Supporting Information

Synthesis, Characterization and Functionalization of Titanium $\kappa^1 N$ Amidinato Complexes from Carbodiimides

Marcel Eilers,^a Saskia Bültena,^a Kevin Schwitalla,^a Marc Schmidtmann^a and Rüdiger Beckhaus^{*a}

Institute of Chemistry, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Federal Republic of Germany

E-mail: ruediger.beckhaus@uol.de

Table of Content

General Considerations	S1
Experimental Section	S2
NMR Spectra	S16
IR Spectra	S35
UV/vis Spectra	S41
Crystallographic Data	S47
Computational Part	S59
References	S62

General Considerations

All reactions were performed under a dry oxygen free nitrogen or argon atmosphere with rigorous exclusion of oxygen and moisture using standard Schlenk and glovebox (< 0.5 ppm O_2 , < 0.05 ppm H₂O) techniques. The glass equipment was stored in an oven at 120 °C, evacuated, and purged before use. Complexes 1a and 1b were prepared according to published procedures.^[1,2] Carbodiimides were purchased by common suppliers and used without further purification. Solvents were dried according to standard procedures over Na/K alloy with benzophenone as an indicator and subsequently distilled and stored under a nitrogen atmosphere. NMR spectra were recorded on a Bruker AVANCE III RMN 1Bay 500 MHz spectrometer or a JEOL JNM-ECZL 500 MHz spectrometer (1H 500 MHz; 11B 160 MHz; 13C 126 MHz; ¹⁵N 51 MHz). The NMR chemical shifts of ¹H and ¹³C were referenced to the solvents. Absolute values of the coupling constants (δ) are provided in Hertz (Hz). Multiplicities of signals are abbreviated as single (s), double (d), triplet (t), septet (sept), multiplet (m) or broad (br). Given chemical shifts of ¹⁵N resulted out of ¹H,¹⁵N HMBC NMR experiments with nitromethane as external standard (δ = 378.9 ppm vs. NH₃). IR spectra were recorded on a Bruker Tensor 27 spectrometer using the attenuated total reflection (ATR) method. Elemental analysis was performed on a Euro EA 3000 Elemental Analyzer. Because of the high sensitivity to moisture and air, sample preparation was performed in a glovebox. For this purpose, 0.5-2.5 mg of the samples together with a small amount of vanadium pentoxide as combustion aid were weighed into tin capsules before sealing and quickly measured in triplicate. Deviations in C, N and H values are due to the sensitivity of the compounds and possible incomplete combustion of titanium carbide and nitride. UV/vis spectra were recorded on an Analytic Jena Specord 200 photometer. Melting points were determined using a Mettler Toledo MP30. The samples were prepared in a glovebox, pre-sealed with silicon grease and then fused before measurement.

Experimental Section

General procedure A for single insertion reactions of carbodiimides

In a glovebox, either **1a** or **1b** (1.00 equiv.) were suspended in *n*-hexane. To these suspensions were added the corresponding carbodiimide (1.00 equiv., DCC was dissolved in 1 mL of *n*-hexane) dropwise with a syringe at room temperature. The reaction mixtures turned from blue (for **1a**) and green (for **1b**) to red and green and a precipitate formed after a few hours of stirring. The suspensions were stirred for 16 h to accomplish full conversion along with full precipitation of the products. The mother liquors were then decanted, the residues washed twice with a small amount of *n*-hexane and the received solids were dried in high vacuum before transferred into a glovebox.

General procedure B for double insertion reactions of carbodiimides

Inside A glovebox, **1b** (0.400 mmol) was dissolved in 5 mL of toluene. To this solution was added the corresponding carbodiimide (0.800 mmol, DCC was dissolved in 1 mL of toluene) dropwise with a syringe at room temperature, resulting in a colour change from green to yellow. The reaction mixtures were stirred for 16 h to obtain violet solutions. Afterwards, all volatile compounds were removed under reduced pressure and the residues washed with a small amount of *n*-hexane. The received violet solids were dried in high vacuum before transferred into a glovebox.

General procedure C for reactivity studies

In a glovebox, **2a** (1.00 equiv.) was either suspended in 5 mL of *n*-hexane together with 1.00 equiv. of solid substrates, or liquid substrates were added to suspensions of **2a** in 5 mL of *n*-hexane dropwise with a syringe at room temperature. The reactions can be tracked by a colour change of the resulting suspensions. The suspensions were stirred for the time required to accomplish full conversion along with full precipitation of the products. The mother liquors were then decanted, the residues washed twice with 3 mL of *n*-hexane and the received solids were dried in high vacuum before transferred into a glovebox.

Synthesis of 2a

Following the general procedure **A** with 4.500 mmol of each substrate in 60 mL of *n*-hexane, **2a** was obtained as a green powder (2.401 g, 4.205 mmol, 93%, mp. 171 °C (dec.)).

¹H NMR (500 MHz, C₆D₆, 305 K): δ = 0.95 (d, 3 H, ³J = 6.6 Hz, CH₃), 1.08-1.10 (m, 1 H, Ad– H), 1.16-1.19 (m, 6 H, 2 x CH₃), 1.28 (d, 3 H, ³J = 6.8 Hz, CH₃), 1.41-1.45 (m, 1 H, Ad–H), 1.61-2.17 (m, 21 H, Ad–H), 2.26-2.35 (m, 2 H, Ad–H), 2.67-2.72 (m, 2 H, Ad–H), 3.14 (sept, 1 H, ³J = 6.0 Hz, ⁱPr–CH), 3.29 (sept, 1 H, ³J = 6.7 Hz, ⁱPr–CH), 3.95-3.98 (m, 1 H, Cp–H), 4.22-4.26 (m, 1 H, Ad–H), 4.37-4.40 (m, 1 H, Cp–H), 4.48-4.52 (m, 1 H, Cp–H), 4.98-5.01 (m, 1 H, Cp–H), 5.35-5.37 (m, 1 H, Cp–H), 6.09-6.11 (m, 1 H, Cp–H), 6.54-6.56 (m, 1 H, Cp–H), 6.71-6.73 (m, 1 H, Cp–H) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 24.3 (CH₃), 26.7 (CH₃), 27.7 (CH₃), 28.4 (Ad–CH), 28.7 (Ad–CH), 28.8 (Ad–CH), 29.7 (Ad–CH), 30.9 (CH₃), 32.2 (Ad–CH), 34.6 (Ad–CH₂), 34.9 (Ad–CH₂), 35.1 (Ad–CH₂), 36.2 (Ad–CH), 36.3 (Ad–CH₂), 36.6 (Ad–CH₂), 37.0 (Ad–CH), 37.2 (Ad–CH), 38.2 (Ad–CH₂), 39.7 (Ad–CH₂), 40.0 (Ad–CH₂), 44.1 (Ad–CH₂), 45.3 (Ad–CH₂), 48.5 (ⁱPr–CH), 52.9 (Cp–C_{exo}), 61.4 (ⁱPr–CH), 97.1 (Cp–CH), 105.0 (Cp–CH), 105.7 (Cp–CH), 108.2 (Cp–CH), 108.5 (Cp–CH), 109.3 (Cp–CH), 110.2 (Cp–CH), 115.7 (Cp–CH), 118.9 (Cp–C_{exo}), 121.9 (Cp–C_{ipso}),132.3 (Cp–C_{ipso}), 173.1 (N=C–N) ppm.

¹**H**,¹⁵**N HMBC NMR** (51 MHz, 500 MHz, C₆D₆, 305 K): Could not be detected.

The assignment is difficult due to poor solubility in benzene- d_6 , toluene- d_8 or THF- d_8 .

IR (ATR): $\tilde{v} = 2901$ (m), 2847 (w), 1577 (m), 1503 (m), 1448 (w), 1313 (m), 1258 (m), 1213 (w), 1188 (w), 1097 (m), 1060 (m), 1018 (m), 988 (w), 803 (s), 776 (m), 767 (m), 727 (m), 694 (m), 514 (m) cm⁻¹.

EA: calcd. for C₃₇H₅₀N₂Ti: C 77.87, H 8.83, N 4.91; found: C 77.91, H 8.53, N 4.93.

Synthesis of 2b

Following the general procedure **A** with 0.562 mmol of each substrate in 5 mL of *n*-hexane, **2b** was obtained as a green powder (293 mg, 0.450 mmol, 80%, mp. 196 °C (dec.)).

¹H NMR (500 MHz, C₆D₆, 305 K): δ = 0.94-2.53 (m, 44 H, Ad–H, Cy–H), 2.68-2.70 (m, 2 H, Ad– H/Cy–H), 2.81-2.85 (m, 2 H, Ad–H/Cy–H), 3.00-3.04 (m, 1 H, Cy–H), 3.98-4.00 (m, 1 H, Cp– H), 4.18-4.20 (m, 1 H, Ad–H), 4.40-4.42 (m, 1 H, Cp–H), 4.53-4.55 (m, 1 H, Cp–H), 5.03-5.05 (m, 1 H, Cp–H), 5.39-5.41 (m, 1 H, Cp–H), 6.06-6.08 (m, 1 H, Cp–H), 6.58-6.60 (m, 1 H, Cp– H), 6.77-6.79 (m, 1 H, Cp–H) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 24.7 (CH₂), 25.1 (CH₂), 26.75 (CH₂), 26.79 (CH₂), 28.33 (CH₂), 28.38 (CH₂), 28.43 (CH), 28.8 (CH), 29.7 (CH), 32.4 (CH), 34.6 (CH₂), 34.7 (CH₂), 35.0 (CH₂), 35.1 (CH₂), 36.2 (CH), 36.4 (CH₂), 36.6 (CH₂), 36.8 (CH₂), 36.9 (CH₂), 37.0 (CH), 37.4 (CH), 38.3 (CH₂), 39.6 (CH₂), 39.8 (CH₂), 41.7 (CH₂), 44.3 (CH₂), 45.4 (CH₂), 53.2 (Cp-C_{exo}), 56.8 (Cy-CH), 73.3 (CH), 97.3 (Cp-CH), 104.9 (Cp-CH), 105.9 (Cp-CH), 108.1 (Cp-CH), 108.7 (Cp-CH), 109.1 (Cp-CH), 110.0 (Cp-CH), 115.8 (Cp-CH), 119.0 (Cp-C_{exo}), 122.0 (Cp-C_{ipso}), 132.0 (Cp-C_{ipso}), 172.5 (N=C-N) ppm.

¹H,¹⁵N HMBC NMR (51 MHz, 500 MHz, C₆D₆, 305 K): Could not be detected.

The assignment is difficult due to the poor solubility in benzene- d_6 , toluene- d_8 , or THF- d_8 and signal overlap with the sideproduct 2b'.

IR (ATR): $\tilde{v} = 2921$ (m), 2902 (m), 2846 (m), 1624 (m), 1469 (w), 1449 (m), 1127 (m), 1093 (m), 1036 (m), 947 (m), 904 (m), 812 (s), 803 (s), 746 (m) cm⁻¹.

EA: calcd. for C₄₃H₅₈N₂Ti: C 79.36, H 8.98, N 4.30; found: 79.13, H 8.91, N 4.23.

Synthesis of 3a

Following the general procedure **A** with 0.443 mmol of each substrate in 5 mL of *n*-hexane, **3a** was obtained as a red powder (245 mg, 0.355 mmol, 80%, mp. 95 $^{\circ}$ C (dec.)).

¹H NMR (500 MHz, C_6D_6 , 305 K): $\delta = 0.76$ (d, 3 H, ${}^3J = 5.8$ Hz, ${}^iPr-CH_3$), 0.93 (d, 3 H, ${}^3J = 5.8$ Hz, ${}^iPr-CH_3$), 1.41 (d, 3 H, ${}^3J = 6.7$ Hz, ${}^iPr-CH_3$), 1.59 (d, 3 H, ${}^3J = 6.7$ Hz, ${}^iPr-CH_3$), 2.03 (s, 3 H, *p*-Tol-CH₃), 2.14 (s, 3 H, *p*-Tol-CH₃), 2.18 (s, 3 H, *p*-Tol-CH₃), 2.22 (s, 3 H, *p*-Tol-CH₃), 3.39-3.43 (m, 1 H, Cp-H), 3.54 (sept, ${}^3J = 5.9$ Hz, 1 H, ${}^iPr-CH$), 3.89 (sept, ${}^3J = 6.7$ Hz, 1 H, ${}^iPr-CH$), 4.34-4.38 (m, 1 H, Cp-H), 4.58-4.63 (m, 1 H, Cp-H), 4.97-5.01 (m, 1 H, Cp-H), 5.61-5.65 (m, 1 H, Cp-H), 5.88-5.93 (m, 1 H, Cp-H), 6.05-6.12 (m, 2 H, Cp-H), 6.74-6.80 (m, 2 H, *p*-Tol-H), 7.05-7.09 (m, 2 H, *p*-Tol-H), 7.10-7.14 (m, 2 H, *p*-Tol-H), 7.19-7.24 (m, 2 H, *p*-Tol-H), 7.87-7.92 (m, 2 H, *p*-Tol-H) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 20.9 (*p*-Tol–CH₃), 21.0 (*p*-Tol–CH₃), 21.1 (2 x *p*-Tol–CH₃), 23.1 (ⁱPr–CH₃), 23.4 (ⁱPr–CH₃), 23.8 (ⁱPr–CH₃), 24.3 (ⁱPr–CH₃), 49.8 (ⁱPr–CH), 61.1 (ⁱPr–CH), 61.4 (Cp–C_{exo}), 105.9 (Cp–CH), 106.2 (Cp–CH), 108.4 (Cp–CH), 109.5 (Cp–CH), 109.9 (Cp–CH), 114.1 (Cp–CH), 115.4 (Cp–CH), 117.7 (Cp–C_{exo}), 119.3 (Cp–CH), 125.6 (Cp–C_{ipso}), 126.8 (*p*-Tol–CH), 128.5 (*p*-Tol–CH), 128.7 (*p*-Tol–CH), 128.7 (*p*-Tol–CH), 129.1 (*p*-Tol–CH), 130.4 (*p*-Tol–CH), 131.6 (*p*-Tol–CH), 132.6 (*p*-Tol–CH), 134.5 (*p*-Tol–CH), 136.1 (*p*-Tol–C_q), 136.6 (*p*-Tol–C_q), 136.7 (Cp–C_{ipso}), 140.4 (*p*-Tol–C_q), 141.8 (*p*-Tol–C_q), 141.8 (*p*-Tol–C_q), 142.6 (*p*-Tol–C_q), 175.2 (N=C–N) ppm.

¹**H**,¹⁵**N HMBC NMR** (51 MHz, 500 MHz, C₆D₆, 305 K): 276.7 (N–C=N), 278.2 (N=C−N) ppm.

IR (ATR): $\tilde{v} = 3090$ (w), 3021 (w), 2919 (w), 1602 (m), 1508 (m), 1449 (m), 1417 (m), 1390 (m), 1431 (m), 1316 (m), 1260 (m), 1192 (m), 1094 (m), 1040 (m), 1021 (m), 808 (s), 776 (s), 763 (s), 749 (s), 723 (m), 710 (m), 674 (m), 616 (m), 575 (s) cm⁻¹.

EA: calcd. for C₄₇H₅₀N₂Ti: C 81.72, H 7.30, N 4.06; found: 80.513; H, 6.81; N, 3.512.*

* Slightly off, probably due to residual *n*-hexane.

Synthesis of 3b

Following the general procedure **A** with 0.443 mmol for each substrate in 5 mL of *n*-hexane, **3b** was obtained as a green powder (176 mg, 0.288 mmol, 52%, mp. 144 $^{\circ}$ C (dec.)).

¹H NMR (500 MHz, C₆D₆, 305 K): δ = 0.92-1.00 (m, 2 H, Cy–CH₂), 1.09-1.19 (m, 2 H, Cy–CH₂), 1.27-1.42 (m, 8 H, Cy–CH₂), 1.48-1.52 (m, 1 H, Cy–CH₂), 1.56-1.65 (m, 3 H, Cy–CH₂), 1.66-1.71 (m, 1 H, Cy–CH₂), 1.86-1.91 (m, 1 H, Cy–CH₂), 2.04 (s, 3 H, *p*-Tol–CH₃), 2.16 (s, 3 H, *p*-Tol–CH₃), 2.19 (s, 3 H, *p*-Tol–CH₃), 2.20 (s, 3 H, *p*-Tol–CH₃), 3.10-3.26 (m, 3 H, Cy–CH, Cy–CH₂), 3.31-3.37 (m, 1 H, Cy–CH), 3.56-3.59 (m, 1 H, Cp–H), 4.39-4.42 (m, 1 H, Cp–H), 4.65-4.69 (m, 1 H, Cp–H), 5.02-5.06 (m, 1 H, Cp–H), 5.52-5.56 (m, 1 H, Cp–H), 5.93-5.96 (m, 1 H, Cp–H), 6.14-6.19 (m, 2 H, Cp–H), 6.78-6.82 (m, 2 H, *p*-Tol–H), 7.06-7.12 (m, 4 H, *p*-Tol–H), 7.17-7.20 (m, 2 H, *p*-Tol–H), 7.30-7.33 (m, 2 H, *p*-Tol–H), 7.41-7.45 (m, 2 H, *p*-Tol–H), 7.70-7.74 (m, 2 H, *p*-Tol–H), 7.85-7.90 (m, 2 H, *p*-Tol–H) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 20.9 (*p*-Tol–CH₃), 21.0 (*p*-Tol–CH₃), 21.0 (*p*-Tol–CH₃), 21.0 (*p*-Tol–CH₃), 21.1 (*p*-Tol–CH₃), 25.1 (Cy–CH₂), 25.3 (Cy–CH₂), 26.8 (Cy–CH₂), 27.0 (Cy–CH₂), 27.9 (Cy–CH₂), 28.4 (Cy–CH₂), 32.3 (Cy–CH₂), 32.4 (Cy–CH₂), 34.5 (Cy–CH₂), 34.6 (Cy–CH₂), 58.0 (Cy–CH), 61.5 (Cp–C_{exo}), 72.2 (Cy–CH), 106.2 (Cp–CH), 106.7 (Cp–CH), 108.0 (Cp–CH), 109.6 (Cp–CH), 109.8 (Cp–CH), 114.5 (Cp–CH), 114.6 (Cp–CH), 117.5 (Cp–C_{exo}), 119.7 (Cp–CH), 125.7 (Cp–C_{ipso}), 127.1 (*p*-Tol–CH), 128.4 (*p*-Tol–CH), 128.5 (*p*-Tol–CH), 128.7 (*p*-Tol–CH), 129.2 (*p*-Tol–CH), 130.7 (*p*-Tol–CH), 131.5 (*p*-Tol–CH), 132.7 (*p*-Tol–CH), 134.5 (*p*-Tol–C_q), 136.0 (Cp–C_{ipso}), 136.1 (*p*-Tol–C_q), 136.2 (*p*-Tol–C_q), 136.4 (*p*-Tol–C_q), 140.9 (*p*-Tol–C_q), 141.7 (*p*-Tol–C_q), 141.8 (*p*-Tol–C_q), 142.9 (*p*-Tol–C_q), 175.1 (N=C–N) ppm.

¹H,¹⁵N HMBC NMR (51 MHz, 500 MHz, C₆D₆, 305 K): Could not be detected.

IR (ATR): $\tilde{v} = 3020$ (w), 2922 (s), 2852 (m), 1582 (s), 1508 (m), 1449 (m), 1363 (w), 1348 (w), 1184 (w), 1167 (m), 1140 (w), 1052 (w), 1022 (w), 994 (w), 913 (w), 870 (w), 805 (s), 790 (s), 775 (s), 741 (s), 690 (m), 675 (m), 571 (s) cm⁻¹.

EA: calcd. for C₅₃H₅₈N₂Ti: C 82.57, H 7.58, N 3.63; found: C 79.513, H 6.30, N 3.51.*

* Slightly off, probably due to residual *n*-hexane.

Synthesis of 4a

Following the general procedure **B**, **4a** was obtained as a violet crystalline solid (254 mg, 0.311 mmol, 78%, mp. 220 °C (dec.)).

¹H NMR (500 MHz, C_6D_6 , 305 K): $\delta = 0.39$ (d, J = 5.8 Hz, 3 H, $iPr-CH_3$), 1.16 (d, J = 5.8 Hz, 3 H, $iPr-CH_3$), 1.81 (d, J = 6.3 Hz, 3 H, $iPr-CH_3$), 1.95 (d, J = 6.3 Hz, 3 H, $iPr-CH_3$), 2.15 (s, 6 H, p-Tol-CH₃), 2.17 (s, 6 H, p-Tol-CH₃), 3.42 (sept, J = 5.8 Hz, 1 H, iPr-CH), 4.46 (sept, J = 6.3 Hz, 1 H, iPr-CH), 5.20-5.25 (m, 2 H, Cp-H), 5.37-5.43 (m, 2 H, Cp-H), 6.03-6.10 (m, 2 H, Cp-H), 6.45-6.50 (m, 2 H, Cp-H), 6.94-7.15 (m, 10 H, p-Tol-H), 7.56-7.87 (m, 6 H, p-Tol-H) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 21.0 (*p*-Tol–CH₃), 21.0 (*p*-Tol–CH₃), 21.4 (ⁱPr–CH₃), 23.0 (ⁱPr–CH₃), 25.1 (ⁱPr–CH₃), 25.5 (ⁱPr–CH₃), 49.5 (ⁱPr–CH), 58.2 (ⁱPr–CH), 60.7 (Cp–C_{exo}), 106.0 (Cp–CH), 109.1 (Cp–CH), 113.5 (Cp–CH), 114.9 (Cp–CH), 128.8 (br, *p*-Tol–CH) 129.0 (*p*-Tol–CH), 130.7 (*p*-Tol–CH), 131.2 (br, *p*-Tol–CH), 136.2 (*p*-Tol–C_q), 136.5 (*p*-Tol–C_q), 140.0 (Cp–C_{ipso}), 140.4 (*p*-Tol–C_q), 141.3 (*p*-Tol–C_q), 173.8 (N=C–N) ppm.

¹**H**,¹⁵**N HMBC NMR** (51 MHz, 500 MHz, C₆D₆, 305 K): 261.0 (N=C−N), 267.3 (N−C=N) ppm.

IR (ATR): $\tilde{v} = 2961$ (w), 2919 (w), 2893 (w), 2861 (w), 1576 (s), 1511 (m), 1478 (m), 1372 (w), 1340 (w), 1206 (m), 1193 (w), 1185 (w), 1156 (w), 1141 (w), 1114 (w), 1007 (m), 900 (m), 880 (w), 819 (m), 806 (m), 783 (s), 672 (m), 558 (m), 549 (m), 515 (s) cm⁻¹.

EA: calcd. for C₅₄H₆₄N₄Ti: C 79.39, H 7.90, N 6.86; found: 79.33, H 7.80, N 7.19.

Synthesis of 4b

Following the general procedure **B**, **4b** was obtained as a violet crystalline solid (225 mg, 0.230 mmol, 58%, mp. 198 °C (dec.)).

¹H NMR (500 MHz, C₆D₆, 305 K): δ = 0.81-0.84 (m, 2 H, Cy–CH₂), 1.00-1.08 (m, 5 H, Cy–CH₂), 1.16-1.20 (m, 2 H, Cy–CH₂), 1.33-1.59 (m, 12 H, Cy–CH₂), 1.63-1.81 (m, 9 H, Cy–CH₂), 1.85-1.89 (m, 2 H, Cy–CH₂), 2.03-2.07 (m, 4 H, Cy–CH₂), 2.16 (s, 6 H, *p*-Tol–CH₃), 2.19 (s, 6 H, *p*-Tol–CH₃), 3.11-3.16 (m, 2 H, Cy–CH₂), 3.51-3.60 (m, 4 H, Cy–CH₂, Cy–CH), 3.97-4.03 (m, 2 Cy–CH), 5.20-5.25 (m, 2 H, Cp–H), 5.37-5.43 (m, 2 H, Cp–H), 6.03-6.10 (m, 2 H, Cp–H), 6.45-6.50 (m, 2 H, Cp–H), 6.94-7.15 (m, 10 H, *p*-Tol–H), 7.56-7.87 (m, 6 H, *p*-Tol–H) ppm.

¹³C{¹H} NMR (126 MHz, C_6D_6 , 305 K): $\delta = 21.0 (p-Tol-CH_3)$, 21.0 $(p-Tol-CH_3)$, 25.1 $(Cy-CH_2)$, 25.3 $(Cy-CH_2)$, 25.8 $(Cy-CH_2)$, 26.9 $(Cy-CH_2)$, 27.4 $(Cy-CH_2)$, 28.3 $(Cy-CH_2)$, 28.7 $(Cy-CH_2)$, 30.9 $(Cy-CH_2)$, 32.1 $(Cy-CH_2)$, 33.6 $(Cy-CH_2)$, 35.2 $(Cy-CH_2)$, 35.4 $(Cy-CH_2)$, 57.8 $(Cy-CH_2)$, 60.9 $(Cp-C_{exo})$, 69.5 (Cy-CH), 108.1 (Cp-CH), 108.5 (Cp-CH), 110.4 (Cp-CH), 114.3 (Cp-CH), 128.9 (p-Tol-CH), 130.9 (p-Tol-CH), 136.1 $(p-Tol-C_q)$, 136.5 $(p-Tol-C_q)$, 140.7 $(Cp-C_{ipso})$, 140.8 $(p-Tol-C_q)$, 141.2 $(p-Tol-C_q)$, 175.3 (N=C-N) ppm.

¹H,¹⁵N HMBC NMR (51 MHz, 500 MHz, C₆D₆, 305 K): Could not be detected.

IR (ATR): $\tilde{v} = 3023$ (w), 2920 (m), 2850 (m), 1566 (s), 1510 (m), 1475 (m), 1467 (m), 1449 (m), 1363 (w), 1346 (w), 1252 (m), 1190 (s), 1183 (s), 1174 (s), 1143 (s), 1043 (w), 1022 (w), 994 (m), 912 (m), 889 (m), 876 (m), 839 (m), 814 (s), 802 (s), 789 (s), 770 (s), 672 (m), 550 (m), 509 (m) cm⁻¹.

EA: calcd. for C₆₆H₈₀N₄Ti: C 81.12, H 8.25, N 5.73; found: C 80.73, H 8.17, N 5.87.

Synthesis of 4c

Inside a glovebox, **3a** (27.8 mg, 0.040 mmol) and di-cyclohexyl carbodiimide (8.3 mg, 0.040 mmol) were dissolved in 0.6 mL of benzene- d_6 at room temperature. On another way, **3b** (30.8 mg, 0.040 mmol) and di-*iso*-propyl carbodiimide (5.1 mg, 0.040 mmol) were dissolved in 0.6 mL of benzene- d_6 . The reaction mixtures were analyzed by NMR spectroscopy over a period of 3 days and violet solutions of **4c** were obtained.

¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 0.51$ (d, J = 5.8 Hz, 3 H, $Pr-CH_3$), 0.55-0.59 (m, 1 H, Cy-CH₂), 0.78-0.83 (m, 1 H, Cy-CH₂), 1.06 (d, J = 5.8 Hz, 3 H, $Pr-CH_3$), 1.21-1.25 (m, 2 H, Cy-CH₂), 1.30-1.40 (m, 4 H, Cy-CH₂), 1.44-1.51 (m, 2 H, Cy-CH₂), 1.55-1.64 (m, 3 H, Cy-CH₂), 1.80 (d, J = 6.3 Hz, 3 H, $Pr-CH_3$), 1.83-1.91 (m, 4 H, Cy-CH₂), 1.98 (d, J = 6.3 Hz, 3 H, $Pr-CH_3$), 2.17 (s, 3 H, p-Tol-CH₃), 2.18 (s, 6 H, p-Tol-CH₃), 3.07-3.17 (m, 2 H, Cy-CH₂, Cy-CH), 3.43 (sept, J = 5.8 Hz, 1 H, Pr-CH), 3.53-3.68 (m, 2 H, Cy-CH₂), 3.96-4.04 (m, 1 H, Cy-CH), 4.48 (sept, J = 6.3 Hz, 1 H, Pr-CH), 5.10-5.15 (m, 1 H, Cp-H), 5.21-5.24 (m, 1 H, Cp-H), 5.26-5.30 (m, 1 H, Cp-H), 5.38-5.42 (m, 1 H, Cp-H), 6.01-6.06 (m, 2 H, Cp-H), 6.38-6.43 (m, 2 H, Cp-H), 6.99-7.04 (m, 4 H, p-Tol-H), 7.09-7.15 (m, 4 H, p-Tol-H), 7.17-7.41 (br.m, 2 H, p-Tol-H), 7.66-7.89 (br.m, 6 H, p-Tol-H) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 20.9 (p-Tol-CH_3)$, 21.0 $(p-Tol-CH_3)$, 21.0 $(p-Tol-CH_3)$, 21.7 $(Pr-CH_3)$, 23.2 $(Pr-CH_3)$, 24.8 $(Pr-CH_3)$, 24.9 $(Cy-CH_2)$, 25.1 $(Cy-CH_2)$, 25.2 $(Cy-CH_2)$, 25.8 $(Pr-CH_3)$, 25.8 $(Pr-CH_3)$, Cy-CH₂), 26.9 $(Cy-CH_2)$, 27.3 $(Cy-CH_2)$, 28.4 $(Cy-CH_2)$, 28.9 $(Cy-CH_2)$, 30.5 $(Cy-CH_2)$, 32.5 $(Cy-CH_2)$, 33.3 $(Cy-CH_2)$, 35.4 $(2 \times Cy-CH_2)$, 35.5 $(Cy-CH_2)$, 49.6 (Pr-CH), 57.7 (Cy-CH), 58.6 (Pr-CH), 60.5 $(Cp-C_{exo})$, 61.0 $(Cp-C_{exo})$, 69.0 (Cy-CH), 107.0 (Cp-CH), 107.3 (Cp-CH), 108.6 (Cp-CH), 108.8 (Cp-CH), 111.9 (Cp-CH), 112.6 (Cp-CH), 114.0 (Cp-CH), 115.0 (Cp-CH), 128.9 (p-Tol-CH), 130.7 (br, p-Tol-CH), 130.8 (p-Tol-CH), 136.1 $(p-Tol-C_q)$, 136.2 $(p-Tol-C_q)$, 136.5 $(p-Tol-C_q)$, 136.5 $(p-Tol-C_q)$, 141.4 $(p-Tol-C_q)$, 174.3 (NCN-Cy), 174.5 (NCN-Pr) ppm.

¹H,¹⁵N HMBC NMR (51 MHz, 500 MHz, C₆D₆, 298 K): 266.9 (^{*i*}Pr), 273.2 (^{*i*}Pr) ppm.

Synthesis of 5a

Following the general procedure **C** and stirring for 16 h gave **5a** as a red solid (218 mg, 0.322 mmol, 80%, mp. 178 °C (dec.)).

¹H NMR (500 MHz, C_6D_6 , 305 K): $\delta = 1.24$ (d, J = 5.8 Hz, 3 H, $Pr-CH_3$), 1.29 (d, J = 5.9 Hz, 3 H, $Pr-CH_3$), 1.37 (d, J = 5.9 Hz, 3 H, $Pr-CH_3$), 1.41 (d, J = 6.4 Hz, 3 H, $Pr-CH_3$), 1.44-1.53 (m, 2 H, Ad–H), 1.73-1.90 (m, 17 H, Ad–H), 2.00-2.03 (m, 1 H, Ad–H), 2.04-2.14 (m, 3 H Ad–H), 2.19 (s, 3 H, Ph-CH_3), 2.25-2.29 (m, 1 H, Ad–H), 2.45-2.48 (m, 1 H, Ad–H), 2.50-2.55 (m, 1 H, Ad–H), 2.59-2.64 (m, 1 H, Ad–H), 2.80 (s, 1 H, Cp-C_{exo}H), 3.87 (sept, J = 5.9 Hz, 1 H, $Pr-CH_3$, 3.93 (sept, J = 6.2 Hz, 1 H, $Pr-CH_3$, 4.29-4.36 (m, 1 H, Ad–H), 5.15-5.18 (m, 1 H, Cp-H), 5.21-5.24 (m, 1 H, Cp-H), 5.40-5.45 (m, 3 H, 3 x Cp-H), 6.03-6.07 (m, 1 H, Cp-H), 6.35-6.38 (m, 1 H, Cp-H), 6.65-6.68 (m, 1 H, Cp-H), 6.69-6.73 (m, 2 H, Ph-H), 6.97-7.01 (m, 2 H, Ph-H), 8.38 (br.s, 1 H, N–H) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 20.8 (Ph–CH₃), 22.6 (ⁱPr–CH₃), 25.8 (ⁱPr–CH₃), 27.3 (ⁱPr–CH₃), 27.9 (ⁱPr–CH₃), 28.2 (2 x Ad–CH), 28.6 (Ad–CH), 28.7 (Ad–CH), 32.2 (Ad–CH₂), 32.6 (Ad–CH₂, Ad–CH), 33.0 (Ad–CH), 33.7 (Ad–CH), 34.4 (Ad–CH₂), 34.7 (Ad–CH₂), 35.2 (Ad–CH₂), 36.9 (Ad–CH), 37.0 (Ad–CH₂), 38.2 (Ad–CH₂), 38.9 (Ad–CH₂), 39.1 (Ad–CH₂), 39.6 (Ad–CH₂), 44.8 (Cp–C_{exo}H), 48.4 (ⁱPr–CH), 52.5 (Cp–C_{exo}), 56.7 (ⁱPr–CH), 101.3 (Cp–CH), 106.0 (Cp–CH), 107.9 (Cp–CH), 109.3 (Cp–CH), 110.2 (Cp–CH), 114.3 (Cp–CH), 115.6 (Cp–CH), 117.4 (Cp–CH), 121.3 (2 x Ph–CH), 128.8 (Cp–C_{ipso}), 129.1 (2 x Ph–CH), 129.2 (Ph–C_q), 134.4 (Cp–C_{ipso}), 157.0 (Ph–C_q), 164.0 (N=C–N) ppm.

¹**H**,¹⁵**N HMBC NMR** (51 MHz, 500 MHz, C₆D₆, 305 K): 229.7 (NH), 239.0 (N=C-N), 260.1 (N-C=N) ppm.

IR (ATR): $\tilde{v} = 3363$ (w), 2965 (w), 2890 (m), 2850 (w), 1583 (m), 1503 (m), 1468 (w), 1447 (w), 1354 (w), 1262 (m), 1164 (w), 1146 (w), 1131 (w), 1108 (w), 1092 (m), 1061 (m), 1038 (m), 954 (w), 903 (w), 837 (m), 814 (s), 801 (s), 768 (m), 536 (w), 511 (m) cm⁻¹.

EA: calcd. for C₄₄H₅₉N₃Ti: C 77.97, H 8.77, N 6.20; found: C 77.81, H 8.74, N 6.26.

Synthesis of 5b

Based on the general procedure **C** but with toluene instead of *n*-hexane with a reaction time of nine days, until the solvent was removed under reduced pressure and the residue washed with 3 mL of *n*-hexane, gave **5b** as an orange solid (205 mg, 0.286 mmol, 80%, mp. 179 °C (dec.)).

¹H NMR (500 MHz, C₆D₆, 305 K): δ = 1.28 (d, 3 H, *J* = 5.8 Hz, ^{*i*}Pr–CH₃), 1.32 (d, 3 H, *J* = 5.8 Hz, ^{*i*}Pr–CH₃), 1.39 (d, 3 H, *J* = 5.9 Hz, ^{*i*}Pr–CH₃), 1.44 (d, 3 H, *J* = 6.5 Hz, ^{*i*}Pr–CH₃), 1.48-1.54 (m, 2 H, Ad–H), 1.61-1.67 (m, 2 H, Ad–H), 1.69 (s, 3 H, Ph–CH₃), 1.70-1.93 (m, 15 H, Ad–H), 2.05-2.58 (m, 11 H, Ad–H, Ph–CH₃), 2.75 (s, 1 H, Cp–C_{exo}H), 4.06 (2 x sept, *J* = 6.0 Hz, 2 H, 2 x ^{*i*}Pr–CH), 4.31-4.36 (m, 1 H, Ad–H), 4.88-4.91 (m, 1 H, Cp–H), 5.16-5.19 (m, 1 H, Cp–H), 5.24-5.26 (m, 1 H, Cp–H), 5.27-5.29 (m, 1 H, Cp–H), 5.52-5.54 (m, 1 H, Cp–H), 5.72-5.74 (m, 1 H, Cp–H), 5.91-5.93 (m, 1 H, Cp–H), 6.43-6.45 (m, 1 H, Cp–H), 6.91-6.95 (m, 1 H, Ph–CH), 7.04-7.08 (m, 2 H, Ph–CH), 7.87 (br.s, 1 H, N–H) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 22.1 (ⁱPr–CH₃), 26.3 (ⁱPr–CH₃), 26.9 (ⁱPr–CH₃), 27.9 (Ph–CH₃), 28.0 (Ph–CH₃), 28.4 (ⁱPr–CH₃), 28.5 (Ad–CH), 28.7 (Ad–CH), 32.65 (Ad–CH), 32.73 (Ad–CH), 32.8 (Ad–CH₂), 32.9 (Ad–CH₂), 34.52 (Ad–CH₂), 34.55 (Ad–CH₂), 35.2 (Ad–CH₂), 36.9 (Ad–CH₂), 37.5 (Ad–CH), 38.2 (Ad–CH₂), 38.38 (Ad–CH₂), 38.41 (Ad–CH₂), 39.6 (Ad–CH₂), 44.7 (Cp–C_{exo}H), 48.3 (ⁱPr–CH), 52.6 (Cp–C_{exo}), 55.2 (ⁱPr–CH), 102.3 (Cp–CH), 102.7 (Cp–CH), 104.9 (Cp–CH), 109.1 (Cp–CH), 113.1 (Cp–CH), 114.3 (Cp–CH), 114.4 (Cp–CH), 117.6 (Cp–CH), 123.1 (3 x Ph–CH), 134.9 (Cp–C_{ipso}), 135.9 (Cp–C_{ipso}), 159.2 (Ph–C_q–N), 163.8 (N=C–N) ppm.*

* The signal for $Ph-\underline{C}_q-CH_3$ could not be assigned.

¹H,¹⁵N HMBC NMR (51 MHz, 500 MHz, C₆D₆, 305 K): 232.8 (N=C−N), 239.8 (NH), 257.8 (N−C=N) ppm.

IR (ATR): $\tilde{v} = 3325$ (w), 2956 (w), 2895 (m), 2848 (m), 1592 (m), 1468 (w), 1448 (m), 1373 (w), 1355 (w), 1203 (m), 1164 (m), 1147 (m), 1111 (m), 1093 (s), 1059 (s), 1043 (m), 903 (w), 833 (s), 812 (w), 795 (s), 768 (s), 676 (w), 536 (w), 516 (m) cm⁻¹.

EA: calcd. for C₄₅H₆₁N₃Ti: C 77.97, H 8.77, N 6.20; found: C 77.81, H 8.74, N 6.26.

Based on the general procedure **C** but with toluene instead of *n*-hexane with a reaction time of three days gave **6** as a yellow solid (336 mg, 0.377 mmol, 94%, mp. 73 $^{\circ}$ C (dec.)).

¹**H NMR** (500 MHz, CD₂Cl₂, 305 K): δ = 0.37 (d, *J* = 6.3 Hz, 3 H, ⁱPr–CH₃), 0.73-0.76 (m, 1 H, Ad–H), 0.95 (d, *J* = 6.3 Hz, 3 H, ⁱPr–CH₃), 0.98-1.01 (m, 1 H, Ad–H), 1.10 (d, *J* = 6.3 Hz, 3 H, ⁱPr–CH₃), 1.24 (d, *J* = 6.3 Hz, 3 H, ⁱPr–CH₃), 1.53-1.59 (m, 1 H, Ad–H), 1.69-1.73 (m, 1 H, Ad–H), 1.77-1.81 (m, 1 H, Ad–H), 1.82-1.85 (m, 1 H, Ad–H), 1.87-2.23 (m, 16 H, Ad–H), 2.29-2.34 (m, 2 H, Ad–H), 2.45-2.49 (m, 1 H, Ad–H), 2.58-2.63 (m, 1 H, Ad–H), 2.86-2.91 (m, 1 H, Ad–H), 3.12-3.19 (dsept, *J* = 10.0 Hz, 6.3 Hz, 1 H, ⁱPr–CH), 3.40 (sept, *J* = 6.3 Hz, 1 H, ⁱPr–CH), 4.20-4.24 (m, 1 H, Cp–H), 4.88-4.92 (m, 1H, Cp–H), 5.04-5.08 (m, 2 H, 2 x Cp–H), 5.69-5.73 (m, 1 H, Cp–H), 6.45-6.50 (m, 1 H, Cp–H), 6.67-6.70 (m, 1 H, Cp–H), 6.73 (br.d, *J* = 10.1 Hz, 1 H, N–H), 6.87-6.90 (m, 4 H, Ph–CH), 7.01-7.05 (m, 8 H, Ph–CH), 7.31-7.34 (m, 9 H, Ph–CH, 1 x Cp–H) ppm.

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 305 K): δ = 23.1 (ⁱPr–CH₃), 23.6 (ⁱPr–CH₃), 23.7 (ⁱPr–CH₃), 26.9 (Ad–CH), 27.7 (Ad–CH), 27.9 (Ad–CH), 29.2 (Ad–CH), 30.3 (ⁱPr–CH₃), 34.5 (Ad–CH), 34.9 (Ad–CH₂), 35.08 (Ad–CH₂), 35.12 (Ad–CH₂, Ad–CH), 35.8 (Ad–CH₂), 35.9 (Ad–CH), 37.0 (Ad–CH₂), 37.1 (Ad–CH), 37.5 (Ad–CH₂), 38.6 (Ad–CH₂), 38.9 (Ad–CH₂), 40.4 (Cp–C_{exo}), 45.8 (Ad–CH₂), 46.1 (Ad–CH₂), 49.4 (ⁱPr–CH), 59.2 (ⁱPr–CH), 102.3 (Cp–CH), 110.6 (Cp–CH), 111.2 (Cp–CH), 111.5 (Cp–CH), 112.0 (2 x Cp–CH), 113.4 (Cp–CH), 121.5 (Cp–C_{ipso}), 122.1 (4 x Ph–CH), 122.2 (Cp–CH), 125.7 (Cp–C_{ipso}), 125.98 (2 x Ph–CH), 126.00 (2 x Ph–CH), 126.03 (2 x Ph–CH), 126.05 (2 x Ph–CH), 136.4 (8 x Ph–CH), 138.6 (Cp–C_{exo}), 164.0 (Ph–C_q), 164.4 (Ph–C_q), 164.7 (Ph–C_q), 165.1 (Ph–C_q), 172.5 (N–C=N) ppm.

¹¹B{¹H} NMR (CD₂Cl₂, 160 MHz, 305 K): δ = -6.6 ppm.

IR (ATR): $\tilde{v} = 3391$ (w), 3053 (w), 2982 (w), 2903 (m), 2847 (w), 1579 (w), 1542 (m), 1494 (m), 1468 (m), 1447 (m), 1424 (w), 1261 (w), 1138 (w), 1122 (m), 1098 (m), 1063 (m), 1051 (m), 1031 (m), 949 (w), 825 (m), 807 (m), 746 (m), 732 (s), 704 (s), 645 (m), 612 (m) cm⁻¹.

EA: calcd. for C₆₁H₇₁BN₂Ti: C 79.39, H 7.90, N 6.86; found: C 78.93, H 6.86, N 7.19.*

	*	Slightly	off,	probably	due	to	residual	toluene.
--	---	----------	------	----------	-----	----	----------	----------

S12

Following the general procedure **C** and stirring for three days gave **7** as a pale yellow solid (100 mg, 0.159 mmol, 40%, mp. 193 $^{\circ}$ C (dec.)).

¹H NMR (500 MHz, C₆D₆, 305 K): δ = 1.04 (d, *J* = 5.8 Hz, 3 H, ⁱPr–CH₃), 1.21 (s, 3 H, CH₃) 1.24 (d, *J* = 6.1 Hz, 3 H, ⁱPr–CH₃), 1.34 (d, *J* = 6.1 Hz, 3 H, ⁱPr–CH₃), 1.38 (d, *J* = 5.8 Hz, 3 H, ⁱPr–CH₃), 1.41 (s, 3 H, CH₃), 1.57-1.62 (m, 1 H, Ad–H), 1.63-1.90 (m, 15 H, Ad–H), 2.04-2.10 (m, 3 H, Ad–H), 2.18-2.20 (m, 1 H, Ad–H), 2.35-2.37 (m, 1 H, Ad–H), 2.44-2.56 (m, 5 H, Ad– H), 2.69-2.72 (m, 1 H, Ad–H), 3.58 (sept, *J* = 5.9 Hz, 1 H, ⁱPr–CH), 3.80 (sept, *J* = 6.2 Hz, 1 H, ⁱPr–CH), 3.90-4.15 (br.m, 1 H, Ad–H), 4.84-4.87 (m, 1 H, Cp–H), 5.01-5.03 (m, 1 H, Cp–H), 5.34-5.36 (m, 1 H, Cp–H), 5.52-5.54 (m, 1 H, Cp–H), 5.65-5.68 (m, 1 H, Cp–H), 5.72-5.74 (m, 1 H, Cp–H), 5.76-5.78 (m, 1 H, Cp–H), 6.22-6.25 (m, 1 H, Cp–H) ppm.

¹³C{¹H} NMR (126 MHz, C_6D_6 , 305 K): $\delta = 24.1$ (ⁱPr–CH₃), 25.4 (ⁱPr–CH₃), 26.6 (ⁱPr–CH₃), 27.7 (Ad–CH), 28.0 (Ad–CH), 28.2 (ⁱPr–CH₃), 28.7 (Ad–CH), 28.8 (Ad–CH), 31.5 (CH₃), 33.0 (Ad–CH), 33.4 (CH₃), 33.6 (Ad–CH), 34.3 (Ad–CH), 34.5 (Ad–CH₂), 34.8 (Ad–CH₂), 34.9 (Ad–CH₂), 35.0 (Ad–CH₂), 35.3 (Ad–CH₂), 36.8 (Ad–CH₂, Ad–CH), 37.5 (Ad–CH₂), 38.7 (Ad–CH₂), 39.39 (Ad–CH₂), 39.43 (Ad–CH₂), 48.1 (ⁱPr–CH), 53.3 (Cp–C_{exo}), 55.1 (Cp–C_{exo}), 56.1 (ⁱPr–CH), 101.2 (Cp–CH), 101.4 (Cp–CH), 107.4 (Cp–CH), 107.8 (Cp–CH), 108.1 (Cp–CH), 110.0 (O–C_q), 110.7 (Cp–CH), 112.8 (Cp–CH), 116.6 (Cp–CH), 137.6 (Cp–C_{ipso}), 157.9 (Cp–C_{ipso}), 165.2 (N=C–N) ppm.

¹H,¹⁵N HMBC NMR (51 MHz, 500 MHz, C₆D₆, 305 K): 240.6 (N–C=N), 260.9 (N=C−N) ppm.

IR (ATR): $\tilde{v} = 2970$ (w), 2898 (m), 2850 (w), 2817 (w), 1604 (m), 1478 (w), 1470 (w), 1454 (w), 1376 (w), 1176 (m), 1149 (m), 1134 (m), 1092 (m), 1061 (m), 1049 (m), 1038 (m), 973 (m), 959 (m), 950 (m), 878 (m), 821 (s), 813 (s), 618 (m), 518 (m) cm⁻¹.

EA: calcd. for C₄₀H₅₆N₂OTi: C 76.41, H 8.98, N 4.46; found: C 76.15, H 8.79, N 4.52.

Following the general procedure **C** and stirring for 16 h gave **8** as an orange solid (189 mg, 0.309 mmol, 77%, mp. 196 $^{\circ}$ C (dec.)).

¹H NMR (500 MHz, C₆D₆, 305 K): δ = 0.96 (d, *J* = 5.9 Hz, 3 H, *i*Pr–CH₃), 1.05 (d, *J* = 6.1 Hz, 3 H, *i*Pr–CH₃), 1.14 (d, *J* = 6.0 Hz, 3 H, *i*Pr–CH₃), 1.35 (d, *J* = 5.8 Hz, 3 H, *i*Pr–CH₃), 1.64-1.75 (m, 6 H, Ad–H), 1.77-1.85 (m, 7 H, Ad–H), 1.89-1.96 (m, 3 H, Ad–H), 2.00-2.09 (m, 3 H, Ad–H), 2.12-2.20 (m, 1 H, Ad–H), 2.36-2.56 (m, 5 H, Ad–H), 2.79-2.85 (m, 1 H, Ad–H), 2.87-2.92 (m, 1 H, Ad–H), 3.42 (sept, *J* = 5.9 Hz, 1 H, *i*Pr–CH), 3.61 (sept, *J* = 6.1 Hz, 1 H, *i*Pr–CH), 3.77 (s, 1 H, C=CH₂), 3.90-4.11 (br.m, 1 H, Ad–H), 4.30 (s, 1 H, C=CH₂), 4.90-4.92 (m, 1 H, Cp–H), 4.96-4.98 (m, 1 H, Cp–H), 5.20-5.22 (m, 1 H, Cp–H), 5.25-5.27 (m, 1 H, Cp–H), 5.29-5.31 (m, 1 H, Cp–H), 5.36-5.38 (m, 1 H, Cp–H), 5.62-5.64 (m, 1 H, Cp–H), 6.23-6.25 (m, 1 H, Cp–H), 7.35 (br.s, 1 H, N–H) ppm.

¹³C{¹H} NMR (126 MHz, C_6D_6 , 305 K): $\delta = 24.3$ (^{*i*}Pr–CH₃), 25.5 (^{*i*}Pr–CH₃), 26.2 (^{*i*}Pr–CH₃), 27.4 (Ad–CH), 28.57 (Ad–CH), 28.63 (Ad–CH), 28.9 (Ad–CH), 29.6 (^{*i*}Pr–CH₃), 32.9 (Ad–CH), 33.2 (Ad–CH₂), 33.8 (Ad–CH₂), 34.2 (Ad–CH), 34.8 (Ad–CH₂), 35.1 (Ad–CH₂), 35.3 (Ad–CH₂), 35.5 (Ad–CH₂), 36.2 (Ad–CH), 36.6 (Ad–CH₂), 37.1 (Ad–CH), 37.3 (Ad–CH₂), 39.4 (Ad–CH₂), 40.2 (Ad–CH₂), 47.8 (^{*i*}Pr–CH), 50.7 (Cp–C_{exo}), 53.0 (Cp–C_{exo}), 56.6 (^{*i*}Pr–CH), 86.0 (C=<u>C</u>H₂), 100.2 (Cp–CH), 103.3 (Cp–CH), 104.3 (Cp–CH), 107.0 (Cp–CH), 108.8 (Cp–CH), 111.5 (Cp–CH), 112.0 (Cp–CH), 114.0 (Cp–CH), 137.3 (Cp–C_{ipso}), 149.4 (Cp–C_{ipso}), 164.6 (N=C–N), 180.5 (<u>C</u>=CH₂) ppm.

¹**H**,¹⁵**N HMBC NMR** (51 MHz, 500 MHz, C₆D₆, 305 K): 232.8 (N=C−N), 239.8 (NH), 257.8 (N−C=N) ppm.

IR (ATR): $\tilde{v} = 3351$ (w), 2951 (w), 2900 (m), 2851 (w), 2814 (w), 1598 (s), 1453 (w), 1235 (w), 1174 (w), 1165 (w), 1149 (w), 1126 (w), 1093 (m), 1059 (m), 1038 (m), 997 (w), 949 (w), 815 (s), 805 (s), 763 (s), 573 (w), 547 (m) cm⁻¹.

EA: calcd. for C₃₉H₅₃N₃Ti: C 76.57, H 8.73, N 6.87; found: C 76.19, H 8.43, N 6.82.

Following the general procedure **C** and stirring for 16 h gave **9** as a pink solid (228 mg, 0.322 mmol, 80%, mp. 180 $^{\circ}$ C (dec.)).

¹H NMR (500 MHz, C₆D₆, 305 K): δ = 0.94 (d, *J* = 6.0 Hz, 3 H, *i*Pr–CH₃), 1.03 (d, *J* = 6.3 Hz, 3 H, *i*Pr–CH₃), 1.10-1.26 (br.m, 6 H, *i*Pr–CH₃), 1.19-2.62 (m, 27 H, Ad–H), 3.16-3.48 (br.m, 1 H, *i*Pr–CH), 3.53-4.20 (br.m, 1 H, Ad–H), 3.83 (sept, *J* = 6.3 Hz, 1 H, *i*Pr–CH), 4.85-4.87 (m, 1 H, Cp–H), 4.88-5.02 (br.m, 1 H, Cp–H), 5.48-5.50 (m, 1 H, Cp–H), 5.63-5.65 (m, 1 H, Cp–H), 5.87-5.89 (m, 1 H, Cp–H), 6.04-6.26 (br.m, 3 H, 3 x Cp–H), 6.61-7.01 (br.m, 2 H, Ph–H), 7.03-7.11 (m, 2 H, Ph–H) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 24.8 (CH₃), 25.2 (br, CH₃), 27.6 (br, CH₃), 27.8 (Ad–CH), 28.1 (Ad–CH), 28.6 (Ad–CH), 28.8 (Ad–CH), 29.6 (br, CH₃), 33.1 (Ad–CH₂), 34.0 (Ad–CH₂), 34.8 (Ad–CH), 34.9 (Ad–CH), 35.00 (Ad–CH₂), 35.3 (Ad–CH₂), 35.4 (Ad–CH₂), 35.8 (Ad–CH₂), 36.3 (Ad–CH₂), 39.1 (Ad–CH₂), 39.2 (Ad–CH₂), 48.3 (^{*i*}Pr–CH), 53.4 (Cp–C_{exo}), 61.0 (Cp–C_{exo}), 100.7 (br, Cp–CH), 103.1 (br, Cp–CH), 105.3 (br, Cp–CH), 107.7 (br, Cp–CH), 108.5 (Cp–CH), 112.9 (br, Cp–CH), 119.9 (br, Cp–CH), 128.6 (Ph–CH), 132.3 (Ph–C_q), 135.4 (Cp–C_{ipso}), 145.0 (Ph–C_q), 149.0 (Cp–C_{ipso}) ppm.*

* The remaining signals of the adamantyl moieties, the isopropyl group and the signal for N=<u>C</u>– N are missing in the spectrum / cannot be assigned due to strong broadening.

¹H,¹⁵N HMBC NMR (51 MHz, 500 MHz, C₆D₆, 305 K): Could not be detected.

IR (ATR): $\tilde{v} = 3016$ (w), 2969 (w), 2953 (m), 2933 (m), 2906 (m), 2893 (m), 2881 (m), 2859 (m), 2801 (w), 1600 (m), 1588 (s), 1483 (w), 1450 (w), 1304 (w), 1261 (w), 1169 (m), 1147 (m), 1111 (m), 1089 (s), 1060 (s), 1041 (m), 1015 (m), 987 (m), 952 (m), 830 (s), 816 (s), 799 (s), 772 (m), 736 (m), 610 (m), 510 (m) cm⁻¹.

EA: calcd. for C₄₄H₅₄ClN₃Ti: C 74.62, H 7.69, N 5.93; found: C 73.91, H 7.38, N 5.96.*

* Slightly off, probably due to residual *n*-hexane and silicon grease.

Figure S2: ¹³C{¹H} NMR spectrum of 2a (126 MHz, C₆D₆, 305 K).

Figure S3: Tracking of the reaction of **1a** with *N*,*N*'-diisopropylcarbodiimide (DIC) (300 MHz, C₇D₈, 293 K); markings: Cp–H of **1a** (blue), /Pr–H of DIC (orange), Cp–H of **2a** (red), /Pr–H of **2a** (yellow), Cp–H of adduct (*), /Pr–H of adduct (#).

Figure S6: ¹H NMR spectrum of **2b'** (500 MHz, C₆D₆, 305 K).

Figure S10: ¹H,¹⁵N HMBC NMR spectrum of 3a (500 MHz, 51 MHz, C₆D₆, 305 K).

Figure S12: ¹³C{¹H} NMR spectrum of 3b (126 MHz, C₆D₆, 305 K).

Figure S14: ¹³C{¹H} NMR spectrum of 4a (126 MHz, C₆D₆, 305 K).

Figure S15: ¹H,¹⁵N HMBC NMR spectrum of 4a (500 MHz, 51 MHz, C₆D₆, 305 K).

Figure S18: ¹H NMR spectrum of 4c (500 MHz, C₆D₆, 298 K).

Figure S20: ¹H,¹⁵N HMBC NMR spectrum of 4c (500 MHz, 51 MHz, C₆D₆, 298 K).

Figure S24: ¹H NMR spectrum of **5b** (500 MHz, C₆D₆, 305 K).

Figure S26: ¹H,¹⁵N HMBC NMR spectrum of 5b (500 MHz, 51 MHz, C₆D₆, 305 K).

Figure S30: ¹H NMR spectrum of 7 (500 MHz, C₆D₆, 305 K).

Figure S32: ¹H,¹⁵N HMBC NMR spectrum of 7 (500 MHz, 51 MHz, C₆D₆, 305 K).

Figure S33: ¹H NMR spectrum of 8 (500 MHz, C₆D₆, 305 K).

Figure S34: ¹³C{¹H} NMR spectrum of 8 (126 MHz, C₆D₆, 305 K).

Figure S35: ¹H,¹⁵N HMBC NMR spectrum of 8 (500 MHz, 51 MHz, C₆D₆, 305 K).

Figure S36: ¹H NMR spectrum of **9** (500 MHz, C₆D₆, 305 K).

Figure S37: ¹³C{¹H} NMR spectrum of **9** (126 MHz, C₆D₆, 305 K).

IR spectra

Figure S38: IR (ATR) spectrum of 2a.

Figure S39: IR (ATR) spectrum of 2b.

Figure S40: IR (ATR) spectrum of 3a.

Figure S41: IR (ATR) spectrum of 3b.

Figure S42: IR (ATR) spectrum of 4a.

Figure S43: IR (ATR) spectrum of 4b.

Figure S44: IR (ATR) spectrum of 5a.

Figure S45: IR (ATR) spectrum of 5b.

Figure S46: IR (ATR) spectrum of 6.

Figure S47: IR (ATR) spectrum of 7.

Figure S48: IR (ATR) spectrum of 8.

Figure S49: IR (ATR) spectrum of 9.

UV/vis spectra

UV/vis spectra were recorded with a visible amount of sample dissolved in *n*-hexane. An exact concentration was not determined.

Figure S50: UV/vis spectrum of 2a.

Figure S51: UV/vis spectrum of 2b.

Figure S52: UV/vis spectrum of 3a.

Figure S53: UV/vis spectrum of 3b.

Figure S54: UV/vis spectrum of 4a.

Figure S55: UV/vis spectrum of 4b.

Figure S56: UV/vis spectrum of 5a.

Figure S57: UV/vis spectrum of 5b.

Figure S58: UV/vis spectrum of 6.

Figure S59: UV/vis spectrum of 7.

Figure S60: UV/vis spectrum of 8.

Figure S61: UV/vis spectrum of 9.

Crystallographic Data

Single crystal X-ray data for **2a**, **2b**, **3a**, **3b**, **4a**, **4b**, **4c**, **5a** and **9** were measured on a Bruker AXS D8 Venture diffractometer (multilayer optics, Mo-K α and Cu-K α radiation with $\lambda = 0.71073$ Å and 1.54178 Å respectively, Kappa 4-circle goniometer, Photon III C14 CPAD detector). Single crystal X-ray data for **5b**, **7**, and **8** were measured on a Bruker AXS Apex II diffractometer (graphite monochromator, Mo-K α radiation, $\lambda = 0.71073$ Å, Kappa 4-circle goniometer, Apex II CCD detector). All crystals were measured at a temperature of 100 K except for **5b** which was measured at 180 K, because at lower temperatures the mosaicity of the crystals increased visibly. Absorption corrections using equivalent reflections were performed with the program SADABS.^[3] For **5b**, **7** and **8** numerical absorption corrections were performed using the same program. All structures were solved with the program SHELXS^[4] and refined with SHELXL^[5] using the OLEX2^[6] GUI.

All non-H atoms were refined using anisotropic atomic displacement parameters (ADPs). The minor site of the disordered *iso*-propyl group in **2a** was refined using isotropic ADPs. H atoms bonded to C were located in the difference Fourier maps and placed on idealized geometric positions with idealized ADPs using the riding model. H atoms bonded to N in were refined freely. **3b** contains sites of toluene disordered with *n*-hexane. Here, restraints on the anisotropic ADPs were applied using the RIGU instruction within SHELXL and the geometry of the toluene phenyl groups was idealized (AFIX 66).

The crystallographic data can be obtained free of charge from https://www.ccdc.cam.ac.uk/structures/ quoting the CCDC numbers 2402660-2402670 and 2404156.

Figure S62. Molecular structure of complex **2a**. Thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and disordered *iso*-propyl atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ti1–N1 2.0292(15), Ti1–C6 2.446(2), C1–C6 1.435(3), C16–C21 1.517(2), C21–C31 1.556(3), N1–C31 1.446(2), N2–C31 1.272(2), N1–C32 1.503(3), N2–C35 1.458(3); N1–Ti1–C6 110.52(7), Ti1–N1–C31 115.89(11), N1–C31–N2 129.39(17), N1–C31–C21 113.55(15), C31–N1–C32 118.0(2), C31–N2–C35 126.57(16).

Figure S63. Molecular structure of complex **2b**. Thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ti1–N1 2.0466(18), Ti1–C6 2.469(2), C1–C6 1.428(3), C16–C21 1.523(3), C21–C31 1.538(3), N1–C31 1.451(3), N2–C31 1.272(3), N1–C32 1.506(3), N2–C38 1.445(3); N1–Ti1–C6 106.78(8), Ti1–N1–C31 111.83(13), N1–C31–N2 129.2(2), N1–C31–C21 112.84(17), C31–N1–C32 109.24(16), C31–N2–C38 125.10(19).

Figure S64. Molecular structure of complex **3a**. Thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ti1–N1 2.0499(5), Ti1–C6 2.4634(6), C1–C6 1.4471(8), C21–C26 1.5187(8), C26–C41 1.5643(7), N1–C41 1.4092(7), N2–C41 1.2843(7), N2–C42 1.4595(8), N1–C45 1.5034(7); N1–Ti1–C6 110.099(19), Ti1–N1–C41 123.99(3), N1–C41–N2 120.53(5), N1–C41–C26 115.26(4), C41–N2–C42 124.39(5), C41–N1–C45 113.27(4).

Figure S65. Molecular structure of complex **3b**. Thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms, solvent molecules and additional crystallographic independent molecules are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ti1–N1 2.0595(17), Ti1–C6 2.469(2), C1–C6 1.436(3), C21–C26 1.521(3), C26–C41 1.567(3), N1–C41 1.412(3), N2–C41 1.282(3), N1–C42 1.505(3), N2–C48 1.456(3); N1–Ti1–C6 109.84(7), Ti1–N1–C41 124.23(13), N1–C41–N2 120.13(18), N1–C41–C26 115.07(17), C41–N1–C42 112.97(16), C41–N2–C48 126.09(18).

Figure S66. Molecular structure of complex **4a**. Thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ti1–N1 2.055(3), Ti1–N3 2.058(3), C1–C6 1.524(5), C6–C21 1.557(4), C28–C33 1.523(4), C33–C48 1.564(4), N1–C21 1.399(4), N2–C21 1.298(4), N1–C22 1.501(4), N2–C25 1.455(4). N3–C48 1.391(4). N4–C48 1.290(4). N3–C49 1.501(4). N4–C52 1.450(4); N1–Ti1–N3 99.42(11), C1–C6–C21 10. C48–N4 120.8(3), Ti1–N1–

C21 127.9(2), Ti1–N3–C48 (N4–C52 124.8(3).

C48–N4 120.8(3), Ti1–N1– 18–N3–C49 115.6(3), C48–

Figure S67. Molecular structure of complex **4b**. Thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity. Selected bond lengths [A] and angles [°]: Ti1–N2 2.0659(11), Ti1–N4 2.0742(12), C1–C6 1.5170(19), C6–C21 1.5642(18), C84–C39 1.5111(19), C39–C54 1.5655(18), N1–C21 1.2851(18), N2–C21 1.3926(18), N1–C22 1.4525(18), N2–C28 1.5001(27), N3–C54 1.2830(18), N4–C54

1.3932(17), N3–C55 1.4588(17), N4–C61 1.4995(17); N2–Ti1–N4 96.56(5), C1–C6–C21 108.11(11), C34–C39–C54 108.55(11), N1–C21–N2 121.19(12), N3–C54–N4 121.57(12), Ti1–N2–C21 127.35(9), Ti1–N4–C54 127.68(9), C21–N1–C22 125.19(12), C21–N2–C28 114.93(11), C54–N3–C55 124.15(12), C54–N4–C61 114.80(11).

Figure S68. Molecular structure of complex **4c**. Thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ti1–N1 2.0624(8), Ti1–N3 2.0565(9), C1–C6 1.5177(13), C6–C21 1.5639(13), C34–C39 1.5175(13), C39–C54 1.5660(14), N1–C21 1.3952(12), N2–C21 1.2841(13), N2–C22 1.4595(12), N1–C28 1.4925(12), N3–C54 1.3988(12), N3–C58 1.5017(13), N4–C54 1.2806(13), N4–C55 1.4583(13); N1–Ti1–N3 99.37(3), C1–C6–C21 108.18(7), C34–C39–C54 107.61(7), N1–C21–N2 121.10(9), N3–C54–N4 119.60(9), Ti1–N1–C21 128.06(6), Ti1–N3–C54 129.22(7), C21–N1–C22 121.10(9), C21–N1–C28 115.31(8), C54–N4–C55 127.47(9), C54–N3–C58 113.73(8).

Figure S69. Molecular structure of complex **5a**. Thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms (except for H3 and H6) are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ti1–N1 2.0741(12), Ti1–N3 1.9872(13), C1–C6 1.5168(19), C16–C21 1.5110(19), C21–C31 1.5612(19), N1–C31 1.4112(18), N1–C32 1.4911(17), N2–C31 1.2823(18), N2–C35 1.4629(18); N1–Ti1–N3 103.74(5), Ti1–N1–C31 112.51(8), Ti1–N3–C38 136.12(10), C16–C21–C31 102.62(11), N1–C31–C21 112.79(11), N1–C31–N2 130.82(13), C31–N1–C32 114.60(11), C31–N2–C35 125.24(12).

Figure S70. Molecular structure of complex **5b**. Thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms (except for H3 and H6A) and disorders are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ti1– N1 2.0989(14), Ti1–N3 1.9993(16), C1A–C6 1.56(2), C16–C21 1.515(2), C21–C31 1.552(3), N1–C31 1.419(2), N1–C32 1.491(2), N2–C31 1.281(2), N2–C35 1.458(3); N1–Ti1–N3 103.06(6), Ti1–N1–C31 114.11(11), Ti1–N3–C38 136.94(13), C16–C21–C31 100.87(13), N1–C31–C21 111.80(14), N1–C31–N2 131.60(17), C31–N1–C32 114.39(14), C31–N2–C35 126.80(17).

Figure S71. Molecular structure of complex **7**. Thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ti1–N1 2.0528(8), Ti1–O1 1.8689(7), C1–C6 1.5133(12), C23–C28 1.5211(12), C6–C16 1.5474(12), C28–C38 1.6284(12), N1–C16 1.4236(11), N1–C17 1.4872(12), N2–C16 1.2784(11), N2–C20 1.4628(12), O1–C38 1.4229(11), C38–C39 1.5333(14), C38–C40 1.5383(14); N1–Ti1–O1 103.66(3), Ti1–N1–C16 115.45(6), Ti1–O1–C38 135.11(6), C1–C6–C16 98.88(6), C23–C28–C38 102.87(6), N1–C16–C6 110.75(7), N1–C16–N2 130.80(8), C16–N1–C17 117.41(7), C16–N2–C20 122.99(8), O1–C38–C28 108.58(6), O1–C38–C39 104.96(7), O1–C38–C40 107.11(7).

Figure S72. Molecular structure of complex **8**. Thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms (except for H3, H39A and H39B) are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ti1–N1 2.0562(8), Ti1–N3 1.9768(8), C1–C6 1.5150(13), C23–C28 1.5235(12), C6–C16 1.5488(12), C28–C38 1.5429(13), N1–C16 1.4191(11), N1–C17 1.4873(12), N2–C16 1.2797(12), N2–C20 1.4604(13), N3–C38 1.3926(12), C38–C39 1.3505(13); N1–Ti1–N3 104.04(3), Ti1–N1–C16 114.08(6), Ti1–N3–C38 133.17(6), C1–C6–C16 99.02(7), C23–C28–C38 103.71(7), N1–C16–C6 111.41(7), N1–C16–N2 130.04(8), C16–N1–C17 118.08(7), C16–N2–C20 122.22(8), N3–C38–C28 112.30(7), N3–C38–C39 119.83(8).

Figure S73. Molecular structure of complex **9**. Thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ti1–N1 1.9861(9), Ti1–N2 2.0461(9), C1–C6 1.5245(14), C23–C28 1.5158(14), C6–C16 1.5695(14), C28–C38 1.5491(14), N1–C16 1.2709(13), N2–C38 1.4194(13), N2–C39 1.4880(14), N3–C38 1.2809(13), N3–C42 1.4566(14), C16–C17 1.5110(14); N1–Ti1–N2 103.67(4), Ti1–N1–C16 130.75(8), Ti1–N2–C38 113.88(7), C1–C6–C16 101.12(8), C23–C28–C38 100.17(8), N1–C16–C6 119.29(9), N1–C16–C17 113.84(9), N2–C38–C28 111.93(8), N2–C38–N3 130.3(1), C38–N3–C42 123.90(9).

	2a	2b	3a	3b
CCDC	2402660	2402661	2402669	2402665
Lab-ID	SBF15	MAFIP151	MAP403	SBF07
empirical formula	C ₃₇ H ₅₀ N ₂ Ti	C ₄₃ H ₅₈ N ₂ Ti	C ₅₀ H ₅₇ N ₂ Ti	C _{59.50} H ₆₉ N ₂ Ti
Fw	570.69	650.81	733.87	860.06
Color	yellow green	pale green	yellow green red	green orange
Habit	plate	plate	block	plate
Wavelength, Å	1.54178	1.54178	0.71073	1.54178
cryst dimens, mm	0.08 x 0.04 x 0.01	0.06 x 0.04 x 0.01	0.15 x 0.13 x 0.12	0.10 x 0.04 x 0.015
cryst syst	monoclinic	monoclinic	triclinic	triclinic
space group	P21/c	P21/c	<i>P</i> -1	<i>P</i> -1
<i>a</i> , Å	17.9178(6)	10.9348(5)	12.0635(6)	14.2560(5)
<i>b</i> , Å	18.9524(6)	10.6136(5)	12.2468(6)	16.1873(6)
<i>c</i> , Å	8.6109(3)	29.6984(13)	15.7143(8)	22.3006(8)
α, deg	90	90	83.224(2)	106.082(2)
β, deg	91.401(2)	100.484(3)	81.978(2)	91.2550(8)
γ, deg	90	90	62.7942(17)	91.973(3)
V, Å ³	2923.26(17)	3389.2(3)	2040.70(18)	4832.1(3)
Z	4	4	2	4
$ ho_{ m caclcd}$, g cm ⁻³	1.297	1.275	1.194	1.182
μ, mm ⁻¹	2.683	2.378	0.246	1.791
Т, К	100(2)	100(2)	100(2)	100(2)
λ range, deg	2.467 – 74.436	3.026 - 66.593	1.873 – 40.249	2.109 – 66.595
no. of rflns collected	37944	64993	269509	90603
no. of indep rflns	5943	5981	25667	16999
(R(int))	0.0696	0.1106	0.0477	0.0674
no. of rflns with $l>2\sigma(l)$	4756	4782	22652	13622
abs cor	semi-empirical	semi-empirical	semi-empirical	semi-empirical
max, min transmission	1.00000, 0.8807	1.0000, 0.8520	1.0000, 0.9288	1.0000, 0.8251
final R indices	R1 = 0.0393	R1 = 0.0451	R1 = 0.0365	R1 = 0.0453
[<i>l</i> >2 <i>σ</i> (<i>l</i>)]	wR2 = 0.0910	wR2 = 0.1089	wR2 = 0.1049	wR2 = 0.1093
R indices (all data)	R1 = 0.0549	R1 = 0.0610	R1 = 0.0427	R1 = 0.0627
	wR2 = 0.0976	wR2 = 0.1172	wR2 = 0.1099	wR2 = 0.1189
GOF on <i>F</i> ²	1.035	1.046	1.099	1.021
largest diff peak /	0.365 / -0.448	0.633 / -0.354	0.685 / -0.606	0.797 / -0.508
hole (e.Å ⁻³)				

Table S1: Crystal Structure Data for Compounds 2a, 2b, 3a and 3b.

	4a	4b	4c	5a
CCDC	2402666	2402664	2404156	2402663
Lab-ID	MAFIP165	MAP413	MAP464	SBF16
empirical formula	C ₅₄ H ₆₄ N ₄ Ti	C ₇₂ H ₈₀ D ₆ N ₄ Ti	C ₆₀ H ₇₂ N ₄ Ti	C ₄₄ H ₅₉ N ₃ Ti
fw	816.99	1061.38	897.11	677.84
color	purple	brown violet	red	orange
Habit	plate	plate	block	rod
Wavelength, Å	1.54178	1.54178	0.71073	0.71073
cryst dimens, mm	0.09 x 0.04 x 0.01	0.08 x 0.05 x 0.015	0.09 x 0.07 x 0.05	0.09 x 0.04 x 0.02
cryst syst	orthorhombic	triclinic	monoclinic	triclinic
space group	Pbcn	<i>P</i> -1	P21/c	<i>P</i> -1
<i>a</i> , Å	27.3853(7)	10.7094(3)	16.1533(8)	10.0711(5)
<i>b</i> , Å	9.3969(3)	14.8769(5)	17.6468(9)	14.4862(9)
<i>c</i> , Å	35.9247(10)	19.1824(6)	17.4463(9)	14.5192(9)
α, deg	90	90.7480(17)	90	118.955(2)
β, deg	90	100.9596(16)	101.351(2)	94.269(2)
γ, deg	90	94.3094(16)	90	83.0431(13)
V, Å ³	9244.8(5)	2990.80(16)	4875.9(4)	98.537(2)
Z	8	2	4	2
$ ho_{\text{caclcd}}, \text{g cm}^{-3}$	1.174	1.179	1.222	1.246
μ, mm ⁻¹	1.860	1.546	0.219	0.273
Т, К	100(2)	100(2)	100(2)	100(2)
λ range, deg	2.460 - 66.595	2.347 – 74.494	1.658 – 32.032	1.626 – 30.034
no. of rfins collected	93681	78260	235881	89812
no. of indep rflns	8171	12165	16960	10585
(R(int))	0.1103	0.0448	0.0571	0.0588
no. of rflns with $l>2\sigma(l)$	6317	10699	15014	9317
abs cor	semi-empirical	semi-empirical	semi-empirical	semi-empirical
max, min transmission	1.0000, 0.8969	1.0000, 0.8928	1.0000, 0.9203	1.0000, 0.9293
final R indices	R1 = 0.0684	R1 = 0.0384	R1 = 0.0420	R1 = 0.0478
[<i>l</i> >2σ(<i>l</i>)]	wR2 = 0.1657	wR2 = 0.0964	wR2 = 0.1051	wR2 = 0.0992
R indices (all data)	R1 = 0.0899	R1 = 0.0455	R1 = 0.0489	R1 = 0.0575
	wR2 = 0.1775	wR2 = 0.1012	wR2 = 0.1089	wR2 = 0.1030
GOF on <i>F</i> ²	1.084	1.021	1.077	1.135
largest diff peak /	2.156 / -0.638	0.405 / -0.395	0.536 / -0.487	0.427 / -0.419
hole (e.Å-3)				

	5b	7	8	9
CCDC	2402668	2402662	2402670	2402667
Lab-ID	SBF19	SBF20	SBF21	SBF17
empirical formula	C ₄₅ H ₆₁ N ₃ Ti	C ₄₀ H ₅₆ N ₂ OTi	C ₃₉ H ₅₃ N ₃ Ti	C44H54CIN3Ti
fw	691.86	628.76	611.74	708.25
color	red	yellow	red	red
Habit	block	block	block	rod
Wavelength, Å	0.71073	0.71073	0.71073	0.71073
cryst dimens, mm	0.40 x 0.30 x 0.25	0.30 x 0.25 x 0.15	0.40 x 0.20 x 0.20	0.11 x 0.05 x 0.05
cryst syst	monoclinic	triclinic	tetragonal	monoclinic
space group	P2 ₁ /n	<i>P</i> -1	<i>I</i> 4 ₁ / <i>a</i>	P2 ₁ /c
<i>a</i> , Å	18.4897(7)	10.4084(4)	34.7739(9)	9.1467(8)
<i>b</i> , Å	10.5066(4)	10.5144(4)	34.7739(9)	18.2623(17)
<i>c</i> , Å	19.5043(7)	15.5909(6)	10.5045(3)	21.447(2)
α, deg	90	104.6063(17)	90	90
β, deg	104.0950(13)	91.7705(17)	90	92.118(4)
γ, deg	90	95.8688(17)	90	90
V, Å ³	3674.9(2)	1639.59(11)	12702.3(7)	3580.0(6)
Z	4	2	16	4
$ ho_{\text{caclcd}}$, g cm ⁻³	1.251	1.274	1.280	1.314
μ, mm ⁻¹	0.269	0.296	0.302	0.350
Т, К	180(2)	100(2)	100(2)	100(2)
λ range, deg	1.745 – 32.030	1.352 – 34.971	1.656 – 34.969	1.465 – 33.724
no. of rflns collected	145941	81719	209068	130934
no. of indep rflns	12799	14397	13938	14286
(R(int))	0.0652	0.0431	0.0618	0.0480
no. of rflns with $l>2\sigma(l)$	10505	11300	11376	12596
abs cor	semi-empirical	numerical	numerical	semi-empirical
max, min transmission	0.9536, 0.8848	0.9751, 0.8971	1.0000, 0.8633	1.0000, 0.9538
final R indices	R1 = 0.0629	R1 = 0.0360	R1 = 0.0405	R1 = 0.0420
[<i>l</i> >2 <i>σ</i> (<i>l</i>)]	wR2 = 0.1373	wR2 = 0.0875	wR2 = 0.0957	wR2 = 0.0984
P indices (all data)	R1 = 0.0773	R1 = 0.0554	R1 = 0.0550	R1 = 0.0500
IN INVICES (all vala)	wR2 = 0.1428	wR2 = 0.0961	wR2 = 0.1023	wR2 = 0.1019
GOF on F ²	1.210	1.031	1.085	1.118
largest diff peak /	0.392 / -0.778	0.527 / -0.523	0.514 / -0.347	0.715 / -0.487
hole (e.Å-3)				

Table S3: Crystal Structure Data for Compounds 5b, 7, 8 and 9.

Computational Part

The DFT (density functional theory) calculations were performed with the B3LYP/Def2-TZVP level of theory.^[7] The optimized ground state geometry of **2a** and the transition state **TS** were calculated in toluene at room temperature using the SMD solvation model.^[8]

Figure S74. Ground state optimized geometry of complex **2a**, calculated in toluene at the B3LYP/Def2-TZVP level of theory. Selected bond lengths (Å): Ti1–N1 2.052, Ti1–C6 2.538, C1–C6 1.425, C16–C21 1.518, C21–C31 1.569, C31–N1 1.437, C31–N2 1.269.

 Figure S75. Transition state optimized geometry of complex 2a, calculated in toluene at the B3LYP/Def2-TZVP

 level of theory. Selected bond lengths (Å): Ti1–N1 2.547, Ti1–C31 2.372, Ti1–N2 2.390, Ti1---C6 3.280, C1–C6

 1.385,
 C16–C21
 1.508,
 C21–C31
 1.601,
 C31–N1
 1.320,
 C31–N2
 1.348.

<u>2a</u>

Ti	5.001537	10.979389	1.130647
Ν	4.970770	9.098714	0.311588
С	3.549940	12.500216	0.506620
С	3.880648	11.797474	-0.709256
С	5.206170	12.102801	-1.075269
С	5.721676	13.011937	-0.135930
С	4.717765	13.283505	0.812438
С	2.688058	11.959752	1.506681
С	6.489984	9.645273	2.428566
С	5.434326	10.010663	3.302906
С	5.459607	11.407583	3.487550
С	6.530926	11.921769	2.730778
С	7.148796	10.847921	2.049639
С	5.312799	8.010995	1.187943
С	4.714362	8.783227	-1.133736
Н	3.228673	11.118137	-1.227255
Н	5.738711	11.720153	-1.932046
Н	6.716536	13.430243	-0.144593
Н	4.831983	13.920232	1.672986
С	2.372938	12.786791	2.753193
С	1.446375	11.177854	1.081016
С	6.682584	8.224623	1.925657
Н	4.720663	9.332345	3.742865
Н	4.789278	11.979079	4.107226
Н	6.825730	12.956238	2.670511
Н	7.986315	10.939877	1.380268
Ν	4.611256	7.014776	1.545786
Н	4.982337	9.698495	-1.650953
С	3.262131	8.485416	-1.551668
С	5.629949	7.706293	-1.722296
Н	3.255173	13.332217	3.091079
С	1.858281	11.891444	3.897718
С	1.260729	13.807207	2.397289
С	0.936956	10.283294	2.225376
Н	1.658466	10.558568	0.209931
С	0.330726	12.192194	0.716011
С	7.938710	8.059085	1.010746
С	6.914700	7.258961	3.140742
С	3.212946	6.765041	1.247295
Н	2.986530	7.442052	-1.408637
Н	3.152521	8.700612	-2.618942
Н	2.542075	9.100353	-1.014549
Н	6.682384	7.962360	-1.605661
Н	5.428288	7.615722	-2.793054
Н	5.457532	6.727260	-1.275124
Н	2.626513	11.172631	4.191671
Н	1.641943	12.509270	4.775815
С	0.592634	11.142943	3.451393
Н	1.035885	14.426934	3.272487

-	
	•

Ti	4.939183	10.475579	0.945246
Ν	6.102584	8.740976	-0.516476
С	2.914882	11.766457	0.770227
С	2.896932	10.792470	-0.313226
С	3.935558	11.066562	-1.201191
С	4.717708	12.127036	-0.690306
С	4.102793	12.556987	0.511792
С	2.098868	11.825516	1.889937
С	6.738814	9.703751	2.150073
С	5.815622	10.223362	3.098845
С	5.741446	11.620009	2.923480
С	6.634931	11.981201	1.889193
С	7.242076	10.815141	1.401479
С	5.708376	8.249104	0.644365
С	5.883237	8.556735	-1.948575
Н	2.174304	10.001672	-0.427407
Н	4.129656	10.538827	-2.117649
Н	5.563336	12.582991	-1.179362
Н	4.418518	13.402823	1.095625
С	2.210714	12.931872	2.915316
С	0.793575	11.078186	2.022532
С	6.871159	8.255675	1.746668
Н	5.237377	9.647892	3.802189
Н	5.113821	12.294502	3.483150
Н	6.802259	12.980175	1.518785
н	7.953355	10.767623	0.594562
Ν	4.485748	8.141118	1.206028
н	5.941533	9.561750	-2.374622
С	4.596194	7.909359	-2.478542
С	7.086575	7.795010	-2.537197
Н	3.167689	13.446256	2.831827
С	2.050520	12.367371	4.344257
С	1.064365	13.946836	2.656223
С	0.626147	10.515485	3.451982
Н	0.725167	10.271042	1.294295
С	-0.358633	12.088086	1.757840
С	8.276137	7.924588	1.175696
С	6.626844	7.288785	2.938912
С	3.322094	7.511713	0.581433
Н	4.509250	6.870523	-2.159915
Н	4.622342	7.913733	-3.571857
Н	3.694510	8.435188	-2.173196
Н	8.025610	8.259772	-2.235986
Н	7.037950	7.797458	-3.629884
н	7.097124	6.754436	-2.205945
Н	2.861033	11.667261	4.564550
Н	2.122767	13.185665	5.068186
С	0.692650	11.659931	4.474958
Н	1.132617	14.765431	3.380809

Н	1.609271	14.479610	1.608002	н	1.174918	14.386658	1.660840
С	-0.003484	13.059764	1.940871	C	-0.291696	13.234409	2.779893
Н	1.697624	9.545198	2.488140	н	1.407213	9.780666	3.661162
Н	0.052508	9.730092	1.892546	Н	-0.334672	9.996111	3.529023
Н	0.657154	12.821619	-0.116926	Н	-0.283252	12.479780	0.739490
Н	-0.562564	11.652585	0.382385	Н	-1.319194	11.567754	1.834799
Н	7.828673	8.700282	0.133285	Н	8.470094	8.571014	0.321588
С	8.091836	6.589177	0.561912	C	8.347439	6.454937	0.721331
С	9.238166	8.439943	1.759326	C	9.350774	8.151971	2.258424
С	7.107134	5.791858	2.705941	C	6.708159	5.821541	2.481675
Н	6.051866	7.320149	3.806083	Н	5.636014	7.475623	3.349019
С	8.188872	7.685570	3.902072	C	7.700156	7.513507	4.025452
Н	2.753954	7.591547	0.700474	Н	3.052622	7.969674	-0.375844
С	2.475482	6.613368	2.583505	C	2.132168	7.658607	1.524700
С	3.071734	5.476543	0.432183	C	3.564115	6.017052	0.327691
Н	0.241035	10.499966	4.264288	Н	0.587853	11.252972	5.485256
С	-0.503323	12.156843	3.081642	C	-0.441398	12.662991	4.200886
Н	-0.781186	13.783334	1.676664	Н	-1.098291	13.947075	2.581908
Н	7.208495	6.253521	0.019171	Н	7.610228	6.261597	-0.059980
Н	8.936775	6.518386	-0.131449	Н	9.331345	6.260903	0.280906
С	8.319982	5.671215	1.775430	C	8.101395	5.517616	1.912219
Н	10.083330	8.311232	1.074332	Н	10.339885	7.954911	1.831203
Н	9.241391	9.484720	2.062536	Н	9.351607	9.194592	2.587191
С	9.425756	7.547844	2.994926	C	9.099066	7.222716	3.457009
Н	7.263155	5.180855	3.602216	Н	6.498102	5.168130	3.335399
Н	6.209306	5.430083	2.212863	Н	5.944894	5.613594	1.730711
Н	8.103147	8.713936	4.262939	Н	7.658669	8.536542	4.407103
Н	8.302708	7.049423	4.785862	Н	7.495400	6.851072	4.873315
Н	2.882850	5.773425	3.151428	Н	2.316839	7.115228	2.455043
Н	1.409541	6.435662	2.417808	Н	1.218052	7.264751	1.071655
Н	2.576736	7.512158	3.193746	Н	1.967547	8.701385	1.778850
Н	3.619192	5.526949	-0.509721	Н	4.447830	5.837682	-0.284170
Н	2.021273	5.279243	0.203050	Н	2.705843	5.579740	-0.190784
Н	3.461459	4.626290	0.997650	Н	3.692866	5.485158	1.272897
Н	-0.766516	12.762683	3.955295	Н	-0.414110	13.472875	4.937226
Н	-1.413166	11.631229	2.773107	Н	-1.412482	12.168449	4.305861
Н	8.419855	4.636700	1.431596	Н	8.143789	4.476330	1.576656
С	9.585306	6.091568	2.535941	C	9.168302	5.758898	2.992345
Н	10.318612	7.865617	3.542543	Н	9.854467	7.402957	4.228404
Н	10.470144	5.995195	1.897156	Н	10.164493	5.535083	2.595547
Н	9.738187	5.433601	3.397995	Н	9.003716	5.086431	3.841237

References

- M. Manßen, N. Lauterbach, M. Schmidtmann, W. Saak, S. Doye, R. Beckhaus, *Angew. Chem. Int. Ed.* 2015, *54*, 4383-4387.
- [2] M. Diekmann, G. Bockstiegel, A. Lützen, M. Friedemann, W. Saak, D. Haase, R. Beckhaus, Organometallics 2006, 25, 339-348.
- [3] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst. 2015, 48, 3-10.
- [4] G. Sheldrick; A short history of SHELX. Acta Cryst. A 2008, 64, 112-122.
- [5] G. Sheldrick; Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3-8.
- [6] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.
- [7] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305.
- [8] A. Marenich, C. Cramer, D. Truhlar, J. Phys. Chem. B 2009, 113, 18, 6378–6396.