Supporting Information

Bis(formazanate) Iron(II) Complexes as Cathode Material for One-

Compartment H₂O₂ Fuel Cell

Sunita Birara ^[a], Moumita Majumder ^[b], Ramesh K. Metre *^[a]

[a] Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan- 342030, India

[b] Department of Chemistry, School of Science and Environmental Studies, Dr. Vishwanath Karad

MIT World Peace University, Pune 411038, Maharashtra, India.

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

CORRESPONDING AUTHOR FOOTNOTE: * To whom correspondence should be addressed. E-mail: <u>rkmetre@iitj.ac.in</u> Phone (*Office*): (+91) 291-280-1309.

Table of Contents

Crystal data and structure refinement for 1 and 2	S3
IR spectrum of L1H, 1 and 2	S4
HRMS analysis for L1H, 1 and 2	S4-S5
Elemental analysis of 1 and 2	S6
XPS-analysis for the Fe 2p binding energies of complexes 1 and 2	S7
Thermogravimetric analysis of 1 and 2	S7
¹ H and ¹³ C{ ¹ H} NMR spectra of L1H	S8
¹ H and ¹³ C{ ¹ H} NMR spectra of Complex 1	S9
¹ H and ¹³ C{ ¹ H} NMR spectra of Complex 2	S10
Cyclic voltammograms of complex L1H and L2H	S11
Fuel performance tests of bare GC, L1H and L2H	S11-S12
UV-vis spectra of complex 1 and 2 after running the H_2O_2 fuel cell test	S12
Electrocatalytic reduction of H ₂ O ₂ in different acidic electrolytes	S13
Fuel performance tests in different acidic electrolytes	S14-S15
Fuel performance tests in the presence of phosphate ions	S16
Computational study and DFT computed absorption spectra of Complex 1	S17-S19

Identification code	1	2
Empirical formula	$C_{61}H_{38}Cl_2FeN_{10}S_2$	$C_{54}H_{34}Cl_2FeN_{10}O_2S_2$
Formula weight	1101.88	1045.78
Temperature/K	98(2)	98(2)
Crystal system	Triclinic	monoclinic
Space group	P-1	$P2_1/n$
a (Å)	12.155(3)	11.2395(4)
b (Å)	14.292(3)	31.2736(10)
c (Å)	16.758(4)	13.8511(5)
a (°)	114.981(5)	90
β (°)	97.046(6)	111.7710(10)
γ (°)	101.320(6)	90
Volume (Å ³)	2517.5(9)	4521.4(3)
Z	2	4
$\rho_{calc}, g.cm^{-3}$	1.454	1.536
μ (mm ⁻¹)	0.543	0.603
F(000)	1132.0	2144.0
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$	$MoK_{\alpha} (\lambda = 0.71073)$
20 range for data collection (°)	5.3 to 56.746	4.782 to 56.72
Index ranges	$-16 \le h \le 16, -19 \le k \le 19,$	$-14 \le h \le 15, -41 \le k \le 41,$
index ranges	$-22 \le 1 \le 22$	$-18 \le 1 \le 18$
Reflections collected	39556	73504
Independent reflections	12571 [$R_{int} = 0.0454$, $R_{sigma} =$	11259 [$R_{int} = 0.0576$, $R_{sigma} =$
F	0.0487]	0.0383]
Data/restraints/parameters	12571/0/685	11259/0/640
Goodness-of-fit on F ²	1.037	1.040
Final R indexes [I>=2σ (I)]	$R_1 = 0.0724, wR_2 = 0.2009$	$R_1 = 0.0401, wR_2 = 0.0864$
Final R indexes [all data]	$R_1 = 0.0923, wR_2 = 0.2203$	$R_1 = 0.0566, wR_2 = 0.0964$
Largest diff. peak/hole / (e Å-³)	1.17/-2.16	0.44/-0.52

Table S1. Crystal data and structure refinement for 1 and 2 (CCDC 2376420-2376421).

Fig S1. IR spectrum of (a) L1H (b) Complex 1 (c) Complex 2.

Figure S2. HRMS analysis for L1H: Anal. Calcd. for $[M+H]^+$ peak, m/z = 482.1361. Found $[M+H]^+$ peak, m/z = 482.1441.

Figure S3. HRMS analysis for 1: Anal. Calcd. for $[M+H]^+$ peak, m/z = 1017.1915. Found $[M+H]^+$ peak, m/z = 1017.2043.

Figure S4. HRMS analysis for 2: Anal. Calcd. for $[M+H]^+$ peak, m/z = 1045.1034. Found $[M+H]^+$ peak, m/z = 1045.2566.

Figure S5. Elemental analysis of **1.** Anal. Calcd. (%) for C₆₀H₃₆FeN₁₀S₂: C, 70.86; H, 3.57; N, 13.77. Found: C, 70.62; H, 3.84; N, 13.26.

Figure S6. Elemental analysis of **2.** Anal. Calcd. (%) for C₅₄H₃₄Cl₂FeN₁₀O₂S₂: C, 62.02; H, 3.28; N, 13.39. Found: C, 62.169; H, 3.049; N, 13.330.

Figure S7. XPS-analysis for the Fe 2p binding energies of complexes (a) 1 and (b) 2.

Figure S8. Thermogravimetric analysis of (left) complex 1, (right) complex 2.

Figure S9. ¹H NMR of L1H in CDCl₃.

Figure S10. ${}^{13}C{}^{1}H$ NMR of L1H in CDCl₃.

Figure S11. ¹H NMR of Complex 1 in CDCl₃.

Figure S12. ${}^{13}C{}^{1}H$ NMR of complex 1 in CDCl₃.

Figure S13. ¹H NMR of Complex 2 in CDCl₃.

Figure S14. ${}^{13}C{}^{1}H$ NMR of complex 2 in CDCl₃.

Figure S15. Cyclic voltammograms of complex (left) **L1H** and (right) **L2H** (1.5 mM solution of ligands in DMF; 0.1 M [Bu₄N][PF₆] electrolyte; scan rate = $10 \text{ mV} \cdot \text{s}^{-1}$) acquired using a Pt working electrode, Pt-wire counter electrode, and Ag/AgCl (3.0 M KCl) reference electrode.

Figure S16. I–V(blue) and I–P (red) curves of a one-compartment H_2O_2 fuel cell with Ni anode and bare GC in 0.1 M HCl. Performance tests were conducted using 500 mM H_2O_2 with scan rate of 10mV s⁻¹. Currents and powers were normalized by the geometric surface area of an electrode.

Figure S17. I–V(blue) and I–P (red) curves of a one-compartment H_2O_2 fuel cell with Ni anode and GC modified with (left) L1H and (right) L2H in 0.1 M HCl. Performance tests were conducted using 500 mM H_2O_2 with a scan rate of 10mV s⁻¹. Currents and powers were normalized by the geometric surface area of an electrode.

Figure S18. UV-vis spectra of (left) complex 1 and (right) complex 2 (blue line) and the recovered catalysts from the modified GC after running the H_2O_2 fuel cell test.

Figure S19. CV of H_2O_2 with 1 modified electrode in 0.1 M HCl (red line), 0.1 M H_2SO_4 (blue line) and 0.1M HClO₄ (pink line). CVs using modified Glassy Carbon electrode as working electrode in absence (black line) of H_2O_2 in acetate buffer (pH= 3) are also shown for reference. Ag/AgCl as reference and Pt-wire as counter electrode are used at a scan rate 50mV s⁻¹.

Figure S20. CV of H_2O_2 with **2** modified electrode in 0.1 M HCl (red line), 0.1 M H_2SO_4 (blue line) and 0.1M HClO₄ (pink line). CVs using modified Glassy Carbon electrode as working electrode in absence (black line) of H_2O_2 in acetate buffer (pH= 3) are also shown for reference. Ag/AgCl as reference and Pt-wire as counter electrode are used at a scan rate 50mV s⁻¹.

Figure S21. I–V(blue) and I–P (red) curves of a one-compartment H_2O_2 fuel cell with Ni anode and GC modified with 1 in 0.1 M H_2SO_4 . Performance tests were conducted using 500 mM H_2O_2 with scan rate of 10mV s⁻¹. Currents and powers were normalized by the geometric surface area of an electrode.

Figure S22. I–V(blue) and I–P (red) curves of a one-compartment H_2O_2 fuel cell with Ni anode and GC modified with 1 in 0.1 M HClO₄. Performance tests were conducted using 500 mM H_2O_2 with scan rate of 10mV s⁻¹. Currents and powers were normalized by the geometric surface area of an electrode.

Figure S23. I–V(blue) and I–P (red) curves of a one-compartment H_2O_2 fuel cell with Ni anode and GC modified with 2 in 0.1 M H_2SO_4 . Performance tests were conducted using 500 mM H_2O_2 with scan rate of 10mV s⁻¹. Currents and powers were normalized by the geometric surface area of an electrode.

Figure S24. I–V(blue) and I–P (red) curves of a one-compartment H_2O_2 fuel cell with Ni anode and GC modified with **2** in 0.1 M HClO₄. Performance tests were conducted using 500 mM H_2O_2 with scan rate of 10mV s⁻¹. Currents and powers were normalized by the geometric surface area of an electrode.

Figure S25. (Left) I–V(blue) and I–P (red) curves of a one-compartment H_2O_2 fuel cell with Ni anode and GC modified with 1 + 10 wt% C in 0.1 M HCl + K₃PO₄. (Right) I–V(blue) and I–P (red) curves of a one-compartment H_2O_2 fuel cell with Ni anode and GC modified with 2 + 10 wt% C in 0.1 M HCl + K₃PO₄.

Table	e S2:	Comparison	between	the	X-ray	determined	and	DFT	obtained	a few	selective
geom	etric _l	parameters of	complex	1.							

S. no	X-Ray	DFT		
		B3LYP	BP86	
Fe-N (S)	1.996/1.991	2.017/2.015	1.994/1.989	
Fe-N(Bz)	1.933/1.942	1.974/1.978	1.935/1.939	
Fe-N(Py)	1.884/1.884	1.898/1.896	1.877/1.878	
N(S)-Fe-N(Bz)	156.24/157.01	157.55/157.21	158.03/157.57	
N(Py)-Fe-N(Py)	177.73	177.83	177.38	
N=N(S)	1.351/1.360	1.329/1330	1.347/1.344	
N=N((Bz)	1.308/1.305	1.283/1.281	1.302/1.305	
C-S-C	89.57/89.69	89.28/89.27	89.35/89.39	

Figure S26. The computed absorption spectra obtained at unrestricted BP86 and TPSSh methods in conjugation with def2-TZVPP basis function. The spectrum obtained at BP86 method is found to be well accord with the experimental absorption spectra.

Figure S27. The molecular orbital representations of electronic transitions corresponding to the TD-DFT computed absorption spectrum of Complex 1 in $CHCl_3$ solvent in the wavelength range of 530-700 nm. A contour value of 0.03 au is used to generate the plots.