Electronic Supporting Information (ESI) for

Eu₂Pt₃Pb₅ and SrPt₂Pb₄ — lead-based intermetallics with Y₂Rh₃Sn₅ / NdRh₂Sn₄-type polyanionic platinum-lead 3D frameworks

Anastasiia Yu. Makhaneva, ^a Elena Yu. Zakharova, ^a Sergey N. Nesterenko, ^a Sergey M. Kazakov, ^a Konstantin A. Lyssenko, ^{a,‡} Andrey N. Azarevich, ^c Alexey V. Bogach, ^c Alexey N.

Kuznetsov^{a,*}

^a Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia

^b National Research University Higher School of Economics, Miasnitskaya Str. 20, 101000 Moscow, Russia

^c A.M Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Str. 38, 119333, Moscow, Russia

* Corresponding author

email: alexei@inorg.chem.msu.ru

Figure S1. SEM image of the Eu₂Pt₃Pb₅ (left) and SrPt₂Pb₄ (right) crystals with analysis points marked.

		measur					
System	Element –	(atomic %)				A vonago formula	
		Mean	Std. deviation	Max.	Min.	Average formula	
Eu-Pt-Pb	Eu	20.03	0.92	20.87	18.70		
	Pt	29.93	0.50	30.43	29.13	$Eu_{2.00(9)}Pt_{2.99(5)}P_{5.00(7)}$	
	Pb	50.05	0.74	50.97	48.97		
Sr-Pt-Pb	Sr	14.99	0.31	15.24	14.23		
	-Pb Pt	30.25	0.48	31.22	29.63	$Sr_{1.00(2)}Pt_{2.01(3)}P_{3.65(3)}$	
	Pb	54.76	0.44	54.05	55.49		

Table S1. Averaged results of the EDX analysis of the $Eu_2Pt_3Pb_5$ and $SrPt_2Pb_4$ crystals.

Table S2. Anisotropic displacement parameters for Eu₂Pt₃Pb₅ and SrPt₂Pb₄.

$Eu_2Pt_3Pb_5$							
Atom	<i>U</i> ₁₁	U ₂₂	U33	<i>U</i> ₁₂	U13	U ₂₃	
Pt1	0.0095(10)	0.0060(9)	0.0133(11)	0.0005(7)	0.0000	0.0000	
Pt2	0.0081(8)	0.0042(8)	0.0157(10)	-0.0012(8)	0.0000	0.0000	
Pt3	0.0093(10)	0.0051(8)	0.0148(10)	-0.0004(7)	0.0000	0.0000	
Eu1	0.0102(10)	0.0055(10)	0.0147(12)	-0.0004(10)	0.0000	0.0000	
Eu2	0.0085(11)	0.0051(10)	0.0144(14)	-0.0030(9)	0.0000	0.0000	
Pb1	0.0082(10)	0.0036(9)	0.0149(9)	-0.0005(7)	0.0000	0.0000	
Pb2	0.0122(10)	0.0077(9)	0.0161(9)	-0.0001(7)	0.0000	0.0000	
Pb3	0.0086(9)	0.0038(8)	0.0157(10)	0.0005(6)	0.0000	0.0000	
Pb4	0.0118(9)	0.0033(7)	0.0143(11)	-0.0007(7)	0.0000	0.0000	
Pb5	0.0088(9)	0.0051(8)	0.0128(9)	0.0004(6)	0.0000	0.0000	
			SrPt ₂ Pb ₄				

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Pb1	0.0149(6)	0.0141(6)	0.0078(6)	0.0000	0.0003(5)	0.0000
Pb2	0.0135(6)	0.0150(6)	0.0097(6)	0.0000	0.0004(5)	0.0000
Pb3	0.0146(6)	0.0142(6)	0.0084(6)	0.0000	0.0007(5)	0.0000
Pb4	0.0195(7)	0.0215(7)	0.0156(7)	0.0000	0.0004(5)	0.0000
Pt1	0.0204(7)	0.0145(6)	0.0098(7)	0.0000	-0.0011(5)	0.0000
Pt2	0.0196(7)	0.0153(6)	0.0110(7)	0.0000	-0.0016(5)	0.0000
Sr	0.0125(15)	0.0126(14)	0.0097(14)	0.0000	0.0028(12)	0.0000

Figure S2. Observed, calculated, and difference Rietveld plots for the sample Eu₂Pt₃Pb₅.

0 1	
Compound	$Eu_2Pt_3Pb_5$
Т, К	293
Space group	$Cmc2_1$
a, Å	4.6430(9)
b, Å	27.204(5)
<i>c</i> , Å	7.562(2)
V, Å ³	962.1(3)
Ζ	4
Range in 20, °	15-85
ρ , g cm ⁻³	13.291(5)
$R_{ m Bragg}$	0.022
$R_{ m p}$	0.046
$R_{ m wp}$	0.060
GoF	1.45

Table S3. Data collection and Rietveld analysis parameters, and final residuals for Eu₂Pt₃Pb₅

Atom	Wickoff site	x/a	y/b	z/c	B _{eq}
Pt1	4a	0.5	0.5439(7)	1	0.75(1)
Pb1	4a	0	0.7139(6)	0	0.702(7)
Eu1	4a	0.5	0.6699(8)	1	0.805(5)
Eu2	4a	1	0.5195(6)	0	0.742(7)
Pb2	4a	1	0.7009(5)	0	0.955(8)
Pb3	4a	0.5	0.4524(7)	1	0.734(8)
Pt2	4a	0.5	0.7169(5)	0	0.734(8)
Pb4	4a	0.5	0.6174(4)	0	0.765(9)
Pt3	4a	1	0.6012(6)	0	0.773(8)
Pb5	4a	1	0.6001(6)	1	0.710(6)

 $\label{eq:table S4. Fractional atomic coordinates and isotropic displacement parameters for Eu_2Pt_3Pb_5 (polycrystalline sample).$

Figure S3. The temperature dependences of molar magnetic susceptibility (left) of $Eu_2Pt_3Pb_5$ and inverse magnetic susceptibility (right) in the magnetic field of 1000 Oe. The parameters of the Curie-Weiss fit are plotted in the inset table in the inverse magnetization plot.