN N T ₆ DMF 0.1 M TBAP MeCN 0.1 M TBAPF ₆ DCM 0.1 M TBAPF ₆ MeCN 0.1 M TBAP MeCN 0.1 M TBAP MeCN 0.1 M TBATFB DMF 0.05 M TEATFB -54 °C	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- +0.786irr +0.60, +0.85, +1.03 E _{ox} , peak [V] or E _{1/2ox} E _{1/2} = +1.33 +1.33irr E _{1/2} = +1.36 E _{1/2} = +1.41	17 39 31 Ref. 40 10 11 11 18
MeCN N T ₆ DMF 0.1 M TBAP MeCN 0.1 M TBAPF ₆ DCM 0.1 M TBAPF ₆ MeCN 0.1 M TBAP MeCN 0.1 M TBAP MeCN 0.1 M TBAP MeCN 0.1 M TBATFB DMF 0.05 M TEATFB -54 °C MeCN 0.1 M TBAPF ₆	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- +0.786irr +0.60, +0.85, +1.03 E _{ox} , peak [V] or E _{1/2ox} E _{1/2} = +1.33 +1.33irr E _{1/2} = +1.36 E _{1/2} = +1.41 +1.41 / E _{1/2} = +1.84	17 39 31 Ref. 40 10 11 18 21
McCrV KI 16 DMF 0.1 M TBAP McCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 McCN 0.1 M TBAP McCN 0.1 M TBAP McCN 0.1 M TBAP McCN 0.1 M TBATFB DMF 0.05 M TEATFB -54 °C McCN 0.1 M TBAPF6 DCM [C6mim][FAP]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- +0.786irr +0.60, +0.85, +1.03 $E_{0x}, peak [V] \text{ or } E_{1/2ox}$ $E_{1/2} = +1.33$ +1.33irr $E_{1/2} = +1.36$ $E_{1/2} = +1.41$ +1.41 / $E_{1/2} = +1.84$ $E_{1/2} = +0.96, +1.56$	17 39 31 Ref. 40 10 11 18 21 41
McCrV KI 16 DMF 0.1 M TBAPF McCN 0.1 M TBAPF DCM 0.1 M TBAPF McCN 0.1 M TBAP McCN 0.1 M TBAP McCN 0.1 M TBAP McCN 0.1 M TBATFB DMF 0.05 M TEATFB –54 °C McCN 0.1 M TBAPF DCM [C6mim][FAP] McCN 0.1 M TBAPF ₆	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- +0.786irr +0.60, +0.85, +1.03 $E_{0x}, peak [V] \text{ or } E_{1/2ox}$ $E_{1/2} = +1.33$ +1.33irr $E_{1/2} = +1.36$ $E_{1/2} = +1.41$ +1.41 / $E_{1/2} = +1.84$ $E_{1/2} = +0.96, +1.56$ +0.99	17 39 31 Ref. 40 10 11 18 21 41 42
Image: Mecry Nr 16 DMF 0.1 M TBAP MeCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a MeCN 0.1 M TBAP DMF 0.05 M TEATFB DMF 0.05 M TEATFB -54 °C MeCN 0.1 M TBAPF6 DCM [C6mim][FAP] MeCN 0.1 M TBAPF6 DMF 0.1 M TBAPF6	$ \begin{array}{c c} E_{1/2} = -1.75 \ (60), -2.24 \text{irr} \\ \hline & -1.741 \\ \hline & -1.71, -2.15 \\ \hline \textbf{[ReCl(CO)_3(phen)] (2)} \\ \hline \textbf{E}_{red}, \textbf{peak [V] (AE [mV]) or E_{1/2red}} \\ \hline \textbf{E}_{1/2} = -1.34 \\ \hline \textbf{E}_{1/2} = -1.35 \\ \hline \textbf{E}_{1/2} = -1.27 \\ \hline \textbf{E}_{1/2} = -1.27 \\ \hline \textbf{E}_{1/2} = -1.62 \\ \hline \textbf{E}_{1/2} = -1.62 \\ \hline \textbf{E}_{1/2} = -1.74, -2.11 \text{irr} \\ \hline \textbf{E}_{1/2} = -1.75, -2.23 \text{irr} \\ \end{array} $	$\begin{array}{c} & - & \\ +0.786 \text{irr} \\ +0.60, +0.85, +1.03 \\ \hline \\ \textbf{E}_{ox}, \textbf{peak} [V] \text{ or } \textbf{E}_{1/2ox} \\ \hline \\ \textbf{E}_{1/2} = +1.33 \\ +1.33 \text{irr} \\ \hline \\ \textbf{E}_{1/2} = +1.36 \\ \hline \\ \textbf{E}_{1/2} = +1.41 \\ +1.41 / \textbf{E}_{1/2} = +1.84 \\ \hline \\ \textbf{E}_{1/2} = +0.96, +1.56 \\ +0.99 \\ \hline \\ \textbf{-} \end{array}$	17 39 31 Ref. 40 10 11 18 21 41 42
MCCAVIATI6 DMF 0.1 M TBAP MeCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 MeCN 0.1 M TBAP MeCN 0.1 M TBAP MeCN 0.1 M TBAP MeCN 0.1 M TBAPF6 DMF 0.05 M TEATFB -54 °C MeCN 0.1 M TBAPF6 DCM [C6mim][FAP] MeCN 0.1 M TBAPF6 DMF 0.1 M TBAPF6 DCM 0.1 M TBAPF6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- +0.786irr +0.60, +0.85, +1.03 E _{ox} , peak [V] or E _{1/2ox} E _{1/2} = +1.33 +1.33irr E _{1/2} = +1.36 E _{1/2} = +1.41 +1.41 / E _{1/2} = +1.84 E _{1/2} = +0.96, +1.56 +0.99 - +0.93	17 39 31 Ref. 40 10 11 18 21 41 42 31
MeCN N T ₆ DMF 0.1 M TBAP MeCN 0.1 M TBAPF ₆ DCM 0.1 M TBAPF ₆ MeCN 0.1 M TBAP MeCN 0.1 M TBAP MeCN 0.1 M TBAPF MeCN 0.1 M TBATFB DMF 0.05 M TEATFB -54 °C MeCN 0.1 M TBAPF ₆ DCM [C6mim][FAP] MeCN 0.1 M TBAPF ₆ DMF 0.1 M TBAPF ₆ DCM 0.1 M TBAPF ₆	$\begin{array}{c c} E_{1/2} = -1.75 \ (60), -2.24 irr \\ & -1.741 \\ \hline & -1.71, -2.15 \\ \hline \\ $	$\begin{array}{c} - \\ +0.786 \text{irr} \\ +0.60, +0.85, +1.03 \\ \hline \\ \textbf{E}_{ox}, \textbf{peak} [V] \text{ or } \textbf{E}_{1/2ox} \\ \hline \\ \textbf{E}_{1/2} = +1.33 \\ +1.33 \text{irr} \\ \hline \\ \textbf{E}_{1/2} = +1.36 \\ \hline \\ \textbf{E}_{1/2} = +1.41 \\ +1.41 / \textbf{E}_{1/2} = +1.84 \\ \hline \\ \textbf{E}_{1/2} = +0.96, +1.56 \\ +0.99 \\ \hline \\ - \\ +0.93 \\ +1.45 \text{ irr} \end{array}$	17 39 31 Ref. 40 10 11 18 21 41 42 31 43
MRCONNT6 DMF 0.1 M TBAPF MeCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a MeCN 0.1 M TBAP MeCN 0.1 M TBAP MeCN 0.1 M TBAP MeCN 0.1 M TBAP MeCN 0.1 M TBAPF6 DMF 0.05 M TEATFB -54 °C MeCN 0.1 M TBAPF6 DCM [C6mim][FAP] MeCN 0.1 M TBAPF6 DMF 0.1 M TBAPF6 DCM 0.1 M TBAPF6 MeCN 0.1 M TBAPF6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- +0.786irr +0.60, +0.85, +1.03 $E_{ox}, peak [V] \text{ or } E_{1/2ox}$ $E_{1/2} = +1.33$ +1.33irr $E_{1/2} = +1.36$ $E_{1/2} = +1.41$ +1.41 / $E_{1/2} = +1.84$ $E_{1/2} = +0.96, +1.56$ +0.99 - +0.93 +1.45irr	17 39 31 Ref. 40 10 11 18 21 41 42 31 43
Image: Minipage of the system DMF 0.1 M TBAP MeCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a MeCN 0.1 M TBAP MeCN 0.1 M TBAPF6 DMF 0.05 M TEATFB -54 °C MeCN 0.1 M TBAPF6 DCM [C6mim][FAP] MeCN 0.1 M TBAPF6 DMF 0.1 M TBAPF6 DCM 0.1 M TBAPF6 MeCN 0.1 M TBAPF6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} - \\ +0.786 \mathrm{irr} \\ +0.60, +0.85, +1.03 \\ \hline \\ \mathbf{E_{ox}, peak [V] or E_{1/2ox}} \\ E_{1/2} = +1.33 \\ +1.33 \mathrm{irr} \\ E_{1/2} = +1.36 \\ E_{1/2} = +1.41 \\ +1.41 / E_{1/2} = +1.84 \\ E_{1/2} = +0.96, +1.56 \\ +0.99 \\ \hline \\ - \\ +0.93 \\ +1.45 \mathrm{irr} \\ E_{1/2} = +1.59, +2.06 \end{array}$	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44
MRCN KI F6 DMF 0.1 M TBAPF6 McCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a McCN 0.1 M TBAP McCN 0.1 M TBAPF6 DMF 0.05 M TEATFB -54 °C MeCN 0.1 M TBAPF6 DCM [C6mim][FAP] MeCN 0.1 M TBAPF6 DMF 0.1 M TBAPF6 DCM 0.1 M TBAPF6 DCM 0.1 M TBAPF6 DCM 0.1 M TBAPF6 DCM 0.1 M TBAPF6 MeCN 0.1 M TBAPF6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} - \\ +0.786 \mathrm{irr} \\ +0.60, +0.85, +1.03 \\ \hline \\ \mathbf{E}_{ox}, \mathbf{peak} \left[\mathbf{V} \right] \mathbf{or} \mathbf{E}_{1/2ox} \\ \mathbf{E}_{1/2} = +1.33 \\ +1.33 \mathrm{irr} \\ \mathbf{E}_{1/2} = +1.36 \\ \mathbf{E}_{1/2} = +1.41 \\ +1.41 / \mathbf{E}_{1/2} = +1.84 \\ \mathbf{E}_{1/2} = +0.96, +1.56 \\ +0.99 \\ \hline \\ \mathbf{-} \\ +0.93 \\ +1.45 \mathrm{irr} \\ \mathbf{E}_{1/2} = +1.59, +2.06 \\ \hline \end{array}$	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44
MCOV KI 16 DMF 0.1 M TBAPF6 DCM 0.1 M TBAPF6 DCM 0.1 M TBAPF6 MeCN 0.1 M TBAP MeCN 0.1 M TBAPF6 DMF 0.05 M TEATFB -54 °C MeCN 0.1 M TBAPF6 DCM [C6mim][FAP] MeCN 0.1 M TBAPF6 DMF 0.1 M TBAPF6 MeCN 0.1 M TBAPF6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} - \\ +0.786 \mathrm{irr} \\ +0.60, +0.85, +1.03 \\ \hline \\ \mathbf{E}_{ox}, \mathbf{peak} \left[\mathbf{V} \right] \mathbf{or} \mathbf{E}_{1/2ox} \\ \mathbf{E}_{1/2} = +1.33 \\ +1.33 \mathrm{irr} \\ \mathbf{E}_{1/2} = +1.36 \\ \mathbf{E}_{1/2} = +1.41 \\ +1.41 / \mathbf{E}_{1/2} = +1.84 \\ \mathbf{E}_{1/2} = +0.96, +1.56 \\ +0.99 \\ \hline \\ - \\ +0.93 \\ +1.45 \mathrm{irr} \\ \mathbf{E}_{1/2} = +1.59, +2.06 \\ \hline \end{array}$	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44
Image:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- +0.786irr +0.60, +0.85, +1.03 $E_{ox}, peak [V] \text{ or } E_{1/2ox}$ $E_{1/2} = +1.33$ +1.33irr $E_{1/2} = +1.36$ $E_{1/2} = +1.41$ +1.41 / $E_{1/2} = +1.84$ $E_{1/2} = +0.96, +1.56$ +0.99 - +0.93 +1.45irr $E_{1/2} = +1.59, +2.06$ - $-$ $E_{ox}, peak [V]$	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44 Ref.
Image:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- +0.786irr +0.60, +0.85, +1.03 $E_{ox}, peak [V] \text{ or } E_{1/2ox}$ $E_{1/2} = +1.33$ +1.33irr $E_{1/2} = +1.36$ $E_{1/2} = +1.41$ +1.41 / $E_{1/2} = +1.84$ $E_{1/2} = +0.96, +1.56$ +0.99 - +0.93 +1.45irr $E_{1/2} = +1.59, +2.06$ - $-$ $E_{ox}, peak [V]$	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44 Ref. 45,46
Image:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- +0.786irr +0.60, +0.85, +1.03 $E_{ox}, peak [V] \text{ or } E_{1/2ox}$ $E_{1/2} = +1.33$ +1.33irr $E_{1/2} = +1.36$ $E_{1/2} = +1.41$ +1.41 / $E_{1/2} = +1.84$ $E_{1/2} = +0.96, +1.56$ +0.99 - +0.93 +1.45irr $E_{1/2} = +1.59, +2.06$ - $-$ $E_{ox}, peak [V]$ - - +0.92irr	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44 Ref. 45,46 47
Image:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} - \\ +0.786 \mathrm{irr} \\ +0.60, +0.85, +1.03 \\ \hline \\ \mathbf{E}_{ox}, \mathbf{peak} \left[\mathbf{V} \right] \text{ or } \mathbf{E}_{1/2ox} \\ \mathbf{E}_{1/2} = +1.33 \\ +1.33 \mathrm{irr} \\ \mathbf{E}_{1/2} = +1.36 \\ \mathbf{E}_{1/2} = +1.41 \\ +1.41 / E_{1/2} = +1.84 \\ \mathbf{E}_{1/2} = +0.96, +1.56 \\ +0.99 \\ \hline \\ - \\ +0.93 \\ +1.45 \mathrm{irr} \\ \mathbf{E}_{1/2} = +1.59, +2.06 \\ \hline \\ - \\ \hline \\ \mathbf{E}_{ox}, \mathbf{peak} \left[\mathbf{V} \right] \\ \hline \\ - \\ +0.92 \mathrm{irr} \end{array}$	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44 Ref. 45,46 47
Image:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} - \\ +0.786 \mathrm{irr} \\ +0.60, +0.85, +1.03 \\ \hline \\ \mathbf{E}_{ox}, \mathbf{peak} \left[\mathbf{V} \right] \mathbf{or} \mathbf{E}_{1/2ox} \\ \mathbf{E}_{1/2} = +1.33 \\ +1.33 \mathrm{irr} \\ \mathbf{E}_{1/2} = +1.36 \\ \mathbf{E}_{1/2} = +1.36 \\ \mathbf{E}_{1/2} = +1.41 \\ +1.41 / \mathbf{E}_{1/2} = +1.84 \\ \mathbf{E}_{1/2} = +0.96, +1.56 \\ +0.99 \\ \hline \\ - \\ +0.93 \\ +1.45 \mathrm{irr} \\ \mathbf{E}_{1/2} = +1.59, +2.06 \\ - \\ \hline \\ \mathbf{E}_{ox}, \mathbf{peak} \left[\mathbf{V} \right] \\ \hline \\ - \\ +0.92 \mathrm{irr} \end{array}$	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44 Ref. 45,46 47
Image: Image of the system Image of t	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} - \\ +0.786 \text{irr} \\ +0.60, +0.85, +1.03 \\ \hline \\ \textbf{E}_{ox}, \textbf{peak} [V] \text{ or } \textbf{E}_{1/2ox} \\ \hline \\ \textbf{E}_{1/2} = +1.33 \\ +1.33 \text{irr} \\ \hline \\ \textbf{E}_{1/2} = +1.36 \\ \hline \\ \textbf{E}_{1/2} = +1.41 \\ +1.41 / \textbf{E}_{1/2} = +1.84 \\ \hline \\ \textbf{E}_{1/2} = +0.96, +1.56 \\ +0.99 \\ \hline \\ \textbf{-} \\ +0.93 \\ +1.45 \text{irr} \\ \hline \\ \textbf{E}_{1/2} = +1.59, +2.06 \\ \hline \\ \textbf{-} \\ \hline \\ \textbf{E}_{ox}, \textbf{peak} [V] \\ \hline \\ \hline \\ \textbf{-} \\ +0.92 \text{irr} \\ \hline \end{array}$	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44 Ref. 45,46 47
Image: Normal System DMF 0.1 M TBAP MeCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a MeCN 0.1 M TBAP MeCN 0.1 M TBAPF6 DMF 0.05 M TEATFB -54 °C MeCN 0.1 M TBAPF6 DCM [C6mim][FAP] MeCN 0.1 M TBAPF6 DMF 0.1 M TBAPF6 DCM 0.1 M TBAPF6 MeCN 0.1 M TBAPF6 MeCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 MeCN 0.1 M TBAPF6 MeCN 0.1 M TBAPF6 MeCN 0.1 M TBAPF6 MeCN 0.1 M TBAPF6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$-$ +0.786irr +0.60, +0.85, +1.03 $E_{ox}, peak [V] \text{ or } E_{1/2ox}$ $E_{1/2} = +1.33$ +1.33irr $E_{1/2} = +1.36$ $E_{1/2} = +1.41$ +1.41 / $E_{1/2} = +1.84$ $E_{1/2} = +0.96, +1.56$ +0.99 +0.93 +1.45irr $E_{1/2} = +1.59, +2.06$ +0.92 irr $-$	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44 Ref. 45.46 47
MIRCAN MT6 DMF 0.1 M TBAPF6 DCM 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a MeCN 0.1 M TBAP MeCN 0.1 M TBAPF DMF 0.05 M TEATFB -54 °C MeCN 0.1 M TBAPF6 DCM [C6mim][FAP] MeCN 0.1 M TBAPF6 DMF 0.1 M TBAPF6 DCM 0.1 M TBAPF6 DCM 0.1 M TBAPF6 MeCN 0.1 M TBAPF6 DMF 1 M TBAPF6 DMF 1 M TBAPF6 MeCM 0.1 M TBAPF6 MeCN 0.1 M TBAPF6 DMF 1 M TBAPF6 Medium ^a DCM 0.1 M TBAPF6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} - \\ +0.786 \text{irr} \\ +0.60, +0.85, +1.03 \\ \hline \\ \textbf{E}_{ox}, \textbf{peak} [\textbf{V}] \text{ or } \textbf{E}_{1/2ox} \\ \hline \\ \textbf{E}_{1/2} = +1.33 \\ +1.33 \text{irr} \\ \hline \\ \textbf{E}_{1/2} = +1.36 \\ \hline \\ \textbf{E}_{1/2} = +1.41 \\ +1.41 / \textbf{E}_{1/2} = +1.84 \\ \hline \\ \textbf{E}_{1/2} = +0.96, +1.56 \\ +0.99 \\ \hline \\ - \\ +0.93 \\ +1.45 \text{irr} \\ \hline \\ \textbf{E}_{1/2} = +1.59, +2.06 \\ \hline \\ \hline \\ \textbf{E}_{ox}, \textbf{peak} [\textbf{V}] \\ \hline \\ \hline \\ \textbf{E}_{ox} \textbf{peak} [\textbf{V}] \\ \hline \end{array}$	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44 Ref. 45,46 47 Ref.
Image:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- +0.786irr +0.60, +0.85, +1.03 $E_{os}, peak [V] \text{ or } E_{1/2ox}$ $E_{1/2} = +1.33$ +1.33irr $E_{1/2} = +1.41$ +1.41 / $E_{1/2} = +1.84$ $E_{1/2} = +0.96, +1.56$ +0.99 - - +0.93 +1.45irr $E_{1/2} = +1.59, +2.06$ - $-$ $E_{os}, peak [V]$ - +0.92irr -	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44 Ref. 45,46 47 Ref. 48
Image:	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- +0.786irr +0.60, +0.85, +1.03 $E_{ox}, peak [V] \text{ or } E_{1/2ox}$ $E_{1/2} = +1.33$ +1.33irr $E_{1/2} = +1.36$ $E_{1/2} = +1.41$ +1.41 / $E_{1/2} = +1.84$ $E_{1/2} = +0.96, +1.56$ +0.99 +0.93 +1.45irr $E_{1/2} = +1.59, +2.06$ $-$ $E_{ox}, peak [V]$ +0.92irr -	17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44 Ref. 45,46 47 Ref. 48
DMF 0.1 M TBAP MeCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a MeCN 0.1 M TBAP MeCN 0.1 M TBAPF DMF 0.05 M TEATFB -54 °C MeCN 0.1 M TBAPF6 DCM [C6mim][FAP] MeCN 0.1 M TBAPF6 DMF 0.1 M TBAPF6 DCM 0.1 M TBAPF6 MeCN 0.1 M TBAPF6	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44 Ref. 45,46 47 Ref. 48
DMF 0.1 M TBAP DCM 0.1 M TBAPF6 DCM 0.1 M TBAPF6 medium ^a MeCN 0.1 M TBAP MeCN 0.1 M TBAPFB DMF 0.05 M TEATFB -54 °C MeCN 0.1 M TBAPF6 DCM [C6mim][FAP] MeCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 DCM 0.1 M TBAPF6 MeCN 0.1 M TBAPF6 DCM 0.1 M TBAPF6 MeCN 0.1 M TBAPF6	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		17 39 31 Ref. 40 10 11 18 21 41 42 31 42 31 43 44 Ref. 45,46 47 Ref. 48 Ref. 48
Image:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		17 39 31 Ref. 40 10 11 18 21 41 42 31 43 44 Ref. 45,46 47 Ref. 48 Ref. 49 50

Table S1. The relevant electrochemical data of 1-	-6.
---	-----

^a electrolytes used: TBAPF₆ – tetrabutylammonium hexafluorophosphate; TBAP – tetrabutylammonium perchlorate; TEATFB – tetraethylammonium tetrafluoroborate; TBATFB – tetrabutylammonium tetrafluoroborate; KPF₆ – potassium hexafluorophosphate; [C6mim][FAP] – 1–hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate

		[ReCl(CO) ₃ (bipy)] (1a)		-		
medium	λ_{abs} (nm)	λ_{exc} (nm)	$\lambda_{PL} (nm)$	τ	φ _{PL} (%)	Ref.
MeCN	370	-	612	25 ns		
DCM	384	-	612	50 ns	-	
DMF	373	-	610	26 ns		
EtOH	372	—	604	36 ns		11
THF	388	-	614	65 ns	-	
dioxane	390	-	614	62 ns	-	
benzene	400	-	612	70 ns		
EtOH	_	-	612	-		51
EtOH 175 K	-	-	529	-		
DCM	242, 256, 294, 320sh, 386	-	622	50 ns		13
EtOH:MeOH (4:1) // K		-	550	2.78 µs		
DMF 0.10 M TD A DE	294, 318sh, 372	_	-	-	-	16
$\frac{0.10 \text{ M IBAPF}_6}{2 \text{ MaTHE 80 } K}$	275		520	2.7.46	28	
Z-METHE 80 K	375	_	612	<u>2.7 μs</u>	2.0	52
DCM	239 294 387	_	012	45 115		
DMA			607			19
H ₂ O:dioxane (1:4)	368	_	605	29 ns	0.4	
$H_2O:dioxane (1:4)$ $H_2O:dioxane (1:4)$ 77 K	-	_	536	2.9 113		53
		_	642	39 ns	0.31	54
DMF	370	_	580	-	-	20
DMF	-	_	637	25 ns	0.3	22
MeCN	371	_	633		0.27	
77K 2-MeTHF	_	_	-	3.17 us	-	55
DMSO	_	319	576	21 ns	26.1	56
MeCN	291.371	-	-			57
DMF	~373 400 443 466 500	_	_	_	_	58
DMF:MeOH	294, 317, 371	_	598	_	0.23	59
DCM	385	385	600	51 ns	0.5	60
DMF	369		611	-		24
toluene	401	_	604	_	0.58	
EtOH·MeOH (4·1) 77 K		_		4 1 us	-	61
FtOH:MeOH (4:1)		_		23.6 ns		
THE	372	_	613	25.0 hs		27
DCM	293 385		612	25 113		
THE		_	621	23 35 ns	0.5	62
toluene	399	_	641	23.35 hs	-	(2
DCM	_	_	_	-	0.58	6.5
MeCN	234 290 315 370	_	611	29 ns	0.2	
PMMA (film)		_	562	332 ns		04
DMF	293, 373	_	606	-	_	65
CHCl ₂		393 316sh 295	622	51.0 ns	1.65	
MeCN	290, 332, 381	369, 299	639	26.4 ns	0.71	31
solid		471	584	0.6 µs	_	
DMF	370	370	574	46.6 ns	_	66
DME	317, 371	_	596	25 ns	0.56	34
toluene:DCM (1:1)	_	404	625	-	_	67
DCM	290 390	_	620	45 ns	_	
EtOH	290, 365, 315	_	620	24 ns	_	36
EtOH 77 K	_	_	530	2.8 us	<u> </u>	
DMSO	368	455	631	22.69 ns	<u> </u>	37
21.150	500	$[ReCl(CO)_2(ternv-r^2N)]$	1b)	 .07 hb		1
medium	$\lambda_{\rm rbs}$ (nm)	$\frac{\lambda_{m}}{\lambda_{m}}$	$\lambda_{\rm m}$ (nm)	τ	(0m (%)	Ref
DMF·DCM (9·1) 77 K			530	3.4 µs		38
MeCN	250-300. 320-400	360	506	-	-	39
DCM	220, 295, 378	442	509	2.02 us	0.3	68
solid	_	365	562	1.95 us	-	08
DMSO	~310, 380	-	_	-	-	69
CHCl ₃		393, 322sh. 301, 265	638	4.59 ns	0.42	
MeCN	306. 323. 375	380. 323. 303	656	3.59 ns	<0.01	31
solid	_	491	582	0.6 us		1
DMSO:H ₂ O (1:9)	360	_	_	-	<u> </u>	70
(1))		$[ReCl(CO)_{3}(nhen)](2)$		1		1
medium	$\lambda_{\rm she}$ (nm)	λ_{nun} (nm)	λ _{ει} (nm)	τ	Фы (%)	Ref.
MeCN	364		612	178 ns	- TE (/ 0)	
DCM	374	-	604	2.88 ns	_	
DMF	366	353	614	155 ns	-	11
EtOH	369	1	600	216 ns	-	

Table S2. The absorption and emission properties of compl
--

THF	382		622	335 ns	-	
Dioxane	384		620	340 ns	_	
Beznene	388		610	320 ns	-	
MeCN	373	_	-	-	-	71
EtOH:MeOH (4:1) 77 K	_	—	-	7.2 μs	-	
MeOH	212, 265, 288, 365	—	—	-	—	72
DCM	~275, 380	—	_	-	-	73
2-MeTHF	386	400	606	227 ns	1.3	74
2-MeTHF 77 K	-	400	535	7.6 µs	-	
MeCN	~215, 260, 360	337	573	1835 ns	1.77	75
MeCN	-		600	183 ns	1.7	76
DMSO	-	319	577	32 ns	60.3	56
THF	386	410	594	197 ns	1.3	77
2-MeTHF 77K	-	410	524	7.6 µs	-	
DMF	~280, 370	—	_	-	-	78
		380	577	-	-	
DCM	380	405		300 ns	-	60
		355		-	3.6	
CHCl ₃	200, 265, 365	_	-	-	-	79
MeCN	-	355	600	183 ns	1.7	
DCM	200, 216, 265, 290, 365	_	-	-	-	
MeCN	~220, 270, 375	—	600	0.18 µs	1.7	80
PMMA (film)	-	—	550	1.3 µs	-	
MeCN	~260, 280, 360	370	605	-	_	81
MeCN	200, 216, 265, 290, 365	375	600	138 ns	1.66	64
PMMA (film)	_	375	550	1390 ns	-	1
THF	_	400	~600	-	_	82
2-MeTHF 77 K	_	400	~520	-	_	
CHCl ₂	1	382, 292, 265	617	306.6 ns	2.39	
MeCN	_	369 291 246	629	130 3 ns	2 22	31
solid		489	539	1505 hs		
MeCN	-220 265 365	375	602	1.5 µ3	17	83
MaCN	~220, 203, 303	280	502	204 ms	1.7	43
Et OLI	200, 508	380	592	204 118	5.2	84
EIUH	~220, 270	-	-	-	-	
MCN		275	500			
MeCN	200, 216, 265, 365	375	590	-	-	44
MeCN DMF	200, 216, 265, 365	375 375	590 602	 135 ns	- 1.6	44
MeCN DMF	200, 216, 265, 365	375 375 [ReCl(CO) ₃ (dppz)] (3)	590 602	 135 ns	- 1.6	44
MeCN DMF medium	200, 216, 265, 365 	375 375 [ReCl(CO) ₃ (dppz)] (3) λ _{exc} (nm)	$\frac{590}{602}$ $\lambda_{PL} (nm)$		- 1.6 φ _{PL} (%)	44 Ref.
MeCN DMF medium DCM	$\frac{200, 216, 265, 365}{-}$	$ \begin{array}{r} 375 \\ 375 \\ \hline \textbf{[ReCl(CO)_3(dppz)] (3)} \\ \hline \lambda_{exc} (nm) \\ - \\ \end{array} $	590 602 λ _{PL} (nm) -	- 135 ns τ 0.04 μs*	1.6 φ _{PL} (%)	44 Ref. 45 47
MeCN DMF medium DCM DCM	200, 216, 265, 365 	375 375 [ReCl(CO) ₃ (dppz)] (3) λ _{exc} (nm)	590 602 λ _{PL} (nm)	135 ns	- 1.6 φ _{PL} (%) - -	44 Ref. 45 47 85
MeCN DMF medium DCM DCM DCM	$\frac{200, 216, 265, 365}{-}$	$\begin{array}{c c} & 375 \\ \hline & 375 \\ \hline [ReCl(CO)_3(dppz)] (3) \\ \hline & \lambda_{exc} (nm) \\ \hline & - \\ \hline & - \\ \hline & - \\ \hline & 342 \\ \hline \end{array}$	590 602 - - - 588	- 135 ns 0.04 µs* -	_ 1.6 φ _{PL} (%) _ _ <0.01	44 Ref. 45 47 85 85 85
MeCN DMF medium DCM DCM DCM DCM DCM	200, 216, 265, 365 	$ \begin{array}{c c} & 375 \\ \hline & 375 \\ \hline [ReCl(CO)_3(dppz)] (3) \\ \hline & \lambda_{exc} (nm) \\ \hline & - \\ \hline & - \\ \hline & - \\ \hline & 342 \\ \hline & - \\ \hline & 342 \\ \hline & - \\ \end{array} $	590 602 - - - 588 -	135 ns	1.6	44 Ref. 45 47 85 86
MeCN DMF medium DCM DCM DCM DCM DCM DCM	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ \hline \\ 380 \\ 380 \\ 280, 322, 376, 394 \\ \end{array}$	$ \begin{array}{c c} & 375 \\ \hline & 375 \\ \hline [ReCl(CO)_3(dppz)] (3) \\ \hline & \lambda_{exc} (nm) \\ \hline & - \\ \hline & - \\ \hline & - \\ \hline & 342 \\ \hline & - \\ \hline \hline & - \\ \hline & - \\ \hline \hline & - \\ \hline \hline & - \\ \hline & - \\ \hline \hline \hline & - \\ \hline \hline & - \\ \hline \hline \hline & - \\ \hline \hline \hline \hline & - \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline $	590 602 - - - 588 - -	 135 ns 0.04 μs* 40 ns**	1.6	44 Ref. 45 47 85 86 86
MeCN DMF medium DCM DCM DCM DCM DCM DCM C_3H7CN	200, 216, 265, 365 	$ \begin{array}{c c} & 375 \\ \hline & 375 \\ \hline [ReCl(CO)_3(dppz)] (3) \\ \hline & \lambda_{exc} (nm) \\ \hline & - \\ \hline & - \\ \hline & - \\ \hline & - \\ \hline & 342 \\ \hline & - \\ \hline \hline \hline & - \\ \hline \hline \hline & - \\ \hline \hline \hline \hline & - \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline$	590 602 	$ \begin{array}{c} - \\ 135 \text{ ns} \\ \hline $	1.6	44 Ref. 45 47 85 86 87
MeCN DMF medium DCM DCM DCM DCM DCM DCM C_3H7CN MeCN	200, 216, 265, 365 	$\begin{array}{c c} & 375 \\ \hline & 375 \\ \hline [ReCl(CO)_3(dppz)] (3) \\ \hline & \lambda_{exc} (nm) \\ \hline & - \\ \hline & - \\ \hline & - \\ \hline & - \\ \hline & 342 \\ \hline & - \\ \hline \hline & - \\ \hline \hline & - \\ \hline & - \\ \hline \hline & - \\ \hline \hline \hline & - \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline \\$	590 602 	 135 ns	 1.6 	44 Ref. 45 47 85 86 87 47
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ \hline \\ 380 \\ 280, 322, 376, 394 \\ - \\ \hline \\ \hline \\ 280, 322, 376, 394 \\ - \\ \hline \\ 280, 360 \\ \end{array}$	$\begin{array}{c c} & 375 \\ \hline & 375 \\ \hline [ReCl(CO)_3(dppz)] (3) \\ \hline & \lambda_{exc} (nm) \\ \hline & - \\ & - \\ \hline & - \\ & 342 \\ \hline & - \\ & - \\ \hline & - \\ & - \\ \hline &$	590 602 		 1.6 Φ _{PL} (%) <0.01 	44 Ref. 45 47 85 86 87 46
MeCN DMF medium DCM DCM DCM DCM DCM C ₃ H ₇ CN MeCN DCM	$\begin{array}{c} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ \hline \\ 280, 322, 376, 394 \\ - \\ \hline \\ 280, 360 \\ \hline \end{array}$	375 375 [ReCl(CO) ₃ (dppz)] (3) λ _{exc} (nm) - 342 - 342 - [ReCl(CO) ₃ (imphen)] (4)	590 602 $\lambda_{PL} (nm)$ - - 588 - - - - - - - - - - - - -	 135 ns	 1.6 φ _{PL} (%) <0.01 	44 Ref. 45 47 85 86 87 46
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM MeCN DCM	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ \hline \\ - \\ 280, 322, 376, 394 \\ \hline \\ \lambda_{abs} (nm) \\ \end{array}$	375 375 [ReCl(CO) ₃ (dppz)] (3) λ _{exc} (nm) - 342 - - - [ReCl(CO) ₃ (imphen)] (4) λ _{exc} (nm)	$ \frac{590}{602} $	$ \begin{array}{c c} - \\ 135 \text{ ns} \\ \hline \mathbf{r} \\ 0.04 \ \mu \text{s}^* \\ - \\ - \\ - \\ - \\ 40 \ \text{ns}^{**} \\ 3.5 \ \text{ns}^{**} \\ 2.5 \ \text{ns}^{**} \\ - \\ \hline \mathbf{r} \\ \end{array} $	- 1.6 φ _{PL} (%) - - - - - - - - φ _{PL} (%)	44 Ref. 45 47 85 86 87 46 Ref.
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM DCM MeCN DCM	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 322, 376, 394 \\ \hline \\ \hline \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ \end{array}$	$\begin{array}{c c} & 375 \\ \hline & 375 \\ \hline [ReCl(CO)_3(dppz)] (3) \\ \hline & & \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ \hline & - \\ & - \\ \hline \hline & - \\ \hline & - \\ \hline \hline $	$ \frac{590}{602} $ $ \frac{\lambda_{PL} (nm)}{-} $ $$	- 135 ns τ 0.04 μs* 	- 1.6 φ _{PL} (%) - - - - - - φ _{PL} (%) 3.11	44 Ref. 45 47 85 86 87 46 Ref. 88
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM DCM MeCN DCM EtOH:MeOH (4:1) 77 K	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360 \\ 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 322, 376, 394 \\ \hline \\ \hline \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \end{array}$	$\begin{array}{c c} & 375 \\ \hline & 375 \\ \hline [ReCl(CO)_3(dppz)] (3) \\ \hline & & \\ & & \\ & - \\ & - \\ & & \\ & - \\ & - \\ & & \\ & - \\ & - \\ & & \\ & - \\ & - \\ & & \\ & - \\ & - \\ & & \\ & - \\ & - \\ & & \\ & - \\ & - \\ & & \\ & - \\ & - \\ & & \\ & - $	$ \frac{590}{602} $ $$	- 135 ns τ 0.04 μs* - - 40 ns** 3.5 ns** 2.5 ns** - τ 223.27 ns 7.76 μs	- 1.6 φ _{PL} (%) - - - - - - - φ _{PL} (%) 3.11 -	44 Ref. 45 47 85 86 87 46 Ref. 88
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM DCM EtOH:MeOH (4:1) 77 K	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 322, 376, 394 \\ \hline \\ \hline \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	375 375 [ReCl(CO) ₃ (dppz)] (3) λ _{exc} (nm) - 342 - - [ReCl(CO) ₃ (imphen)] (4) λ _{exc} (nm) 405 400 [ReCl(CO) ₃ (pybimd)] (5)	$\frac{590}{602}$ $-$		- 1.6 φ _{PL} (%) - - - - - - - φ _{PL} (%) 3.11 -	44 Ref. 45 47 85 86 87 46 Ref. 88
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM DCM DCM DCM EtOH:MeOH (4:1) 77 K medium	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 360 \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \lambda_{abs} (nm) \\ \end{array}$	$\begin{array}{c c} & 375 \\ \hline & 375 \\ \hline & \mathbf{[ReCl(CO)_3(dppz)]}(3) \\ \hline & & \\ $	$ \frac{590}{602} $ $$	- 135 ns	- 1.6 φ _{PL} (%) - - <0.01 - - - - - φ _{PL} (%) 3.11 - φ _{PL} (%)	44 Ref. 45 45 85 86 87 46 Ref. 88 Ref.
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM DCM medium DMSO EtOH:MeOH (4:1) 77 K medium DCM	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 325 \\ \end{array}$	$\begin{array}{c c} & 375 \\ \hline & 375 \\ \hline [ReCl(CO)_3(dppz)] (3) \\ \hline & \lambda_{exc} (nm) \\ \hline & - \\ \hline & \hline$	$\frac{590}{602}$ $-$	- 135 ns	- 1.6 φ _{PL} (%) - - - - - - φ _{PL} (%) 3.11 - φ _{PL} (%) 3.1	44 Ref. 45 47 85 86 87 46 Ref. 88 Ref.
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM DCM medium DMSO EtOH:MeOH (4:1) 77 K medium DMSO EtOH:MeOH (4:1) 77 K	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 325 \\ - 240, 320, 336 \\ \hline \end{array}$	$\begin{array}{c c} & 375 \\ \hline & 375 \\ \hline & \mathbf{[ReCl(CO)_3(dppz)]}(3) \\ \hline & \lambda_{exc} (nm) \\ \hline & - \\ \hline & \mathbf{[ReCl(CO)_3(imphen)]}(4) \\ \hline & \lambda_{exc} (nm) \\ \hline & 405 \\ \hline & 400 \\ \hline & \mathbf{[ReCl(CO)_3(pybind)]}(5) \\ \hline & \lambda_{exc} (nm) \\ \hline & \lambda_{exc} (nm) \\ \hline & \end{array}$	$\frac{590}{602}$ $-$	- 135 ns τ 0.04 µs* -	- 1.6 φ _{PL} (%) - - - - - - - φ _{PL} (%) 3.11 - φ _{PL} (%) 3.11 -	44 Ref. 45 47 85 86 87 46 Ref. Ref. Ref.
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM DCM medium DCM EtOH:MeOH (4:1) 77 K medium DMSO EtOH:MeOH (4:1) 77 K	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 225 \\ - \\ 240, 320, 336 \\ - \\ 240, 325 \\ \hline \end{array}$	$\begin{array}{c c} & 375 \\ \hline & 375 \\ \hline [ReCl(CO)_3(dppz)] (3) \\ \hline & \lambda_{exc} (nm) \\ \hline & - \\ \hline & \hline$	$\frac{590}{602}$ $-$	- 135 ns τ 0.04 μs* - - 40 ns** 3.5 ns** 2.5 ns** - 7 223.27 ns 7.76 μs - - - - -	- 1.6 φ _{PL} (%) - - - - - - - - - - - - -	44 Ref. 45 47 85 86 87 46 Ref. Ref. Ref.
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM DCM medium DCM EtOH:MeOH (4:1) 77 K medium DMSO EtOH:MeOH (4:1) 77 K	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 325 \\ - \\ 240, 320, 336 \\ - \\ 240, 325 \\ - \\ 260, 320, 340 \\ \end{array}$	$\begin{array}{c c} & 375 \\ \hline & 375 \\ \hline [ReCl(CO)_3(dppz)] (3) \\ \hline & \lambda_{exc} (nm) \\ \hline & - \\ \hline & \hline$	$\frac{590}{602}$ $\frac{\lambda_{PL} (nm)}{-}$ $-$ $-$ $-$ $-$ $-$ $-$ $4)$ $\lambda_{PL} (nm)$ 625 546 $5)$ $\lambda_{PL} (nm)$ 590 $- 605$ $- 590$ $- 590$ $- 585$ $-$	- 135 ns τ 0.04 µs* - - 40 ns** 3.5 ns** 2.5 ns** - 7 223.27 ns 7.76 µs • - - - -	- 1.6 φ _{PL} (%) - - - - - - - - - - - - -	44 Ref. 45 47 85 86 87 46 Ref. 88 Ref. 89
MeCN DMF medium DCM DCM DCM DCM DCM C ₃ H ₇ CN MeCN DCM DCM medium DCM EtOH:MeOH (4:1) 77 K medium DMSO EtOH:MeOH (4:1) 77 K	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ \hline \\ 280, 360 \\ \hline \\ \hline \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 325 \\ - \\ 240, 320, 336 \\ - \\ 260, 320, 340 \\ - \\ 320, 330 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} 590 \\ 602 \\ \hline \\ $	- 135 ns r 0.04 µs* - - 40 ns** 3.5 ns** 2.5 ns** - 7.76 µs r 0.075 µs - - -	- 1.6 φ _{PL} (%) - - - - - - - φ _{PL} (%) 3.11 - φ _{PL} (%) 3.1 - - - - - - - - - - - - -	44 Ref. 45 47 85 86 87 46 Ref. 88 Ref. 89
MeCN DMF medium DCM DCM DCM DCM DCM C ₃ H ₇ CN MeCN DCM medium DCM EtOH:MeOH (4:1) 77 K medium DCM THF CHCl ₃ DMSO MeCN MeOH	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ \hline \\ 280, 322, 376, 394 \\ - \\ - \\ \hline \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 220, 336 \\ - \\ 240, 325 \\ - \\ 240, 325 \\ - \\ 240, 320, 336 \\ - \\ 336 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} 590 \\ 602 \\ \hline \\ $	- 135 ns r 0.04 µs* - - 40 ns** 3.5 ns** 2.5 ns** 2.5 ns** 7.76 µs r 0.075 µs - - 0.075 µs - - 0.087 µs	- 1.6 φ _{PL} (%) - - - - - - - - φ _{PL} (%) 3.11 - φ _{PL} (%) 3.11 - - - - - - - - - - - - -	44 Ref. 45 47 85 86 87 46 Ref. 88 Ref. 89
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM medium DMSO EtOH:MeOH (4:1) 77 K medium DCM THF CHCl ₃ DMSO MeCN MeOH solid	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 320, 376 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 360 \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ - \\ - \\ 280, 320 \\ - \\ 280, 320 \\ - \\ - \\ 280, 320 \\ - \\ - \\ 280, 320 \\ - \\ - \\ 280, 320 \\ - \\ - \\ 280, 320 \\ - \\ - \\ 280, 320 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c c} & 375 \\ \hline & 375 \\ \hline & 375 \\ \hline & 875 \\$	$\begin{array}{r} 590 \\ 602 \\ \hline \\ $	- 135 ns r 0.04 µs* - - 40 ns** 3.5 ns** 2.5 ns** - r 223.27 ns 7.76 µs r 0.075 µs - - - 0.075 µs - - -	- 1.6 φ _{PL} (%) - - - - - - - - φ _{PL} (%) 3.11 - - φ _{PL} (%) 3.11 - - - - - - - - - - - - -	44 Ref. 45 47 85 86 87 46 Ref. 88 Ref. 89 89
MeCN DMF medium DCM DCM DCM DCM DCM C ₃ H ₇ CN MeCN DCM medium DMSO EtOH:MeOH (4:1) 77 K medium DCM THF CHCl ₃ DMSO MeCN MeOH solid MeCN	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 360 \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ - \\ - \\ 280, 360 \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 280, 320, 340 \\ 320, 330 \\ 336 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} 590 \\ 602 \\ \hline \\ $	- 135 ns τ 0.04 µs* - - 40 ns** 3.5 ns** 2.5 ns** - τ 223.27 ns 7.76 µs •	- 1.6 φ _{PL} (%) - - - - - - - φ _{PL} (%) 3.11 - φ _{PL} (%) 3.11 - - - - - - - - - - - - -	44 Ref. 45 47 85 86 87 46 Ref. 88 Ref. 89 48
MeCN DMF medium DCM DCM DCM DCM DCM C ₃ H ₇ CN MeCN DCM medium DMSO EtOH:MeOH (4:1) 77 K medium DCM THF CHCl ₃ DMSO MeCN MeCN MeCN	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 360 \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ - \\ 280, 360 \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 280, 320, 340 \\ - \\ 280, 320, 330 \\ 336 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	375 375 [ReCl(CO) ₃ (dppz)] (3) λ _{exc} (nm) - 342 - 342 - (m) - 342 - - (m) - - - (m) 405 400 [ReCl(CO) ₃ (pybind)] (5 λ _{exc} (nm) 380 380 375 [ReCl(CO) ₃ (pytri-Bn)] ($\begin{array}{c} 590 \\ 602 \\ \hline \\ $	- 135 ns τ 0.04 μs* - - - 40 ns** 3.5 ns** 2.5 ns** - τ 223.27 ns 7.76 μs τ 0.075 μs - - - 3.3 μs	- 1.6 φ _{PL} (%) - - - - - - - φ _{PL} (%) 3.11 - φ _{PL} (%) 3.11 - - - - - - - - - - - - -	44 Ref. 45 47 85 86 87 46 Ref. 88 Ref. 89 48
MeCN DMF medium DCM DCM DCM DCM DCM C ₃ H ₇ CN MeCN DCM medium DMSO EtOH:MeOH (4:1) 77 K medium DCM THF CHCl ₃ DCM THF CHCl ₃ DMSO MeCN MeCN MeOH solid MeCN	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ \hline \\ 280, 322, 376, 394 \\ \hline \\ 280, 360 \\ \hline \\ \hline \\ 280, 322, 340, 396 \\ \hline \\ \hline \\ \hline \\ - \\ \hline \\ 280, 320, 336 \\ \hline \\ \hline \\ - \\ \hline \\ \hline \\ - \\ \hline \\ \hline \\ 280, 320, 330 \\ \hline \\ 336 \\ \hline \\ \hline \\ \hline \\ - \\ \hline \\ \hline \\ - \\ \hline \\ \hline \\ \hline$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} 590 \\ 602 \\ \hline \\ $	- 135 ns τ 0.04 μs* - - - 40 ns** 3.5 ns* 2.5 ns** - τ 223.27 ns 7.76 μs - - 0.075 μs - - - 3.3 μs	- 1.6 φ _{PL} (%) - - - - - - - - φ _{PL} (%) 3.11 - φ _{PL} (%) 3.1 - - - 4.6 - - φ _{PL} (%)	44 Ref. 45 47 85 86 87 46 Ref. 88 Ref. 89 48 Ref.
MeCN DMF medium DCM DCM DCM DCM DCM C ₃ H ₇ CN MeCN DCM medium DMSO EtOH:MeOH (4:1) 77 K medium DCM THF CHCl ₃ DMSO MeCN MeCN MeCN	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ \hline \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 325 \\ - \\ 240, 320, 336 \\ - \\ - \\ - \\ 220, 336 \\ - \\ - \\ - \\ 320, 330 \\ 336 \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ 320, 340, 390 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} 590 \\ 602 \\ \hline \\ $	- 135 ns τ 0.04 µs* - - 40 ns** 3.5 ns** 2.5 ns** 2.5 ns** - - - 0.075 µs - - 0.075 µs - - - 0.087 µs - 3.3 µs	- 1.6 φ _{PL} (%) - - - - - - - - - - - φ _{PL} (%) 3.11 - - φ _{PL} (%) 3.1 - - - - - - - - - - - - -	44 Ref. 85 86 87 46 Ref. 89 48 Ref. 89 48
MeCN DMF medium DCM DCM DCM DCM DCM C ₃ H ₇ CN MeCN DCM medium DMSO EtOH:MeOH (4:1) 77 K medium DCM THF CHCl ₃ DMSO MeCN MeOH solid MeCN	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ \hline \\ 280, 322, 376, 394 \\ - \\ \hline \\ 280, 360 \\ \hline \\ \hline \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 220, 280, 320, 336 \\ \hline \\ - \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 320, 330 \\ 336 \\ \hline \\ \hline \\ - \\ - \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 333 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 333 \\ \hline \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} 590 \\ 602 \\ \hline \\ $	- 135 ns τ 0.04 µs* - - 40 ns** 3.5 ns** 2.5 ns** - - - 223.27 ns 7.76 µs - - 0.075 µs - - - 0.087 µs - 3.3 µs τ - 8.90 µs	- 1.6 φ _{PL} (%) - - - - - - - - - - φ _{PL} (%) 3.11 - - φ _{PL} (%) 3.11 - - - - - - - - - - - - -	44 Ref. 85 86 87 46 Ref. 89 48 Ref. 55
MeCN DMF medium DCM DCM DCM DCM DCM C ₃ H ₇ CN MeCN DCM medium DMSO EtOH:MeOH (4:1) 77 K medium DMSO EtOH:MeOH (4:1) 77 K medium DCM THF CHCl ₃ DMSO MeCN MeOH solid MeCN medium	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ \hline \\ 280, 322, 376, 394 \\ - \\ \hline \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ - 325 \\ - 240, 320, 336 \\ - \\ 240, 325 \\ - 260, 320, 340 \\ - \\ 320, 330 \\ 336 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} 590 \\ 602 \\ \hline \\ $	- 135 ns τ 0.04 μs* - 40 ns** 3.5 ns** 2.5 ns** - 7 223.27 ns 7.76 μs - - 0.075 μs - - 0.087 μs - 3.3 μs τ - 103 ns	- 1.6 φ _{PL} (%) - - - - - - - - φ _{PL} (%) 3.11 - - φ _{PL} (%) 3.11 - - - - - - - - - - - - -	44 45 47 85 86 87 46 Ref. 88 Ref. 89 48 Ref. 55 49
MeCN DMF medium DCM DCM DCM DCM DCM C ₃ H ₇ CN MeCN DCM medium DCM medium DMSO EtOH:MeOH (4:1) 77 K medium DCM THF CHCl ₃ DCM MeCN MeCN MeCN MeCN CHCl ₃ CHCl ₃ CHCl ₃ DMSO MeCN MeCN MeCN	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ \hline \\ 280, 322, 376, 394 \\ - \\ \hline \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 325 \\ - 240, 320, 336 \\ - \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 320, 330 \\ 336 \\ - \\ - \\ - \\ - \\ 320, 340, 390 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 333 \\ - \\ \hline \\ 270, 290, 336 \\ 346 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} 590 \\ 602 \\ \hline \\ $	- 135 ns τ 0.04 µs* - - 40 ns** 3.5 ns** 2.5 ns** 2.5 ns** 223.27 ns 7.76 µs - - 0.075 µs - - 0.087 µs - 3.3 µs τ 8.90 µs 103 ns 0.80 µs	- 1.6 φ _{PL} (%) - - - - - - - - φ _{PL} (%) 3.11 - φ _{PL} (%) 3.11 - - - - - - - - - - - - -	44 45 47 85 86 87 46 Ref. 88 Ref. 89 48 Ref. 55 49 50
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM medium DCM EtOH:MeOH (4:1) 77 K medium DCM EtOH:MeOH (4:1) 77 K medium DCM THF CHCl ₃ DMSO EtOHCl ₃ DMSO MeCN MeCN medium MeCN 2-MeTHF 77 K MeCN DCM DCM	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 360 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 325 \\ - 240, 320, 336 \\ - \\ - \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 320, 330 \\ \hline \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 333 \\ \hline \\ - \\ 270, 290, 336 \\ \hline \\ 346 \\ 330 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} 590 \\ 602 \\ \hline \\ $	- 135 ns τ 0.04 μs* - - 40 ns** 3.5 ns** 2.5 ns** - 7 223.27 ns 7.76 μs - - 0.075 μs - - 0.087 μs - 3.3 μs τ 8.90 μs 103 ns 0.80 μs 0.10 μs	- 1.6 φ _{PL} (%) - - - - - - - - φ _{PL} (%) 3.11 - - φ _{PL} (%) 3.11 - - - 4.6 - - 4.6 - - 4.6 - - 4.9 1.2 4.9 1.2	44 Ref. 85 86 87 46 Ref. 89 48 Ref. 89 48 Ref. 55 49 50
MeCN DMF medium DCM DCM DCM DCM DCM C_3H7CN MeCN DCM medium DMSO EtOH:MeOH (4:1) 77 K medium DMSO EtOH:MeOH (4:1) 77 K medium DCM THF CHCl ₃ DMSO MeCN MeCN MeCN 2-MeTHF 77 K MeCN DCM DCM	$\begin{array}{r} 200, 216, 265, 365 \\ - \\ - \\ \hline \\ \lambda_{abs} (nm) \\ 280, 360 \\ 360, 378 \\ 380 \\ 280, 322, 376, 394 \\ - \\ - \\ 280, 360 \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \lambda_{abs} (nm) \\ 260, 286, 301, 322, 340, 396 \\ - \\ \hline \\ \lambda_{abs} (nm) \\ - \\ 260, 280, 320, 336 \\ - \\ - \\ 270, 290, 330 \\ 333 \\ - \\ 270, 290, 336 \\ 346 \\ 330 \\ 348 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} 590 \\ 602 \\ \hline \\ $	- 135 ns τ 0.04 μs* - - 40 ns** 3.5 ns** 2.5 ns** 2.5 ns** - 7 223.27 ns 7.76 μs - - 0.075 μs - - - 0.087 μs - 3.3 μs τ 8.90 μs 103 ns 0.80 μs 0.10 μs	- 1.6 φ _{PL} (%) - - - - - - - φ _{PL} (%) 3.11 - - φ _{PL} (%) 3.11 - - - 4.6 - - 4.6 - - 4.6 - - 4.9 1.2 4.9 1.2 -	44 Ref. 45 47 85 86 87 46 Ref. 88 Ref. 89 48 Ref. 55 49 50 67

obtained from ns-TA measurements; ** obtained from TRIR measuremens

Table S3. The spectroscopic and electrochemical properties of complexes 7–46.

complex	medium	$\lambda_{abs} (nm)$	λ_{exc} (nm)	λ_{PL} (nm)	τ	Фрі (%)	ΤΑ τ	ΤΕ τ	TRIR τ	E _{red} , peak [V]	E _{ox} , peak [V]	Ref.
	DCM	299, 348, 398		437, 640	4.4 ns, 13.8 ns	<1	-	_	—	-1.36	+1.14, +1.65	
7	toluene	_	350	~400, 640	_	-	-	_	—	-	—	90
,	CHCl ₃	-	550	~440, 640	-	-	-	-	—	-	_	
	MeCN	-		~480	_	-	-	_	—	_	—	
8	DCM	362, 368, 448, 466	325	425, 500, ~650	-	-	190 ns	200 ns	20 ps, 124 ns	-	_	
0	MeCN	350, 359, 437, 446	525	478, ~650sh	_	-	140 ns	< 6 ns	57 ps, ~2 ns, 100 ns	_	—	91
0	DCM	345, 356, 405, 431	325	420, 445, ~650	_	-	100 ns	100 ns	20 ps, 88 ns	-	—	
,	MeCN	349, 360, 429, 449	525	460, ~650	_	-	80 ns	< 6 ns	34 ps, 400 ps, 66 ns	-	—	
10	DCM	303, 376, 460		520	<10 ns	-	600 ns	-	_	-	_	
10	MeCN	-	350	514	<10 ns	-	-	-	_	-	_	92
11	DCM	389,479	550	510	<10 ns	-	1.7 μs	-	_	—	_	
	MeCN	-		510	<10 ns	-	1 µs	-	_	—	_	
12	DCM	343, 500		680	-	6.0	3.9 µs	-	_	–1.16, –1.53irr	+0.92, +1.42irr, +1.74irr	
	2-MeTHF 77 K	-		589	-	-	-	_	—	-	_	_
13	DCM	292, 336, 496		701	-	1.0	-	_	—	-1.14, -1.52irr	+0.98, +1.29irr, +1.72irr	_
10	2-MeTHF 77 K	-		590	-	-	-	_	—	-	_	_
14	DCM	368, 498	355	686	-	4.0	-	_	—	-1.13, -1.48irr	+0.96, +1.48irr, +1.72irr	93
	2-MeTHF 77 K	-	000	582	-	-	-	-	-	-	-	_
15	DCM	348, 513		703	-	6.0	-	-	-	-1.20, -1.59irr	+0.90, +1.48irr, +1.61irr	
	2-MeTHF 77 K	-		594	-	-	-	-	—	-	-	
16	DCM	344, 524		708	-	7.0	4.4 μs	-	—	-1.19, -1.62irr	+0.86, +1.41irr, +1.62irr	
-	2-MeTHF 77 K	-		619	-	-	-	-	—	-	—	04
17	DCM	378, 450	-	672	18 ns	5.0	-	-	—	-	-	24
	MeCN	420	456	695	14.6 ns	0.4	-	—	-	-1.72	+0.66	-
10	CHCl ₃	438	447	628	122.6 ns	0.8	-	—	-	-	_	95
18	solid (film)	463	320	369, 529	-	-	-	-	-	-	_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	EtOH:MeOH (4:1) // K	_	453	569, 601sh	241.4 µs	- 1.2	-	-	_	-	_	
10	solid	- 290	515	604	2.98 µs	1.5	-	-	_	-		
19	DCM	389		605	6 μs	1.0	-	-	27	-		-
20	DCM	380	355	607	5.9 μs	0.5	-	-	37 ps	-		96
21	DCM	410		0/8	44 ns	0.2	-	-	44 fts	-		-
22	DCM	401		089	27 ns	0.1	-	-	27 fts	- 1.29	-	
25	DCM	- 247 490	355	-	-	-	28 ns	-	_	-1.28	+0.84, +1.52	97
24	DCM	~347, 480		~010	290 lis	0.55	260 lls	—	_	-1.23	+1.51	
25	DCM	_	_	-	_		$12.0 \ \mu s, 42.3 \ \mu s$	_	-	_		98
20	DCM	- 202	_	-	—	_	12.4 μ8, 43.0 μ8	—	_	—	_	
21	toluono	192	_	~000	—	_	0.00 µs	—		—	_	
	diovane	400	_	526	—	-	1.4 μs		1.2 μs	—		
	CHCl	478	_	702	—	-	_	_	—	—		
28	ethyl acetate	490	_	702	_	_	_	_	_	_		-
20	THE	475	_	709	_	_	_	_	_	_		-
	DCM	470	_	740	_	_	38.05	_	_	097		
	MeCN	400	_	/40	_	_	5.0 μs	_	- 1 6 us		+1.05	99
	toluene			641			18 us		1.0 µs	-0.01	-	
	dioxane	485		674		_	1.0 µs		_		_	
29	CHCla	510		727		_			_		_	
	ethyl acetate	482	_	727	_	_	_	_	_	_		
	THE	492	_	724	_	_	_	_	_	_		
	1111	774	_	124	-	_	-	-	-		—	1

complex	medium	λ_{abs} (nm)	λ_{exc} (nm)	$\lambda_{PL} (nm)$	τ	Фрг (%)	ΤΑ τ	ΤΕ τ	TRIR τ	E _{red} , peak [V]	E _{ox} , peak [V]	Ref.
	DCM	520	-	783	-	-	1.6 µs	_	—	-0.85	+1.05	
	toluene	490	-	641	-	-	1.8 µs	-	—	_	-	
	dioxane	479	-	665	-	-	-	-	—	-	_	
	CHCl ₃	504	_	717	-	-	_	_	—	_	-	
	ethyl acetate	479	-	715	-	-	-	-	—	_	-	
	THF	491	_	724	-	-	—	_	—	-	_	
	DCM	515	-	721	-	-	10.1 µs	-	20 ps, 300 ps, 2.8 μs	-0.88	+1.05	
30	toluene	-	-	~410, 580	-	-	-	-	—	—		
	dioxane	-	-	~400, 620	-	-	-	-	—	—		
	chlorobenzene	-	-	~655	-	-	-	-	—	-	_	
	CHCl ₃	-	_	~700	-	-	-	-	-	-	_	
	ethyl acetate	-	_	~405, 705	-	-	-	-	-	-	_	
	THF	-	-	~405,705	-	-	-	-	—	-	_	
	DCM	489	-	740	-	-		3.8 µs	—	-0.97	+1.05	
	toluene	-	-	~670	-	-	-	-	—	-	_	
	dioxane	-	-	~670	-	-	-	-	-	-	_	
	chlorobenzene	_	-	~700	_	-	-	_	_	_	_	
21	CHCl ₃	_	-	~710	_	-	-	_	_	_	_	
31	ethyl acetate	_	-	~410	_	-	-	_	_	_	_	100
	THF	-	-	~410,690	_	-	_		_	_	_	
	DCM	513	_	600	_	-	_	3.6 µs	_	-0.99	+0.78	
	DMF	-	_	~450	_	-	_	_	_	_	_	
	toluene	-	-	~410, 500	_	-	_	_	_	_	_	
	dioxane	-	-	~520	_	-	_	_	_	_	_	
	chlorobenzene	-	-	~670	_	-	_	_	_	_	_	
22	CHCl ₃	-	-	~680	_	-	_	_	_	_	_	
32	ethyl acetate	-	-	~620	_	-	_	_	_	_	_	
	THF	_	_	~620	_	-	_	_	_	_	_	
	DCM	433	-	620	_	-	-	3.0 µs	_	-0.95	+1.44	
	DMF	_	-	~700	_	-	-	_	_	_	_	
	toluene	456	_	581	_	-	_	_	_	_	_	
	dioxane	443	_	615	_	-	_	_	_	_	_	
	chlorobenzene	470	-	646	< 6 ns	-	_	_		_	_	
33	CHCl ₃	473	-	667	_	-	_	_		_	_	
	ethyl acetate	440	-	679	_	-	_	_		_	_	
	THF	447	-	686	_	-		_		_	_	
	DCM	470	-	701	-	-	0.027 ns, 2.8 µs	_	43 ps, 2 ns, 2.9 μs	-	-	101
	toluene	494	-	554	-	-	-	_	-	-	-	101
	dioxane	485	-	601	_	-	_	_	_	_	_	
	chlorobenzene	495	_	660	< 6 ns	-	_	_	_	_	-	
	CHCl ₃	504	_	675	-	-	_	_	_	_	-	
34	ethyl acetate	476	_	641	-	-	_	_	_	_	-	
	THF	479	_	646	_	_	_	_	_	_	-	
	DCM	491	_	685	_	_	0.03 ns. 3.9 µs	_	28 ps. 1.5 ns. 2.2 µs	_	_	
	DMF	477	-	714	_	_		_	-	_	_	
	DCM	443	_	_	_	_	2.1 us	_	1.28 us	-0.97	+1.00	
35	chlorobenzene	-	_	~610	< 6 ns	_		_	-	_	_	
	DCM	413	_	-	_	_	1.2 us	_	950 ns	-0.97	+0.97	102
36	chlorobenzene	-	_	~620	< 6 ns	_		_	-	_	_	
37	DCM	505	_	-	-	_	3.2 µs	_	_	-0.91	+1.06	
<u> </u>		2.00			1						100	1

complex	medium	$\lambda_{abs} \left(nm \right)$	λ_{exc} (nm)	λ_{PL} (nm)	τ	Ф _{РL} (%)	ΤΑ τ	ΤΕ τ	TRIR τ	E _{red} , peak [V]	E _{ox} , peak [V]	Ref.
	chlorobenzene	-	-	~725	< 6 ns	-	-	-	-	-	_	
20	DCM	505	-	-	-	-	800 ns	-	1.28 µs	-0.95	+0.94	
30	chlorobenzene	_	-	~610	< 6 ns	-	-	_	-	-	_	
20	DCM	420	-	_	-	-	600 ns	_	800 ns	-0.86	+1.00	
39	chlorobenzene	—	_	~450, 630	< 6 ns	-	_	_	-	-	-	
	DCM	—	_	_	-	-	_	_	-	-1.907	+0.525, +0.970	
	CHCl ₃	294, 374, 398sh, 468	460	600	1.001 µs	14.5	-	-	-	-	_	
	solid	-	450	685	260 ns	2.3	-	-	-	-	_	
40	EtOH:MeOH (1:4) 77 K	-	445	556	741.2 μs	-	-	-	-	-	_	103
	MeCN	274, 361, 441	-	-	-	-	-	-	-	-	_	
	DMF	297, 364, 446	-	-	-	-	-	-	-	-	_	1
	THF	294, 364, 443	-	-	-	-	-	-	-	-	_	
41	DCM	227, 368, 424	-	592	204 ns	12.0	-	-	-	-	_	
42	DCM	279, 303, 422	-	596	271 ns	18.0	-	-	-	-	_	104
43	DCM	286, 366, 434	-	598	248 ns	9.0	-	-	-	-	_	
44	DCM	~260, 290, 340, 430	-	-	-	-	-	-	-	-	_	105
44	solid (CBP film)	-	266	375	0.2 μs		-	-	-	-	_	
45	CHCl ₃	295, 345, 437	-	~580	-	-	-	-	-	-	_	106
45	solid	-	-	-	0.16 µs	-	-	-	—	-	_	
16	DCM	295, 399	-	573	<10 ns	3.7	10 µs	_	8 ps, 140 ps, 440 ns	-	_	107
40	DMF	-	-	_	_	-	_	-	_	-1.58irr	+1.07, +1.56irr	

Table S4. The spectroscopic and electrochemical properties of complexes 47–58.

complex	medium	λ_{abs} (nm)	$\lambda_{\rm evc}$ (nm)	λ _{PI} (nm)	τ	Фр (%)	ΤΑτ	TRIR τ	Ered, peak [V]	E _{ov} , peak [V]	Ref.
	CHCl ₃	280, 292sh, 326, 335, 390	395, 332, 274	588	336.8 ns	8.08	_	-			
	MeCN	276, 292sh, 319, 381	393, 326, 267	607	178.6 ns	2.05	_	_	-	_	1
47	EtOH:MeOH (4:1) 77 K	_	393, 331, 268	527, 552sh	41.8 μs	_	_	-	-	-	31
47	solid	—	439	565	3.1 µs	16.93	-	-	-	-	
	solid (film)	324, 400	366, 272	416, 434, 524	-	-	_	-	-	-	_
	DCM	—	-	-	-	_	—	-	-2.05, -2.31	+0.69, +0.85, +1.04	
	MeCN	191, 248, 308, 414	257, 315, 365, 458	702	0.079 ns	0.36	774 ns	-	-1.84, -2.07, -2.23	+0.58, +0.81	_
	CHCL	247 307 421	289, 329, 404	507	3.74 ns	0.14	84 ps				
	CHCI3	247, 307, 421	265, 303, 369, 432	617	40.15 ns	0.14	04 115	_	_	_	
48	solid	_	302, 351, 522	625	2.28 μs	1.29	—	-	-	-	108
	EtOH:MeOH (4:1) 77 K	_	319, 429	588	240.93 μs	-	_	-	-	-	1
			330	384, 575	-						1
	solid (film)	312, 401	370	415, 438	_	1.65	—	-	-	-	
	MeCN	246, 305, 364, 404	445	698	23.00 ns	0.8	_	_	-1.74	+0.52	1
			358	510	4.1 ns	1.0	_	_	_	_	1
	CHCl ₃	249, 307, 418	417	634	16.60 ns	0.8		_	_	_	1
49	solid	_	536	653	105.43 ns	0.8	_	_	_	_	1
ب	30114	_	125	595	228 43 us	0.4	_	_	_		-
	EtOH:MeOH (4:1) 77 K	_	433	279 521	220.45 µs			_	_	_	-
		- 401	324	378, 551	_	_	_	_	-	-	95
	solid (film)	401	372	420, 442	-	-	—	-	- 1.75	-	-
	MeCN	248, 307, 398	420	661	37.72 ns	1.0		-	-1./5	+0.64	-
-	CHCl ₃	247, 307, 403	404	650	9.42 ns	0.6	-	-	-	-	-
50	solid	-	470	571	5.35 µs	8.7	_	-	-	-	4
	EtOH:MeOH (4:1) 77 K	_	419	570	190.23 μs	-	_	-	-	-	_
	solid (film)	418	323	374, 527	-	_		-	-	-	
	CHCl ₃	405	405	645	8 ns	0.9	-	-	_	_	
	THF	405	405	665	6 ns	1.0	_	-	-	_	
51	MeCN	402	405	665	146 ns	0.1	_	-	-	-	
51	DMF	409	409	650	248 ns	< 0.1	_	-	-	-	1
	EtOH:MeOH (4:1) 77 K	_	420	560	178 μs	-	_	_	-	_	1
	solid	_	475	613	553 ns	7.1	_	-	-	_	95 109
	CHCl ₃	247, 313, 380, 430	425	637	20.00 ns	1.3	170 fs, 10.75 ps, 145.59 ps, 3.67 ns	-	-	_	
	THF	415	415	650	46.64 ns	4.5	_	_	_	_	1
	MeCN	192, 246, 309, 354, 419	456	687	177.60 ns	2.0	340 fs. 3.06 ps. 64.45 ps	_	-1.76	+0.54	1
	DMF	425	425	680	1.67 us	< 0.1	-	_	_	_	1
	EtOH·MeOH (4·1) 77 K	_	425	580	227.64 us	_		_	_	_	1
52	solid	_	/9/	636	1 37 us	0.7	_	_	_	_	1
32	DMF	425	-	532	380 ns	-		380 ns	-1.81	_	110
	77K 2-MeTHF	-	_	560	-	_	_	-	-	_	110
	CHCl ₃	247, 313, 380sh, 430	421	636	20.16 ns	1.13	_	-	-	-	1
	MeCN	192, 246, 309, 354, 419	452	687	0.26 ns	1.91	_	-	-	_	111
	solid	-	494	636	1.35 μs	0.67	-	—	-	-]
	EtOH:MeOH (4:1) 77 K	-	312, 325, 368, 444	580	227.98 μs	-		-	-	-	
53	CHCl ₃	270, 322, 339, 351, 425	268, 292sh, 323, 430	590	7.07 μs	6.43	-	-	-	-	31

complex	medium	λ_{abs} (nm)	λ_{exc} (nm)	λ_{PL} (nm)	τ	φ _{PL} (%)	ΤΑ τ	TRIR τ	Ered, peak [V]	Eox, peak [V]	Ref.
	MeCN	271, 416	264, 292, 318, 419	643	489.8 ns	2.48	—	_	—	-	
	EtOH:MeOH (4:1) 77 K	—	293, 322, 439	567, 604sh	200.88 μs	-	—	_	—	-	
	solid	—	331, 494	595	25.24 μs	34.77	—	_	—	-	
	solid (film)	421	339	412, 585	_	-	—	_	—	-	
	DCM	—	—	-	_	-	—	_	-1.81, -2.13	+0.78	
	EtOH:MeOH (4:1) 77 K	—	382	499, 535, 577	278.56 μs	-	—	_	—	-	
54	CHCl ₃	264, 313, 377	408	564	5.44 μs	2.83	4.23 ps, 77.26 ps	—	—	-	
34	MeCN	252, 276, 310, 378	390	557	1.32 μs	0.51	_	_	-	—	
	solid	_	450	600	4.67 μs	2.43	_	—	_	-	
	EtOH:MeOH (4:1) 77 K	—	377	496, 532, 572	216.42 μs	-	—	_	—	-	
55	CHCl ₃	267, 312, 371	370	581	5.69 µs	4.30	4.26 ps, 45.93 ps	_	—	-	112
55	MeCN	254, 273, 312, 371	370	575	2.86 µs	0.64	—	_	—	-	
	solid	_	460	650	1.99 μs	< 0.05	_	—	_	-	
	EtOH:MeOH (4:1) 77 K	_	380	498, 537, 578	210.11 µs	_	_	—	_	-	
56	CHCl ₃	267, 314, 371	375	582	6.67 μs	1.95	5.29 ps, 103.32 ps	_	-	—	
50	MeCN	258, 312, 370	395	578	4.73 μs	0.58	_	-	_	-	
	solid	_	425	572	2.60 µs	1.89	_	—	—	-	
57	DCM	499	—	-	_	_	6.1 μs	2.3 µs	-1.06	+1.19	102
51	chlorobenzene	_	—	~470, 625	_	_	_	—	_	-	
	CHCl ₃	296, 355, 391sh, 473	470	623	1.16 µs	19.5	_	—	_	-	
	MeCN	287, 305, 342, 447	—	-	_	_	_	—	_	-	
	DMF	290, 310, 349, 457	—	-	_	_	_	—	_	-	
58	THF	292, 308, 343, 444	_	-	_	_	900 fs, 6.32 ps, 141.31 ps	_	—	-	103
	solid	—	450	650	0.117 µs	4.8	_	_	—	-	
	EtOH:MeOH (4:1) 77 K	_	458	584	1.18 ms	-	_	-	-	-	
	DCM	_	-	-	-	-	_	-	-1.917	+0.438	

 Table S5. The spectroscopic and electrochemical properties of complexes 59–71.

complex	medium	$\lambda_{abs} (nm)$	$\lambda_{\rm exc} (\rm nm)$	λ_{PL} (nm)	τ	φ _{PL} (%)	ΤΑ τ	E _{red} , peak [V]	Eox, peak [V]	Ref.
59	CHCl ₃	260, 292, 333, 407	395	675	8.21 ns	0.22	_	-	-	113
	MeCN	194, 258, 321, 381	380	664	5.57 ns	0.22	_	-1.35, -1.70	+0.72, +1.07	
	solid	_	458	604	430.59 ns	3.50	_	-	-	
	EtOH:MeOH (4:1) 77 K	_	307, 338, 369	525, 565	69.15 μs	-	_	_	-	
	solid (film)	397	350	415, 438, 556			-	_	-	
			400	440, 465, 587	-	_				
	solid (15% blend in PVK)	330, 345, 397	350	416, 440, 572						
			400	463, 558	-	—	—			
60	CHCl ₃	260, 327, 428	400	484	2.40 ns	0.15	_	-	-	-
	MeCN	220, 257, 314, 406	371	516	3.14 ns	0.09	_	-1.37, -1.70	+0.71, +1.06	
	solid	_	500	689	24.41 µs	1 10	-	_	-	
				758	21.40 µs	1.19				
	EtOH:MeOH (4:1) 77 K	_	301, 374	410, 434, 467	1.01 ns	-	_	-	-	
61	DCM	330, 442	_	502	-	0.6	1.4 μs	-0.94	+1.46	114
	toluene	_	351	~420, 510	-	-	_	-	-	
	CHCl ₃	_		~450, 520	-	-	_	-	-	
	DMSO	_		~480, 590	-	-	_	-	-	
	acetone	_		~450, 575	-	-	_	-	-	
	MeCN	_		~480, 575	-	-	-	-	-	
62	DCM	350, 474	351	656	-	5.0	1200 ns	-0.92	+1.26	
	toluene	_		~590	-	-	_	-	-	
	CHCl ₃	_		~640	-	-	-	-	-	
02	DMSO	_		~660	-	-	_	-	-	
	acetone	_		~685	-	-	_	-	-	
	MeCN	_		~675	-	-	-	-	-	
	DCM	375, 492	351	697	-	7.0	2500 ns	-0.92	+1.04	
63	toluene	-		~625	-	-	-	-	-	
	CHCl ₃	—		~697	-	-	-	-	-	
64	DMSO	261, 324, 350, 415	-	564	-	-	-	_	-	115
7	MeCN	-	-	-	-	-	-	-0.73	+1.23	
65	DCM	~380, 450	400	500	-	0.57	-	-0.95, -1.46	+0.2, +0.83	116
	solid (ITO film)	~380, 488, 600	-	-	-	-	-	-	-	\square
	PBS buffer	~260, 300, 422	425	685	-	0.04		-	-	117
66	DCM	~260, 300, 410		691	-	0.03	1.2 μs	-	-	
	MeCN	~260, 300, 408		493	-	0.01	-	-	-	
6 7	DCM	291, 335, 417sh, 439	-	-	-	-	-	-0.75	-	46
68	DCM	294, 321, 424sh, 447	-	-	-	-	-	-1.03	-	
69	DMF	~480, 560	-	-	-	-	-	-	-	118
	DCM	~200, 250, 300, 325, 375, 580	560	-	-	-	<100 ps	-1.41	+0.28, +0.62	110
70 71	DCM	~260, 330	-	-	214 ns	-	-	-	-	112
	CHCl ₃	253, 280, 302, 425	420	785	150 ns	0.81	0.17 ps, 2.78 ps, 84.9 ps, 684.13 ps	-	-	
	MeCN	252, 278, 296, 317, 406	-	-	-	-	-	-	-	
	solid	—	525	725	130 ns	2.31	-	-	-	
	EtOH:MeOH (4:1) 77 K	_	425	665	2.08 µs	-	—	_	—	

Table S6. The spectroscopic and electrochemical properties of complexes 72–86.

					r r	- p			-	-
complex	medium	λ_{abs} (nm)	λ_{exc} (nm)	λ_{PL} (nm)	τ	$\varphi_{PL}(\%)$	ΤΑτ	E _{red} , peak [V]	E _{ox} , peak [V]	Ref.
72	DCM		420	570	420 ns		-	_	_	
		252, 296, 366		688	6 µs					
				764	23 µs					120
73				592	210 ns					
	DCM	258, 296, 380	420	700	15 us	_	-	-	_	
			-	776	65 µs					
74	DCM	~260 350 370 385		~540	15 ns	_	_	_	_	101
75	DCM	~260, 350, 370, 385	380	~540	40 ns	_	42 us		_	121
76	DME	-325, 350, 370, 385	375	-410 425	0.141 ps	_	117.7 μs	1.60 1.07 2.45		122
77	MaCN	~325, 350, 380, 395	402	~410, 425	0.141 115	_	11/./ µs	1.22	+0.06 +1.4	
	MeCN	382, 402	402	0/4	-	_	11 μs	-1.32	$+0.90, \pm1.4$	-
	DMSO	407	402	680	-	-	—	_	-	123
	DCM	407	-	-	-	-	-	-	-	
	EtOH:MeOH (4:1) 77 K	-	402	~645,710	~2 ms	-	-	-	-	124
	DMSO:H ₂ O (2:98)	~320, 420	380	~450	-	-	_	_	-	124
	CHCl ₃	258, 308, 351, 368, 386, 416	445	511	4.91 ns	3.85	1.53 ps, 92.9 ps, 1.96 ns	—	-	
	MeCN	252, 311, 348, 365, 384, 407	430	627	2.26 ns	4.08	1.93 ps, 52.0 ps, 1.73 ns	-	-	
	DMGO	260 216 220 240 260 200 406	420	627	2.83 ns	0.02		_		
78	DMSO	260, 316, 328, 349, 368, 388, 406	430	711	14.28 us	0.02	2.18 ps, 269.6 ps, 1.62 ns		-	
-	solid (film)	321sh 370 392 456	_	_	_	_	-	_	-	
ŀ	sonia (iiiii)	52151, 576, 572, 156	-	587	3.6.115					_
	77 K BuCN	-	430	688 761	12 ms	_	-	-	-	
	DCM			000, 701	12 1115			1.76	10.67	125
		-	-	-	- 7.20	- 1.70	-	-1.76	+0.07	-
	CHCl ₃	259, 312, 423	450	580	7.30 ns	1./8	0.58 ps, 168.8 ps	_	-	-
	MeCN	250, 292, 305, 412	430	609	3.97 ns	0.05	0.18 ps, 105.1 ps	_	-	_ '
	DMSO	262, 312, 360, 421	430	593	5.75 ns	1.40	0.29 ps, 465.3 ps	_	_	
79				712	22.71 μs					
	solid (film)	326sh, 450	_	—	_	-	-	—	-	
	BuCN 77 K	_	470	707, 784	2.6 ms	-	_	-	-	
	DCM	_	-	-	-	-	_	-1.69	+0.61	
	DMSO:H ₂ O (2:98)	~320, 475, 490	380	~440	_	-	_	_	-	124
ľ	MeCN	272, 324, 395	420	620	3.3 ns	6.1	_	_	_	
Ē	CHCl ₃	274, 306, 321, 409	450	500	4 65 ns	< 0.1	0.41 ps, 8.6 ps, 136 ps, 4.6 μs	_		
80				650 696sh	4 404 ns	7.6				124
00	solid (film)	304 338 429		-	-	-			_	126
	BuCN 77 K	504, 558, 427	440	627 680 756	57 mg	_			_	-
-		_	440	027, 080, 730	5.7 1118	_		-	-	-
01		-	-	-	-	-		-1.65, -1.97	+0.71, +0.97	127
81	DMSO:PBS buffer (1:99)	300, ~440	300	410	-	0.24	—	_	-	
	DMSO:H ₂ O (1:9)	280, 377	280	403, 466	-	15.4	-	-	_	128
			377	468	-	22.5				
87	DMSO	285, 299, 374, 429	375 435	460	1.77 ns	0.52	1.03 ps, 20.37 ps, 379.80 ps	-	_	
02				657, 720, 790	1.80 ms					
	EtOH:MeOH (4:1) 77 K	-	375 370	405, 430, 450, 494	9.49 ns		-			
				631, 691, 762	169.67 ms			_	-	88
83	DMSO	269, 280, 301, 331, 347, 375, 407	375	450	2.12 ns	- 1.06 1.64 ps, 6	1.41. 44.04. 505.05	_	-	
			420	636	1.51 ms		1.64 ps, 66.94 ps, 597.35 ps			
	EtOH·MeOH (4·1) 77 K	_	420	608 663 730	372.38 ms	_	_	_	_	1
84	DMF	~330 350 376	.20	~410 610 660	12.1.ns	_	77.4 us	-1 64		120
	DMF 77 K		—	~600.660	-			1.07	_	129
85		258 236 346 272 202		305 /19 //0	_			1 0/im		
03	DCM		370	393, 410, 440	-	~0.01	—	-1.94111	+0.90III, +1.53III	130
00	DCM	244, 207, 278, 317, 331, 347, 400sh		400	—	~0.01	—	-1.82	-	

Supplementary References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Rev. C.01 2016.
- 2 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- 3 M. Ernzerhof and G. E. Scuseria, J. Chem. Phys., 1999, 110, 5029–5036.
- 4 D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, Theor. Chim. Acta, 1990, 77, 123–141.
- 5 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305.
- 6 D. Rappoport and F. Furche, J. Chem. Phys., 2010, 133, 134105.
- 7 E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032-3041.
- 8 B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 106, 5151-5158.
- 9 M. Cossi, V. Barone, B. Mennucci and J. Tomasi, Chem. Phys. Lett., 1998, 286, 253-260.
- 10 J. C. Luong, R. A. Faltynek and M. S. Wrighton, J. Am. Chem. Soc., 1980, 102, 7892-7900.
- 11 K. Kalyanasundaram, J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys., 1986, 82, 2401-2415.
- 12 L. A. Worl, R. Duesing, P. Chen, L. D. Ciana and T. J. Meyer, J. Chem. Soc. Dalton Trans., 1991, 849-858.
- 13 K. Kalyanasundaram, M. Graetzel and M. K. Nazeeruddin, Inorg. Chem., 1992, 31, 5243-5253.
- 14 A. Harriman, M. Hissler, R. Ziessel, A. D. Cian and J. Fisher, J. Chem. Soc. Dalton Trans., 1995, 4067-4080.
- 15 G. J. Stor, F. Hartl, J. W. M. van Outersterp and D. J. Stufkens, Organometallics, 1995, 14, 1115–1131.
- 16 Y. F. Lee, J. R. Kirchhoff, R. M. Berger and D. Gosztola, J. Chem. Soc. Dalton Trans., 1995, 3677–3682.
- 17 A. Klein, C. Vogler and W. Kaim, Organometallics, 1996, 15, 236–244.
- 18 F. Paolucci, M. Marcaccio, C. Paradisi, S. Roffia, C. A. Bignozzi and C. Amatore, J. Phys. Chem. B, 1998, 102, 4759– 4769.
- 19 A. F. Stange, S. Tokura and M. Kira, J. Organomet. Chem., 2000, 612, 117–124.
- 20 P. Kurz, B. Probst, B. Spingler and R. Alberto, Eur. J. Inorg. Chem., 2006, 2006, 2966–2974.
- 21 J. P. Bullock, E. Carter, R. Johnson, A. T. Kennedy, S. E. Key, B. J. Kraft, D. Saxon and P. Underwood, *Inorg. Chem.*, 2008, **47**, 7880–7887.
- 22 H. Takeda, K. Koike, H. Inoue and O. Ishitani, J. Am. Chem. Soc., 2008, 130, 2023–2031.
- 23 J. M. Smieja and C. P. Kubiak, Inorg. Chem., 2010, 49, 9283–9289.
- 24 C. Liu, K. D. Dubois, M. E. Louis, A. S. Vorushilov and G. Li, ACS Catal., 2013, 3, 655–662.
- 25 S. A. Chabolla, E. A. Dellamary, C. W. Machan, F. A. Tezcan and C. P. Kubiak, *Inorganica Chim. Acta*, 2014, **422**, 109–113.
- 26 F. Franco, C. Cometto, C. Garino, C. Minero, F. Sordello, C. Nervi and R. Gobetto, *Eur. J. Inorg. Chem.*, 2015, 2015, 296–304.
- 27 D.-I. Won, J.-S. Lee, J.-M. Ji, W.-J. Jung, H.-J. Son, C. Pac and S. O. Kang, J. Am. Chem. Soc., 2015, 137, 13679–13690.
- 28 C. J. I. Stanton, C. W. Machan, J. E. Vandezande, T. Jin, G. F. Majetich, H. F. I. Schaefer, C. P. Kubiak, G. Li and J. Agarwal, *Inorg. Chem.*, 2016, **55**, 3136–3144.
- 29 H. Y. V. Ching, X. Wang, M. He, N. Perujo Holland, R. Guillot, C. Slim, S. Griveau, H. C. Bertrand, C. Policar, F. Bedioui and M. Fontecave, *Inorg. Chem.*, 2017, **56**, 2966–2976.
- 30 W. Yang, S. Sinha Roy, W. C. Pitts, R. L. Nelson, F. R. Fronczek and J. W. Jurss, Inorg. Chem., 2018, 57, 9564–9575.
- 31 A. M. Maroń, A. Szlapa-Kula, M. Matussek, R. Kruszynski, M. Siwy, H. Janeczek, J. Grzelak, S. Maćkowski, E. Schab-Balcerzak and B. Machura, *Dalton Trans.*, 2020, **49**, 4441–4453.
- 32 K. Talukdar, S. Sinha Roy, E. Amatya, E. A. Sleeper, P. Le Magueres and J. W. Jurss, *Inorg. Chem.*, 2020, **59**, 6087–6099.
- 33 J.-P. Du and I. Siewert, Z. Für Anorg. Allg. Chem., 2020, 646, 705–711.
- 34 R. Giereth, P. Lang, E. McQueen, X. Meißner, B. Braun-Cula, C. Marchfelder, M. Obermeier, M. Schwalbe and S. Tschierlei, *ACS Catal.*, 2021, **11**, 390–403.
- 35 L.-Q. Qiu, Z.-W. Yang, X. Yao, X.-Y. Li and L.-N. He, ChemSusChem, 2022, 15, e202200337.

- 36 M. Ertl, U. Monkowius and K. T. Oppelt, Inorg. Chem., 2023, 62, 17510–17521.
- 37 J.-Q. Song, Y.-L. Lu, S.-Z. Yi, J.-H. Zhang, M. Pan and C.-Y. Su, Inorg. Chem., 2023, 62, 12565–12572.
- 38 A. Juris, S. Campagna, I. Bidd, J. M. Lehn and R. Ziessel, Inorg. Chem., 1988, 27, 4007-4011.
- 39 A. J. Amoroso, A. Banu, M. P. Coogan, P. G. Edwards, G. Hossain and K. M. A. Malik, *Dalton Trans.*, 2010, **39**, 6993–7003.
- 40 J. C. Luong, L. Nadjo and M. S. Wrighton, J. Am. Chem. Soc., 1978, 100, 5790-5795.
- 41 P. J. Wright, S. Muzzioli, M. V. Werrett, P. Raiteri, B. W. Skelton, D. S. Silvester, S. Stagni and M. Massi, *Organometallics*, 2012, **31**, 7566–7578.
- 42 B. J. Neyhouse and T. A. White, Inorganica Chim. Acta, 2018, 479, 49-57.
- 43 V. Komreddy, K. Ensz, H. Nguyen, D. P. Rillema and C. E. Moore, J. Mol. Struct., 2021, 1223, 128739.
- 44 A. V. Müller, L. A. Faustino, K. T. de Oliveira, A. O. T. Patrocinio and A. S. Polo, ACS Catal., 2023, 13, 633-646.
- 45 M. R. Waterland, K. C. Gordon, J. J. McGarvey and P. M. Jayaweera, J. Chem. Soc. Dalton Trans., 1998, 609-616.
- 46 M. G. Fraser, A. G. Blackman, G. I. S. Irwin, C. P. Easton and K. C. Gordon, Inorg. Chem., 2010, 49, 5180-5189.
- 47 J. Fees, M. Ketterle, A. Klein, J. Fiedler and W. Kaim, J. Chem. Soc. Dalton Trans., 1999, 2595-2600.
- 48 S. Sinha, E. K. Berdichevsky and J. J. Warren, Inorganica Chim. Acta, 2017, 460, 63-68.
- 49 T. Y. Kim, A. B. S. Elliott, K. J. Shaffer, C. John McAdam, K. C. Gordon and J. D. Crowley, *Polyhedron*, 2013, **52**, 1391–1398.
- 50 W. K. C. Lo, G. S. Huff, J. R. Cubanski, A. D. W. Kennedy, C. J. McAdam, D. A. McMorran, K. C. Gordon and J. D. Crowley, *Inorg. Chem.*, 2015, **54**, 1572–1587.
- 51 J. McKiernan, J. C. Pouxviel, B. Dunn and J. I. Zink, J. Phys. Chem., 1989, 93, 2129–2133.
- 52 B. D. Rossenaar, D. J. Stufkens and A. Vlček, Inorg. Chem., 1996, 35, 2902-2909.
- 53 I. Costa, M. Montalti, P. Pallavicini, A. Perotti, L. Prodi and N. Zaccheroni, J. Organomet. Chem., 2000, **593–594**, 267–273.
- 54 K. R. J. Thomas, J. T. Lin, H.-M. Lin, C.-P. Chang and C.-H. Chuen, Organometallics, 2001, 20, 557–563.
- 55 M. Obata, A. Kitamura, A. Mori, C. Kameyama, J. A. Czaplewska, R. Tanaka, I. Kinoshita, T. Kusumoto, H. Hashimoto, M. Harada, Y. Mikata, T. Funabiki and S. Yano, *Dalton Trans.*, 2008, 3292–3300.
- 56 D. K. Orsa, G. K. Haynes, S. K. Pramanik, M. O. Iwunze, G. E. Greco, D. M. Ho, J. A. Krause, D. A. Hill, R. J. Williams and S. K. Mandal, *Inorg. Chem. Commun.*, 2008, **11**, 1054–1056.
- 57 A. Cannizzo, A. M. Blanco-Rodríguez, A. El Nahhas, J. Šebera, S. Záliš, A. Jr. Vlček and M. Chergui, J. Am. Chem. Soc., 2008, 130, 8967–8974.
- 58 A. El Nahhas, A. Cannizzo, F. van Mourik, A. M. Blanco-Rodríguez, S. Záliš, A. Jr. Vlček and M. Chergui, J. Phys. Chem. A, 2010, **114**, 6361–6369.
- 59 A. Boulay, M. Artigau, Y. Coulais, C. Picard, B. Mestre-Voegtlé and E. Benoist, Dalton Trans., 2011, 40, 6206-6209.
- 60 M. V. Werrett, D. Chartrand, J. D. Gale, G. S. Hanan, J. G. MacLellan, M. Massi, S. Muzzioli, P. Raiteri, B. W. Skelton, M. Silberstein and S. Stagni, *Inorg. Chem.*, 2011, **50**, 1229–1241.
- 61 X. Yi, J. Zhao, J. Sun, S. Guo and H. Zhang, Dalton Trans., 2013, 42, 2062–2074.
- 62 C. Matlachowski, B. Braun, S. Tschierlei and M. Schwalbe, Inorg. Chem., 2015, 54, 10351–10360.
- 63 F. Zhong, X. Yuan, J. Zhao and Q. Wang, Sci. China Chem., 2016, 59, 70-77.
- 64 L. D. Ramos, H. M. da Cruz and K. P. Morelli Frin, Photochem. Photobiol. Sci., 2017, 16, 459–466.
- 65 D. R. Whang, D. H. Apaydin, S. Y. Park and N. S. Sariciftci, J. Catal., 2018, 363, 191–196.
- 66 L. Suntrup, F. Stein, J. Klein, A. Wilting, F. G. L. Parlane, C. M. Brown, J. Fiedler, C. P. Berlinguette, I. Siewert and B. Sarkar, *Inorg. Chem.*, 2020, **59**, 4215–4227.
- 67 O. D. C. C. D. Azevedo, P. I. P. Elliott, C. D. Gabbutt, B. M. Heron, D. Jacquemin, C. R. Rice and P. A. Scattergood, *Dalton Trans.*, 2021, **50**, 830–834.
- 68 D. Wang, Q.-L. Xu, S. Zhang, H.-Y. Li, C.-C. Wang, T.-Y. Li, Y.-M. Jing, W. Huang, Y.-X. Zheng and G. Accorsi, *Dalton Trans.*, 2013, **42**, 2716–2723.
- 69 P. Bulsink, A. Al-Ghamdi, P. Joshi, I. Korobkov, T. Woo and D. Richeson, Dalton Trans., 2016, 45, 8885–8896.
- 70 R. Kushwaha, A. Upadhyay, S. Peters, A. K. Yadav, A. Mishra, A. Bera, T. Sadhukhan and S. Banerjee, *Langmuir*, 2024, **40**, 12226–12238.
- 71 R. N. Dominey, B. Hauser, J. Hubbard and J. Dunham, Inorg. Chem., 1991, 30, 4754–4758.
- 72 M. K. Itokazu, A. S. Polo, D. L. A. de Faria, C. A. Bignozzi and N. Y. M. Iha, *Inorganica Chim. Acta*, 2001, **313**, 149–155.
- 73 F. Li, M. Zhang, G. Cheng, J. Feng, Y. Zhao, Y. Ma, S. Liu and J. Shen, Appl. Phys. Lett., 2004, 84, 148–150.
- 74 I. E. Pomestchenko, D. E. Polyansky and F. N. Castellano, Inorg. Chem., 2005, 44, 3412-3421.

- 75 A. A. Martí, G. Mezei, L. Maldonado, G. Paralitici, R. G. Raptis and J. L. Colón, *Eur. J. Inorg. Chem.*, 2005, 2005, 118–124.
- 76 R. C. Evans, P. Douglas and C. J. Winscom, Coord. Chem. Rev., 2006, 250, 2093–2126.
- 77 J. E. Yarnell, J. C. Deaton, C. E. McCusker and F. N. Castellano, Inorg. Chem., 2011, 50, 7820–7830.
- 78 A. El Nahhas, C. Consani, A. M. Blanco-Rodríguez, K. M. Lancaster, O. Braem, A. Cannizzo, M. Towrie, I. P. Clark, S. Záliš, M. Chergui and A. Vlček, *Inorg. Chem.*, 2011, **50**, 2932–2943.
- 79 L. D. Ramos, R. N. Sampaio, F. F. de Assis, K. T. de Oliveira, P. Homem-de-Mello, A. O. T. Patrocinio and K. P. M. Frin, *Dalton Trans.*, 2016, **45**, 11688–11698.
- 80 M. R. Gonçalves and K. P. M. Frin, Polyhedron, 2017, 132, 20-27.
- 81 I. Chakraborty, J. Jimenez, W. M. C. Sameera, M. Kato and P. K. Mascharak, Inorg. Chem., 2017, 56, 2863–2873.
- 82 J. M. Jr. Favale, E. O. Danilov, J. E. Yarnell and F. N. Castellano, Inorg. Chem., 2019, 58, 8750-8762.
- 83 L. D. Ramos, G. Cerchiaro and K. P. Morelli Frin, Inorganica Chim. Acta, 2020, 501, 119329.
- 84 M. Yu. Tyupina, A. E. Miroslavov, G. V. Sidorenko, V. V. Gurzhiy and A. P. Sakhonenkova, *Russ. J. Gen. Chem.*, 2022, **92**, 69–78.
- 85 G. David, P. J. Walsh and K. C. Gordon, Chem. Phys. Lett., 2004, 383, 292-296.
- 86 C. Fu, M. Li, Z. Su, Z. Hong, W. Li and B. Li, Appl. Phys. Lett., 2006, 88, 093507.
- 87 M. K. Kuimova, W. Z. Alsindi, A. J. Blake, E. S. Davies, D. J. Lampus, P. Matousek, J. McMaster, A. W. Parker, M. Towrie, X.-Z. Sun, C. Wilson and M. W. George, *Inorg. Chem.*, 2008, **47**, 9857–9869.
- 88 K. Choroba, M. Penkala, J. Palion-Gazda, E. Malicka and B. Machura, Inorg. Chem., 2023, 62, 19256–19269.
- 89 B.-C. Tzeng, B.-S. Chen, C.-K. Chen, Y.-P. Chang, W.-C. Tzeng, T.-Y. Lin, G.-H. Lee, P.-T. Chou, Y.-J. Fu and A. H.-H. Chang, *Inorg. Chem.*, 2011, **50**, 5379–5388.
- 90 D. A. W. Ross, J. I. Mapley, A. P. Cording, R. A. S. Vasdev, C. J. McAdam, K. C. Gordon and J. D. Crowley, *Inorg. Chem.*, 2021, **60**, 11852–11865.
- 91 J. J. Sutton, D. Preston, P. Traber, J. Steinmetzer, X. Wu, S. Kayal, X.-Z. Sun, J. D. Crowley, M. W. George, S. Kupfer and K. C. Gordon, *J. Am. Chem. Soc.*, 2021, **143**, 9082–9093.
- 92 R. Horvath, M. G. Fraser, S. A. Cameron, A. G. Blackman, P. Wagner, D. L. Officer and K. C. Gordon, *Inorg. Chem.*, 2013, **52**, 1304–1317.
- 93 T. Yu, D. P.-K. Tsang, V. K.-M. Au, W. H. Lam, M.-Y. Chan and V. W.-W. Yam, *Chem. Eur. J.*, 2013, **19**, 13418–13427.
- 94 Y. Kim, F. W. M. Vanhelmont, C. L. Stern and J. T. Hupp, Inorganica Chim. Acta, 2001, 318, 53-60.
- 95 T. Klemens, A. Świtlicka, A. Szlapa-Kula, Ł. Łapok, M. Obłoza, M. Siwy, M. Szalkowski, S. Maćkowski, M. Libera, E. Schab-Balcerzak and B. Machura, *Organometallics*, 2019, **38**, 4206–4223.
- 96 G. E. Shillito, T. B. J. Hall, D. Preston, P. Traber, L. Wu, K. E. A. Reynolds, R. Horvath, X. Z. Sun, N. T. Lucas, J. D. Crowley, M. W. George, S. Kupfer and K. C. Gordon, *J. Am. Chem. Soc.*, 2018, **140**, 4534–4542.
- 97 G. E. Shillito, D. Preston, P. Traber, J. Steinmetzer, C. J. McAdam, J. D. Crowley, P. Wagner, S. Kupfer and K. C. Gordon, *Inorg. Chem.*, 2020, **59**, 6736–6746.
- 98 G. E. Shillito, D. Preston, J. D. Crowley, P. Wagner, S. J. Harris, K. C. Gordon and S. Kupfer, *Inorg. Chem.*, 2024, **63**, 4947–4956.
- 99 C. B. Larsen, H. van der Salm, C. A. Clark, A. B. S. Elliott, M. G. Fraser, R. Horvath, N. T. Lucas, X.-Z. Sun, M. W. George and K. C. Gordon, *Inorg. Chem.*, 2014, **53**, 1339–1354.
- 100 C. B. Larsen, H. van der Salm, G. E. Shillito, N. T. Lucas and K. C. Gordon, *Inorg. Chem.*, 2016, 55, 8446–8458.
- 101 B. S. Adams, G. E. Shillito, H. van der Salm, R. Horvath, C. B. Larsen, X.-Z. Sun, N. T. Lucas, M. W. George and K. C. Gordon, *Inorg. Chem.*, 2017, 56, 12967–12977.
- 102 J. E. Barnsley, G. E. Shillito, C. B. Larsen, H. van der Salm, R. Horvath, X. Z. Sun, X. Wu, M. W. George, N. T. Lucas and K. C. Gordon, *Inorg. Chem.*, 2019, 58, 9785–9795.
- 103 A. Szłapa-Kula, J. Palion-Gazda, P. Ledwon, K. Erfurt and B. Machura, *Dalton Trans.*, 2022, **51**, 14466–14481.
- 104 X. Li, G.-W. Zhao, Y.-X. Hu, J.-H. Zhao, Y. Dong, L. Zhou, Y.-L. Lv, H.-J. Chi and Z. Su, *J. Mater. Chem. C*, 2017, **5**, 7629–7636.
- 105 C. Liu, J. Li, B. Li, Z. Hong, F. Zhao, S. Liu and W. Li, *Appl. Phys. Lett.*, 2006, **89**, 243511.
- 106 C. B. Liu, J. Li, B. Li, Z. R. Hong, F. F. Zhao, S. Y. Liu and W. L. Li, *Chem. Phys. Lett.*, 2007, 435, 54–58.
- 107 G. S. Huff, W. K. C. Lo, R. Horvath, J. O. Turner, X.-Z. Sun, G. R. Weal, H. J. Davidson, A. D. W. Kennedy, C. J. McAdam, J. D. Crowley, M. W. George and K. C. Gordon, *Inorg. Chem.*, 2016, 55, 12238–12253.
- 108 T. Klemens, A. Świtlicka, A. Szlapa-Kula, S. Krompiec, P. Lodowski, A. Chrobok, M. Godlewska, S. Kotowicz, M. Siwy, K. Bednarczyk, M. Libera, S. Maćkowski, T. Pędziński, E. Schab-Balcerzak and B. Machura, *Appl. Organomet. Chem.*, 2018, **32**, e4611.

- 109 J. Palion-Gazda, A. Szłapa-Kula, M. Penkala, K. Erfurt and B. Machura, *Molecules*, 2022, 27, 7147.
- 110 R. Fernández-Terán and L. Sévery, *Inorg. Chem.*, 2021, **60**, 1334–1343.
- 111 T. Klemens, A. Świtlicka-Olszewska, B. Machura, M. Grucela, H. Janeczek, E. Schab-Balcerzak, A. Szlapa, S.
- Kula, S. Krompiec, K. Smolarek, D. Kowalska, S. Mackowski, K. Erfurt and P. Lodowski, *RSC Adv.*, 2016, **6**, 56335–56352.
- J. Palion-Gazda, K. Choroba, M. Penkala, P. Rawicka and B. Machura, *Inorg. Chem.*, 2024, **63**, 1356–1366.
- 113 T. Klemens, A. Świtlicka-Olszewska, B. Machura, M. Grucela, E. Schab-Balcerzak, K. Smolarek, S. Mackowski,
- A. Szlapa, S. Kula, S. Krompiec, P. Lodowski and A. Chrobok, *Dalton Trans.*, 2016, 45, 1746–1762.
- 114 J. R. W. McLay, J. J. Sutton, G. E. Shillito, C. B. Larsen, G. S. Huff, N. T. Lucas and K. C. Gordon, *Inorg. Chem.*, 2021, 60, 130–139.
- 115 J.-X. Wang, H.-Y. Xia, W.-Q. Liu, F. Zhao and Y. Wang, *Inorganica Chim. Acta*, 2013, **394**, 92–97.
- 116 Y.-Q. Li and K.-Z. Wang, *Molecules*, 2023, 28, 3229.
- 117 X. Su, W.-J. Wang, Q. Cao, H. Zhang, B. Liu, Y. Ling, X. Zhou and Z.-W. Mao, *Angew. Chem. Int. Ed.*, 2022, **61**, e202115800.
- E. J. Rohwer, Y. Geng, M. Akbarimoosavi, L. M. L. Daku, O. Aleveque, E. Levillain, J. Hauser, A. Cannizzo, R. Häner, S. Decurtins, R. J. Stanley, T. Feurer and S.-X. Liu, *Chem. Eur. J.*, 2021, 27, 5399–5403.
- 119 D. Hanss and O. S. Wenger, *Inorganica Chim. Acta*, 2009, **362**, 3415–3420.
- 120 N. P. Liyanage, W. Yang, S. Guertin, S. S. Roy, C. A. Carpenter, R. E. Adams, R. H. Schmehl, J. H. Delcamp and J. W. Jurss, *Chem. Commun.*, 2019, 55, 993–996.
- 121 M. E. Walther and O. S. Wenger, *Dalton Trans.*, 2008, 6311–6318.
- 122 L.-Q. Qiu, K.-H. Chen, Z.-W. Yang and L.-N. He, Green Chem., 2020, 22, 8614–8622.
- 123 Del Guerzo, S. Leroy, F. Fages and R. H. Schmehl, *Inorg. Chem.*, 2002, **41**, 359–366.
- 124 R. Kushwaha, A. Upadhyay, S. Saha, A. K. Yadav, A. Bera, A. Dutta and S. Banerjee, *Dalton Trans.*, 2024, 53, 13591–13601.
- 125 M. Małecka, A. Szlapa-Kula, A. M. Maroń, P. Ledwon, M. Siwy, E. Schab-Balcerzak, K. Sulowska, S. Maćkowski, K. Erfurt and B. Machura, *Inorg. Chem.*, 2022, **61**, 15070–15084.
- 126 A. Szlapa-Kula, M. Małecka, A. M. Maroń, H. Janeczek, M. Siwy, E. Schab-Balcerzak, M. Szalkowski, S. Maćkowski, T. Pedzinski, K. Erfurt and B. Machura, *Inorg. Chem.*, 2021, **60**, 18726–18738.
- 127 L. T. Babu, U. Das, R. Das, B. Kar and P. Paira, *Dalton Trans.*, 2024, **53**, 5993–6005.
- 128 R. Das and P. Paira, *Dalton Trans.*, 2023, **52**, 15365–15376.
- 129 L.-Q. Qiu, K.-H. Chen, Z.-W. Yang, F.-Y. Ren and L.-N. He, Chem. Eur. J., 2021, 27, 15536-15544.
- 130 N. M. Shavaleev, Z. R. Bell, T. L. Easun, R. Rutkaite, L. Swanson and M. D. Ward, *Dalton Trans.*, 2004, 3678– 3688.