# Supplementary Information The Role of Defect-Modulated HKUST-1 MOF Nodes in Non-Oxidative Ethanol Dehydrogenation : An Observed Phenomenon of Catalyst Transfiguration

Anjali Ganai and Pranab Sarkar\*

Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India

E-mail: pranab.sarkar@visva-bharati.ac.in

## Contents

| S1 Details on the Structure of HKUST-1(OH)                                    | S3            |
|-------------------------------------------------------------------------------|---------------|
| S2 Microkinetic Modelling Analysis                                            | $\mathbf{S4}$ |
| S2.1 Calculation of Sabatier Rate for Acetaldehyde Formation via. Path-a over |               |
| HKUST-1(H)                                                                    | S4            |
| S2.2 Calculation of Sabatier Rate for Acetaldehyde Formation via. Path-b over |               |
| HKUST-1(H)                                                                    | S5            |
| S2.3 Calculation of Sabatier Rate for Acetaldehyde Formation via. Path-c over |               |
| $HKUST-1(H)  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $ | S6            |
| S3 Optimized Structures                                                       | <b>S</b> 7    |

References

### S1 Details on the Structure of HKUST-1(OH)

In order to confirm the placement of -OH group in defective HKUST-1(OH), we tried to optimize a structure of defective HKUST-1(OH) where the -OH group is attached to one Cu centre (instead of the bridging mode). However, the optimization process ended with the -OH group placed symmetrically between two Cu-centres in a bridging fashion.



Figure S1: Optimized structures involved in acetaldehyde synthesis via. path-a over HKUST-1(H) MOF node. [Colour code- Cu: orange; O: red; C: grey; H: white]

#### S2 Microkinetic Modelling Analysis

The microkinetic model used here is an accordance with what has been used by Xue et al. in their computational study on CO oxidation reaction.<sup>1</sup>

# S2.1 Calculation of Sabatier Rate for Acetaldehyde Formation via. Path-a over HKUST-1(H)

The microkinetic model is represented as follows:

| $CH_3CH_2OH (g) + * \rightarrow *CH_3CH_2OH$                      | R1 |
|-------------------------------------------------------------------|----|
| $^{*}CH_{3}CH_{2}OH + H \rightarrow ^{*}CH_{3}CH_{2}O + H_{2}(g)$ | R2 |
| $^{*}CH_{3}CH_{2}O \rightarrow CH_{3}CHO(g) + H + ^{*}$           | R3 |

 $\begin{aligned} \mathrm{rate}(\mathrm{R1}) &= \mathrm{k_{for,1}} \ \mathrm{p_{ethanol}} \ \theta_* - \ \mathrm{k_{rev,1}} \ \theta_{\mathrm{CH_3CH_2OH}} \\ \mathrm{rate}(\mathrm{R2}) &= \mathrm{k_{for,2}} \ \theta_{\mathrm{CH_3CH_2OH}} - \ \mathrm{k_{rev,2}} \ \theta_{\mathrm{CH_3CH_2O}} \ \mathrm{p_{H_2}} \\ \mathrm{rate}(\mathrm{R3}) &= \mathrm{k_{for,3}} \ \theta_{\mathrm{CH_3CH_2O}} - \ \mathrm{k_{rev,3}} \ \theta_* \ \mathrm{p_{acetaldehyde}} \end{aligned}$ 

On the basis of calculated Gibbs free energy profile R3 step is assumed to be the rate determining step while all other steps (R1 and R2) are treated as quasi-equilibrium. The rate R1 and R2 can be written as follows:

$$rate(R1) = k_{\text{for},1} p_{\text{ethanol}} \theta_* - k_{\text{rev},1} \theta_{\text{CH}_3\text{CH}_2\text{OH}} = 0$$
  

$$\implies \theta_{\text{CH}_3\text{CH}_2\text{OH}} = K_{\text{eq},1} p_{\text{ethanol}} \theta_*$$
  

$$rate(R2) = k_{\text{for},2} \theta_{\text{CH}_3\text{CH}_2\text{OH}} - k_{\text{rev},2} \theta_{\text{CH}_3\text{CH}_2\text{O}} p_{\text{H}_2} = 0$$
  

$$\implies \theta_{\text{CH}_3\text{CH}_2\text{O}} = K_{\text{eq},2} \frac{\theta_{\text{CH}_3\text{CH}_2\text{OH}}}{p_{\text{H}_2}} = K_{\text{eq},2} \frac{\theta_*}{p_{\text{H}_2}} K_{\text{eq},1} p_{\text{ethanol}}$$

where  $K_{eq,i}$  is the equilibrium constant for  $R_i$  and  $p_{ethanol}$ .  $p_{acetaldehyde}$  and  $H_2$  are the partial pressures of ethanol, acetaldehyde and  $H_2$  molecule respectively.  $k_{for,i}$  and  $k_{rev,i}$  are

the forward and reverse reaction rate constants for R<sub>i</sub>.

The sum of coverage of all the species must be equal to 1. Therefore,

$$\theta_* + \theta_{\mathrm{CH}_3\mathrm{CH}_2\mathrm{OH}} + \theta_{\mathrm{CH}_3\mathrm{CH}_2\mathrm{O}} = 1$$

$$\implies \theta_* [1 + \mathrm{K}_{\mathrm{eq},1} \ \mathrm{p}_{\mathrm{ethanol}} + \mathrm{K}_{\mathrm{eq},1} \ \mathrm{K}_{\mathrm{eq},2} \ \frac{\mathrm{p}_{\mathrm{ethanol}}}{\mathrm{p}_{\mathrm{H}_2}}] = 1$$

$$\implies \theta_* = \frac{1}{1 + \mathrm{K}_{\mathrm{eq},1} \ \mathrm{p}_{\mathrm{ethanol}} + \mathrm{K}_{\mathrm{eq},1} \ \mathrm{K}_{\mathrm{eq},2} \ \frac{\mathrm{p}_{\mathrm{ethanol}}}{\mathrm{p}_{\mathrm{H}_2}}}$$

The reaction rate R3 can de defined as follows: rate(R3) =  $k_{for,3} \theta_{CH_3CH_2O} - k_{rev,3} \theta_*$  pacetaldehyde Since acetaldehyde pressure is low and readsorption of acetaldehyde is negligible (as is evident from the reaction profile diagrams), R3 an be rewritten as

rate(R3) = 
$$k_{\text{for},3} \theta_{\text{CH}_3\text{CH}_2\text{O}}$$
  
=  $\frac{k_{for,3} K_{eq,1} K_{eq,2} \frac{p_{ethanol}}{p_{H_2}}}{1 + K_{eq,1} p_{ethanol} + K_{eq,1} K_{eq,2} \frac{p_{ethanol}}{p_{H_2}}}$ 

The Sabatier rate of acetaldehyde formation is determined by the Sabatier rates of reaction R3. Hence,

R3. Hence,  $\operatorname{Rate}[\operatorname{HKUST-1(H)-path-a}] = \operatorname{rate}(\operatorname{R3}) = \frac{k_{for,3} K_{eq,1} K_{eq,2} \frac{p_{ethanol}}{p_{H_2}}}{1 + K_{eq,1} p_{ethanol} + K_{eq,1} K_{eq,2} \frac{p_{ethanol}}{p_{H_2}}}$ 

Acetaldehyde formation rate has been calculated at the experimental conditions of T=453.15K with the partial pressures for ethanol, hydrogen and acetaldehyde being 0.05 kPa,  $10^{-6}$  kPa and  $10^{-6}$  kPa respectively.

Following a similar procedure, microkinetic modelling analysis was carried out for both path-b and path-c.

# S2.2 Calculation of Sabatier Rate for Acetaldehyde Formation via. Path-b over HKUST-1(H)

The microkinetic model is represented as follows:

| $CH_3CH_2OH$ (g) + $* \rightarrow *CH_3CH_2OH$                    | R1 |
|-------------------------------------------------------------------|----|
| $^{*}CH_{3}CH_{2}OH + H \rightarrow ^{*}CH_{3}CH_{2}O + H_{2}(g)$ | R2 |
| $^{*}CH_{3}CH_{2}O \rightarrow CH_{3}CHOH$                        | R3 |
| $^{*}CH_{3}CHOH \rightarrow CH_{3}CHO(g) + H + ^{*}$              | R4 |

On the basis of calculated Gibbs free energy profile R3 step is assumed to be the rate determining step while all other steps (R1, R2 and R4) are treated as quasi-equilibrium. Considering the surface coverage of all species, we finally obtain,

 $\text{Rate}[\text{HKUST-1(H)-path-b}] = \text{rate}(\text{R3}) = \frac{k_{for,3} K_{eq,1} K_{eq,2} \frac{p_{ethanol}}{p_{H_2}}}{1 + K_{eq,1} p_{ethanol} + K_{eq,1} K_{eq,2} \frac{p_{ethanol}}{p_{H_2}} + \frac{p_{acetaldehyde}}{K_{eq,4}}}$ 

# S2.3 Calculation of Sabatier Rate for Acetaldehyde Formation via. Path-c over HKUST-1(H)

The microkinetic model is represented as follows:

| $CH_3CH_2OH (g) + * \rightarrow *CH_3CH_2OH$                   | R1 |
|----------------------------------------------------------------|----|
| $^{*}CH_{3}CH_{2}OH + H \rightarrow ^{*}CH_{3}CHOH + H_{2}(g)$ | R2 |
| $^{*}CH_{3}CHOH \rightarrow CH_{3}CHO(g) + H + ^{*}$           | R3 |

On the basis of calculated Gibbs free energy profile R2 step is assumed to be the rate determining step while all other steps (R1 and R3) are treated as quasi-equilibrium. Considering the surface coverage of all species, we finally obtain,

 $\text{Rate}[\text{HKUST-1(H)-path-c}] = \text{rate}(\text{R2}) = \frac{k_{for,2} \ K_{eq,1} \ p_{ethanol}}{1 + \ K_{eq,1} \ p_{ethanol} + \frac{p_{acetaldehyde}}{K_{eq,3}}}$ 

## S3 Optimized Structures



Figure S2: Optimized structures involved in acetaldehyde synthesis via. path-a over HKUST-1(H) MOF node. [Colour code- Cu: orange; O: red; C: grey; H: white]



Figure S3: Optimized structures involved in acetaldehyde synthesis via. path-b over HKUST-1(H) MOF node. [Colour code - Cu: orange; O: red; C: grey; H: white]



Figure S4: Optimized structures involved in acetaldehyde synthesis via. path-c over HKUST-1(H) MOF node. [Colour code - Cu: orange; O: red; C: grey; H: white]



Figure S5: Optimized structures involved in ethylene synthesis over HKUST-1(H) MOF node. [Colour code - Cu: orange; O: red; C: grey; H: white]



Figure S6: Optimized structures involved in acetaldehyde synthesis via. path-a over HKUST-1(OH) MOF node. [Colour code - Cu: orange; O: red; C: grey; H: white]



Figure S7: Optimized structures involved in acetaldehyde synthesis via. path-b over HKUST-1(OH) MOF node. [Colour code - Cu: orange; O: red; C: grey; H: white]



Figure S8: Optimized structures involved in ethylene synthesis over HKUST-1(OH) MOF node. [Colour code - Cu: orange; O: red; C: grey; H: white]

## References

Xue, W.; Wang, J.; Huang, H.; Cui, Y.; Mei, D. CO Oxidation over HKUST-1 Catalysts: The Role of Defective Sites. J Phys. Chem. C 2022, 126, 9652–9664.