Supporting Information

Exploring structural, magnetic, and catalytic diversity in tetranuclear $\{Cu_4O_4\}$ cubane cores and a dinuclear complex derived from closely related ligand systems

Narayan Ch. Jana,^a Albert Escuer,^{b,c} Paula Brandão,^d and Anangamohan Panja,^{a,e,*}

^a Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India, India. E-mail: ampanja@yahoo.co.in

^b Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Marti i Franques 1-11, Barcelona-08028, Spain

^c Institut de Nanociència i Nanotecnologia (IN²UB), Universitat de Barcelona, Barcelona-08028, Spain.

^d Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

^e Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.

Characteristic spectra of ligands

Fig. S1: FT-TR spectra of the four ligands and their corresponding complexes.

Fig. S2: ¹H NMR of N'-(2-hydroxy-3-methoxy-5-methylbenzylidene)benzohydrazide (H₂L¹) in DMSO d₆ at r.t.

Fig. S3: ¹³C NMR of N'-(2-hydroxy-3-methoxy-5-methylbenzylidene)benzohydrazide (H₂L¹) in DMSO d₆ at r.t..

Fig. S4: ¹H NMR of 2-[(2-hydroxyethylimino)methyl]-6-methoxy-4-methylphenol (H_2L^2) in CDCl₃ at r.t.

Fig. S5: ¹³C NMR of 2-[(2-hydroxyethylimino)methyl]-6-methoxy-4-methylphenol (H_2L^2) in CDCl₃ at r.t.

Fig. S6: ¹H NMR of 2-[(1-hydroxy-2-methylpropan-2-ylimino)methyl]-6-methoxy-4-methylphenol (H_2L^3) in CDCl₃ at r.t.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Fig. S7: ¹³C NMR of 2-[(1-hydroxy-2-methylpropan-2-ylimino)methyl]-6-methoxy-4-methylphenol (H_2L^3) in CDCl₃ at r.t.

Fig. S8: ¹H NMR of 2-[(3-hydroxypropylimino)methyl]-6-methoxy-4-methylphenol (H_2L^4) in CDCl₃ at r.t.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Fig. S9: ¹³C NMR of 2-[(3-hydroxypropylimino)methyl]-6-methoxy-4-methylphenol (H_2L^4) in CDCl₃ at r.t.

Fig. S10. Crystal packing of Schiff base H_2L^1 .

Fig. S11: Simulated and experimental powder X-ray data of the complexes.

Fig. S12. A part of crystal packing in complex 1 displaying various hydrogen bonding with solvated water molecule and C–H··· π interactions.

Fig. S13. A part of crystal packing in complex 2 displaying various hydrogen bonding with solvated water molecule and C–H··· π interactions.

Fig. S14. A part of crystal packing in complex 3 displaying $\pi - \pi$ stacking and C-H··· π interactions.

Fig. S15. A part of crystal packing in complex 4 displaying $\pi - \pi$ stacking and C-H··· π interactions.

Fig. S16. Top, magnetization plot for complex 3, measured at 2 K. Bottom, susceptibility versus temperature plot for complexes 1 (red diamonds) and 2 (black squares. Solid lines show the best fit of the data).

Fig. S17: Zeeman splitting of the ground spin state of complex 3 along the three main axis showing the allowed EPR transitions.

Fig. S18: UV-vis spectral scans for the biomimetic oxidation of *o*-aminophenol (OAPH) showing the negligible oxidation for the complexes **1**.

Identification code	H_2L^1	Complex-1	2	3	4
Empirical formula	$C_{16}H_{18}N_2O_4$	C ₆₄ H ₅₉ Cu ₄ N ₈ O ₁₃	$_{.5} C_{44} H_{66} ClN_5 O_{21} Cu$	$u_4 C_{52} H_{68} N_4 O_{12} C u_4$	C ₁₂ H ₁₅ NO ₃ Cu
Formula weight	302.32	1410.35	1290.62	1195.26	284.79
Temperature/K	150	100	150	150	150
Crystal system	orthorhombic	orthorhombic	monoclinic	tetragonal	monoclinic
Space group	P212121	Aea2	$P2_1/c$	I ⁴	$P2_1/c$
a/Å	4.86772(10)	36.4484(7)	11.9803(8)	15.2634(9)	8.89510(10)
b/Å	13.6394(2)	23.7380(4)	25.4313(17)	15.2634(9)	12.8395(2)
c/Å	22.0354(4)	14.0430(3)	18.5445(13)	11.3683(11)	10.8447(2)
α/°	90	90	90	90	90
β/°	90	90	98.038(2)	90	107.378(1)
γ/°	90	90	90	90	90
Volume/Å ³	1462.99(5)	12150.2(4)	5594.5(7)	2648.5(4)	1182.02(3)
Ζ	4	8	4	2	4
$\rho_{calc}g/cm^3$	1.373	1.542	1.532	1.499	1.600
μ/mm^{-1}	0.824	1.454	1.625	1.648	1.842
F(000)	640.0	5784.0	2664.0	1240.0	588.0
Radiation	Cu Ka	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
	$(\lambda = 1.54184)$	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$
2Θ range for data	3.811 to 77.795	4 044 to 59 296	3.788 to 52.806	5.338 to 50.692	4.798 to 58.304
collection/°		1.011 10 37.290			

Table S1. Crystal data and structure refinement for Schiff base H_2L^1 and complexes 1–4.

Reflections collected	8671	61970	60266	44800	26264
Independent reflections	2943	13458	11438	2403	3031
	$[R_{int} = 0.0512,$	$[R_{int} = 0.0575,$	$[R_{int} = 0.0396,$	[Rint = 0.0413,	[Rint = 0.0327,
	$R_{sigma} = 0.0485$]	$R_{sigma} = 0.0440$]	$R_{sigma} = 0.0319]$	Rsigma = 0.0155]	Rsigma = 0.0171]
Data/restraints/parameters	2943/3/212	13458/934/924	11438/62/714	2403/0/168	3031/0/156
Goodness-of-fit on F ²	1.067	1.035	1.024	1.065	1.045
Final R indexes [I>2σ (I)]	$R_1 = 0.0364,$	$R_1 = 0.0478,$	$R_1 = 0.0522,$	$R_1 = 0.0156,$	$R_1 = 0.0203,$
	$wR_2 = 0.0953$	$wR_2 = 0.1045$	$wR_2 = 0.1521$	$wR_2 = 0.0428$	$wR_2 = 0.0531$
Final R indexes [all data]	$R_1 = 0.0393,$	$R_1 = 0.0602,$	$R_1 = 0.0720,$	$R_1 = 0.0163,$	$R_1 = 0.0222,$
	$wR_2 = 0.0974$	$wR_2 = 0.1111$	$wR_2 = 0.1668$	$wR_2 = 0.0432$	$wR_2 = 0.0541$
Largest diff. peak/hole /	0.18/-0.24	0.67/-0.38	2.48/-0.57	0.39/-0.16	0.35/-0.25
e Å-3					
Flack parameter	0.08(16)	-0.013(12)	-	0.013(13)	-

Table S2. Bond distances (in Å) and angles (°) for complex 4.

Parameters	4			
Cu1–O1	1.8930(8)			
Cu1–O3 ¹	1.9359(8)			
Cu1–O3	1.9184(8)			
Cu1-N1	1.9453(10)			
Cu1…Cu1 ¹	3.0494(3)			
Cu1–O3–Cu1 ¹	104.59(4)			
Symmetry code: ¹ -x,1-Y,1-Z				

Table S3. Calculated energy for the spin levels of the ferromagnetic complex 3 and their population at low temperature.

Spin	Energy (cm ⁻¹)	Population at 2K
2.0	0.00	100.00
0.0	65.84	0.00
1.0	65.84	0.00
1.0	65.84	0.00
1.0	131.68	0.00
0.0	197.52	0.00