Supplementary materials

Exploring the Luminescent and Thermometric Potentials of Samarium(III) Diketonate Complexes with Extended Fluoroalkyl Chains

Daria A. Metlina,*^a Mikhail T. Metlin, ^{a,b} Vladislav M. Korshunov, ^{a,b} ,Victoria E. Gontcharenko,^{a,c} Roman I. Avetisov, ^d Mikhail A. Kiskin,^e Yuriy A. Belousov^{a,f} and Ilya V. Taydakov^{a,c}

^aP.N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospekt 53, 119991 Moscow, Russian Federation.

^bBauman Moscow State Technical University, 2-ya Baumanskaya str. 5/1, 105005 Moscow, Russian Federation.

^cFaculty of Chemistry, National Research University Higher School of Economics, 20 Miasnitskaya Str., 101000 Moscow, Russia

^dDepartment of Chemistry and Technology of Crystals, Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia

^eN.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation

^fM.V. Lomonosov Moscow State University, 1 Leninskie Gory Str. Building 3, 119991 Moscow, Russian Federation.

Figure S1. PXRD patterns of SmCH3, SmCHF2 and SmC1-SmC8 and simulated from single crystal data for SmCH3, SmCHF2, SmC1-SmC4, SmC7.

Figure S2. FTIR-spectra of the complexes SmCHF2 and SmC1-SmC8.

Complex/Parameters	SmC ₃	SmC ₄	SmC ₇
Empirical formula	$C_{42}H_{20}F_{21}N_2O_6S_3Sm$	$C_{45}H_{20}F_{27}N_2O_6S_3Sm$	$C_{54}H_{20}F_{45}N_2O_6S_3Sm$
Formula weight	1294.13	1444.16	1894.25
<i>T</i> (K)	100	296	100
Crystal system	Monoclinic	Triclinic	Orthorhombic
Space group	$P2_1/n$	<i>P</i> -1	Pbca
<i>a</i> (Å)	11.9132(3)	11.5607(7)	20.520(3)
<i>b</i> (Å)	18.4956(4)	14.8128(9)	18.988(3)
<i>c</i> (Å)	21.5050(5)	15.9771(9)	32.676(4)
α (°)	90	100.744(2)	90
β (°)	100.7170(10)	101.341(2)	90
γ (°)	90	103.867(2)	90
$V(Å^3)$	4655.80(19)	2524.8(3)	12732(3)
Z	4	2	8
$D_{\text{calc}} (g \cdot \text{cm}^{-3})$	1.846	1.900	1.976
μ (mm ⁻¹)	1.530	1.438	1.205
θ range (°)	2.06-27.10	2.36-25.00	1.92-24.71
F(000)	2532	1410	7368
Number of parameters	862	739	1064

Table S1. Selected crystal data and parameters for structure refinement of SmC₃, SmC₄ and SmC₇.

Reflections collected	45016	30780	40177
Unique reflections	10268	8881	10589
Reflections with $I > 2\sigma(I)$	7854	7070	8143
$R_{\rm int}$	0.0496	0.0736	0.1022
GooF	1.031	1.082	1.135
$R_1(I > 2\sigma(I))$	0.0541	0.0622	0.1238
$wR_2(I > 2\sigma(I))$	0.1296	0.1039	0.2609

Table S2. Selected bond lengths, the shortest interatomic distances (Å) and angles (°) in SmC_3 , SmC_4 and SmC_7 .

Complex/Parameters	SmC ₃	SmC ₄	SmC ₇
Sm–O, Å	2.327(13)-2.390(4)	2.360(5)-2.418(4)	2.349(9)-2.391(9)
Sm–N, Å	2.599(6), 2.613(5)	2.593(6), 2.602(5)	2.578(10), 2.582(10)
C–O, Å	1.251(7)-1.269(8)	1.256(9)-1.275(9)	1.249(15)-1.287(16)
C–C(diketon), Å	1.346(13)-1.471(13)	1.371(9)-1.422(8)	1.380(18)-1.41(2)
Sm…Sm, Å	9.948(3)	9.321(1)	10.413(2)
O-Sm-O(chelate), deg.	70.5(2)-72.9(3)	70.62(16)-70.91(15)	70.0(3)-70.8(3)
N–Sm–N, deg.	63.0(2)	63.3(2)	62.8(3)

Table S3. Selected Continuous Shape Measures (CShM) values for the potential coordination polyhedra of Sm in the structure of SmC_3 , SmC_4 and SmC_7

Complex/Geometry	SmC ₃	SmC ₄	SmC ₇
O _h , cube	9.997	10.595	8.845
D _{4d} , square antiprism	2.167	1.314	1.922
D _{2d} , triangular dodecahedron	0.819	1.485	0.624
C _{2v} , biaugmented trigonal prism	2.499	2.932	2.896
C _{2v} , biaugmented trigonal prism	1.938	2.293	2.182
D _{2d} , snub diphenoid	3.260	4.257	3.500
T _d , triakis tetrahedron	10.658	11.427	9.604

Table S4. Selected parameters for the C-H…A interactions in SmC₃, SmC₄ and SmC₇.

Interaction	D–H, Å	H…A, Å	D…A, Å	D–H–A, deg.				
SmC ₃								
C22–H22…S3'	0.95	2.38	2.729(10)	110				
C25–H25…F16 (-1+x,y,z)	0.95	2.46	3.22(2)	136				
C25–H25…F1A (1/2-x,-1/2+y,3/2-z)	0.95	2.51	3.280(15)	139				
C26–H26…F2 (1/2-x,-1/2+y,3/2-z)	0.95	2.37	3.187(16)	136				
C32–H32…F4 (1-x,1-y,1-z)	0.95	2.53	3.100(11)	135				
С36–Н36Об	0.95	2.38	3.050(10)	127				
C42–H42…F3 (3/2-x,1/2+y,3/2-z)	0.95	2.31	3.212(13)	159				
SmC ₄								
C16–H16…O5 (1-x,2-y,1-z)	0.95	2.60	3.330(9)	136				

C34–H34…O6	0.95	2.57	3.155(10)	121		
C44–H44…F9 (-x,1-y,-z)	0.95	2.52	3.428(10)	167		
SmC ₇						
C20–H20…F19' (1-x,1-y,1-z)	0.95	2.51	3.26(3)	135		
C34–H34…O1 (3/2-x,1/2+y,z)	0.95	2.52	3.331(17)	144		

Table S5. Selected parameters for the S…F and C-F…F-C intermolecular interactions in SmC_3 , SmC_4 and SmC_7 .

X…Y	Symmetry	<i>d</i> , Å
	SmC ₃	
S3…F9B	-1+x, y, z	2.886(16)
F1A…F9A	3/2-x, 1/2+y, 3/2-z	2.963(19)
F1A…F9	-1/2+x, 1/2-y, 1/2+z	3.026(15)
F2A…F4A	-1/2+x, 1/2-y, 1/2+z	2.803(12)
F3B···F4	-1/2+x, 1/2-y, 1/2+z	2.952(11)
F5…F6	2-x, 1-y, 1-z	3.087(17)
F6…F6	2-x, 1-y, 1-z	2.965(15)
F9…F9A	2-x, -y, 1-z	2.95(3)
F1…H37	-1+x, y, z	2.77
	SmC ₄	
S2…F5	1-x, 2-y, 1-z	3.402(5)
F1…F11A	1-x, 1-y, -z	3.075(7)
F3A…F6A	x, -1+y, z	3.117(7)
F3A…F8A	x, -1+y, z	3.120(7)
F4…F11	-x, 1-y, -z	3.066(7)
F4A…F12	-x, 1-y, -z	2.904(7)
F4B…F10	-x, 1-y, -z	3.089(7)
F4B…F11	-x, 1-y, -z	3.109(7)
F5…F12A	1-x, 2-y, -z	3.029(7)
F5A…F12A	1-x, 2-y, -z	3.090(6)
F6…F12B	1-x, 2-y, -z	3.074(7)
F8…F8	-x, 2-y, -z	2.996(9)
F8A…F10A	-1+x, y, z	3.003(7)
F8B····F10A	-1+x, y, z	2.981(8)
F12…F12	1-x, 2-y, -z	3.016(6)
	SmC ₇	
S1…F21A	x, 1/2-y, 1/2+z	3.139(18)
S3'…F7A	x, 1/2-y, 1/2+z	3.236(14)
F1A···F7C	1-x, -y, 1-z	2.799(16)
F3A…F13A	x, 1/2-y, -1/2+z	2.689(17)
F3B…F10B	1-x, -1/2+y, 3/2-z	2.644(12)
F3B····F7C	1-x, -y, 1-z	3.009(16)
F4…F7B	3/2-x, 1/2+y, z	2.86(3)

F4A…F17B	3/2-x, -1/2+y, z	2.914(18)
F5…F14B	1/2+x, y, 3/2-z	2.57(3)
F5…F7B	3/2-x, 1/2+y, z	3.02(3)
F5A…F5A	1-x, -y, 1-z	2.788(14)
F5B…F10B	1-x, -1/2+y, 3/2-z	3.113(14)
F5B…F12B	1-x, -1/2+y, 3/2-z	2.743(14)
F6A···F14C	1/2+x, y, 3/2-z	2.94(2)
F9B···F21A	x, 1/2-y, 1/2+z	2.81(2)
F10A…F15A	-1/2+x, y, 3/2-z	2.925(13)
F11A…F21A	x, 1/2-y, 1/2+z	3.00(2)
F13B…F17A	1-x, -1/2+y, 3/2-z	3.09(3)
F14B…F21B	-1/2+x, y, 3/2-z	2.82(3)
F14C…F17A	1-x, -1/2+y, 3/2-z	2.91(3)

Figure S3. Crystal packing of SmC7 along a) (100) plane; b) (010) plane.

Table S6. Observed maxima of Stark components for f-f transitions of the Sm^{3+} ion in $SmCH_3$, $SmCHF_2$, $SmC-SmC_8$ complexes.

Transition,	SmCH ₃	SmCHF ₂	SmC1	SmC ₂	SmC ₃	SmC ₄	SmC ₅	SmC ₆	SmC ₇	SmC ₈
${}^{4}G_{5/2}$ ->]	Energy, c	2m ⁻¹				
	17699	17689	17698	17696	17691	17676	17676	17682	17691	17691
	17660	17570	17571	17583	17574	17613	17589	17562	17589	17666
⁶ H _{5/2}	17582	17391	17413	17470	17416	17473	17489	17442	17457	17581
	17558									17472
	17495									

	17387									
	17315									
	16633	16636	16641	16649	16654	16656	16633	16625	16638	16633
	16520	16532	16548	16547	16533	16557	16550	16535	16552	16556
611	16445	16500	16478	16404	16454	16502	16493	16480	16393	16496
*117/2	16376	16346	16359		16360	16419	16433	16381	16294	16423
	16347	16160								16390
	16280	16102								
	15430	15421	15431	15650	15433	15445	15427	15420	15434	15496
	15407	15354	15365	15436	15377	15386	15370	15351	15370	15425
	15361	15279	15272	15373	15276	15317	15322	15302	15290	15371
	15334	15145	15169	15309	15162	15272	15281	15263	15194	15319
6ц.,	15296			15209		15242	15244	15190		15276
119/2	15255					15209				15205
	15233									
	15172									
	15132									
	15067									
	14110	14369	14120	14124	14125	14124	14099	14103	14111	14107
	14069	14237	14060	14004	14072	14075	14032	14053	14003	13998
	13996	14114	13992		14012	14045	13987	13975	13876	13900
⁶ H _{11/2}	13897	14054	13825		13950	13987		13870		
		14011			13822	13915				
		13964								
		13817								

Figure S4. Photoluminescence decay curves for complexes registered at 648 nm wavelength with excitation at 375 nm. Experiments performed at 300 K.

Complay	(X,Y)				
Complex	300 K	77 K			
SmCH ₃	0.64, 0.36	0.65, 0.34			
SmCHF ₂	0.64, 0.36	0.65, 0.34			
SmC1	0.64, 0.36	0.65, 0.35			
SmC ₂	0.63, 0.36	0.65, 0.35			
SmC ₃	0.64, 0.36	0.66, 0.34			
SmC ₄	0.65, 0.36	0.66, 0.34			
SmC ₅	0.63, 0.37	0.65, 0.35			
SmC ₆	0.64, 0.37	0.65, 0.35			
SmC ₇	0.64, 0.36	0.65, 0.35			
SmC ₈	0.64, 0.36	0.63, 0.37			

Table S7. CIE coordinates for samarium complexes.

Figure S5. View of the "bending" positional disorder of perfluorinated alkyl chain in the crystal structure of SmC7. Red- and blue-colored atoms represent the occupied sites of carbon and fluorine atoms, fractions are 50% each. All thermal ellipsoids of atomic displacement are omitted for clarity.

Table S8. Comparison of photoluminescence decay times of the investigated complexes with reported in literature in recent years.

Complex	τ _{obs} , μs
SmCH ₃	38±0.02
SmCHF ₂	46±0.05
SmC1	68±0.06
SmC ₂	83±0.03
SmC ₃	85±0.06
SmC ₄	79±0.03
SmC ₅	80±0.07
SmC ₆	80 ± 0.08
SmC ₇	78±0.06
SmC ₈	69 ± 0.08
Sm(hfaa) ₃ (impy) ₂	36[1]
Sm(hfaa) ₃ (pz) ₂	39[2]
Sm(hfaa) ₃ (TPPO) ₂	97[3]
Sm(hfpd) ₃ (prehen)	53[4]
Sm(hfpd) ₃ (TOPO) ₂	26[4]
Sm(L3)bipy	45.3[5]
Sm(L3)phen	41.1[5]

[1] Z. Ahmed, W. Ahmed Dar, and K. Iftikhar, 'Synthesis and luminescence study of a highly volatile Sm(III) complex', *Inorganica Chim. Acta*, vol. 392, pp. 446–453, Sep. 2012, doi: 10.1016/j.ica.2012.05.025.

[2] Z. Ahmed, W. Ahmed Dar, and K. Iftikhar, 'Synthesis and luminescence study of a highly volatile Sm(III) complex', *Inorganica Chim. Acta*, vol. 392, pp. 446–453, Sep. 2012, doi: 10.1016/j.ica.2012.05.025.

[3] H. Kawai, C. Zhao, S. Tsuruoka, T. Yoshida, Y. Hasegawa, and T. Kawai, 'Emission properties of Sm(III) complexes having remarkably deep-red emission band', *J. Alloys Compd.*, vol. 488, no. 2, pp. 612–614, Dec. 2009, doi: 10.1016/j.jallcom.2008.09.091.

[4] S. Malik *et al.*, 'Exploring the role of neutral ligands in modulating the photoluminescence of samarium complexes with 1,1,1,5,5,5-hexafluoro-2,4-pentanedione', *Luminescence*, vol. 39, no. 7, Jul. 2024, doi: 10.1002/bio.4810.

[5] V. S. Sizov *et al.*, 'Effect of ancillary ligands on visible and NIR luminescence of Sm3+ βdiketonate complexes', *Spectrochim. Acta. A. Mol. Biomol. Spectrosc.*, vol. 225, p. 117503, Jan. 2020, doi: 10.1016/j.saa.2019.117503.