Electronic Supplementary Information

Paddlewheel-type and half-paddlewheel-type diruthenium(II,II) complexes with 1,8-naphthyridine-2-carboxylate

Yusuke Kataoka,*^a Nozomi Tada,^a Naoki Masamori,^a Natsumi Yano,^a Chikako Moriyoshi,^b Makoto Handa*^a

^a Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University

^b Graduate School of Advanced Science and Engineering, Hiroshima University,

Contents

Scheme S1. Molecular structures of (a) *cis*-2:2- and (b) *trans*-2:2-arrangements of [Ru₂(µ-npc)₂(O₂CR)₂].

Fig. S1. Observed and simulated ESI-TOF-MS spectra of 1.

Fig. S2. ¹H NMR spectrum of **1** in DMSO-*d*₆.

Fig. S3. Observed and simulated ESI-TOF-MS spectra of 2.

Fig. S4. Observed and simulated ESI-TOF-MS spectra of 3.

Fig. S5. ¹H NMR spectrum of **2** in DMSO- d_6 .

Fig. S6. ¹H NMR spectrum of **3** in DMSO- d_6 .

Table S1. Selected bond lengths (Å) and angles (°) of crystal structure of 1.

Table S2. Selected bond lengths (Å) and angles (°) of crystal structure of $\mathbf{2}$.

Table S3. Selected bond lengths (Å) and angles (°) of crystal structure of $\mathbf{3}$.

Table S4. Averaged bond lengths (Å) and angles (°) of optimized geometries of 1-3.

Table S5. Table S5. Result of TDDFT calculation of 1 (H and L indicate the HOMO and LUMO, respectively).

Table S6. Table S5. Result of TDDFT calculation of 2 (H and L indicate the HOMO and LUMO, respectively).

Table S7. Table S5. Result of TDDFT calculation of **3** (H and L indicate the HOMO and LUMO, respectively).

Scheme S1. Molecular structures of (a) *cis*-2:2- and (b) *trans*-2:2-arrangements of [Ru₂(µ-npc)₂(O₂CR)₂].

Fig. S1. Observed and simulated ESI-TOF-MS spectra of 1.

Fig. S2. ¹H NMR spectrum of 1 in DMSO- d_6 .

Fig. S3. Observed and simulated ESI-TOF-MS spectra of 2.

Fig. S4. Observed and simulated ESI-TOF-MS spectra of 3.

Fig. S5. ¹H NMR spectrum of 2 in DMSO- d_6 .

Fig. S6. ¹H NMR spectrum of **3** in DMSO- d_6 .

bond lengths (Å)							
Ru1-Ru1′	2.2893(4)	C9-O1	1.267(4)				
Ru1-N1	2.039(2) C9-O2 1.						
Ru1-N2'	2.063(3)	C10-O3	1.250(5)				
Ru1-O3	2.082(2)	C10-O4	1.289(5)				
Ru1-O4'	2.069(2)	C5-N1	1.364(3)				
Ru1-O1 2.243(2) C5-N2		C5-N2	1.384(4)				
bond angles (°)							
Ru1- Ru1'-N1'	90.17(6)	Ru1- Ru1'-O1'	165.87(6)				
Ru1- Ru1'-N2'	90.81(7)	N1-Ru1-O1	76.00(9)				
Ru1- Ru1'-O3'	Ru1- Ru1'-O3' 88.13(6)		124.1(3)				
Ru1- Ru1'-O4	90.40(7)	N1-C5-N2	115.9(2)				

Table S1. Selected bond lengths (Å) and angles (°) of 1.

Table S2. Selected bond lengths (Å) and angles (°) of ${\bf 2}.$

bond lengths (Å)						
Ru1-Ru1'	2.2834(6)	C9-O1	1.286(6)			
Ru1-N1	2.044(3) C9-O2 1.230(
Ru1-N2′	2.073(3)	C10-O3	1.262(5)			
Ru1-O3	2.049(3)	C10-O4	1.276(5)			
Ru1-O4′	2.085(3)	C5-N1	1.360(5)			
Ru1-O1 2.225(3) C5-N2			1.367(6)			
bond angles (°)						
Ru1- Ru1'-N1'	90.87(10)	Ru1- Ru1'-O1'	167.52(8)			
Ru1- Ru1'-N2'	90.10(10)	N1-Ru1-O1	76.80(13)			
Ru1- Ru1'-O3'	Ru1- Ru1'-O3' 90.68(8)		124.0(3)			
Ru1- Ru1'-O4	88.14(8)	N1-C5-N2	116.5(3)			

bond lengths (Å)						
Ru1-Ru1'	2.3582(6)	C9-O1	1.249(8)			
Ru1-N1	2.061(4) C9-O2 1.236(8)					
Ru1-N2′	C18-O3	1.293(5)				
Ru1-N3	2.101(4)	C18-O4	1.223(6)			
Ru1-O3	2.034(3)	C5-N1	1.360(6)			
Ru1-O1 2.200(3) C5-N2 1.363						
bond angles (°)						
Ru1- Ru1'-N1'	87.98(11)	Ru1- Ru1'-O1	164.57(10)			
Ru1- Ru1'-N2'	Ru1- Ru1'-N2' 90.48(10)		76.60(14)			
Ru1- Ru1'-N3'	Ru1-Ru1'-N3' 93.00(10)		79.71(14)			
Ru1-Ru1'-O3' 103.23(10) N1		N1-C5-N2	115.6(4)			

Table S3. Selected bond lengths (Å) and angles (°) of $\mathbf{3}$.

Table S4. Averaged bond lengths (Å) and angles (°) of optimized geometries of 1-3.

	1	2	3
Ru-Ru	2.318	2.318	2.415
$Ru-N_{(\mu-npc)}$	2.091	2.090	2.106
Ru-O _(µ-npc)	2.256	2.255	2.245
Ru-O(equatorial carboxylate)	2.099	2.096	—
$Ru-N_{(\eta^2-npc)}$	—	_	2.145
Ru-O _(12-npc)	—		2.044
Ru-Ru-N _(µ-npc)	90.17	90.18	88.68
Ru-Ru-O _(µ-npc)	164.64	164.63	163.04
Ru-Ru-O(equatorial carboxylate)	89.00	89.01	_
Ru-Ru-O _(n2-npc)			102.96
Ru - Ru - $N_{(\eta 2-npc)}$			96.66

Sn	Wavelength (nm)	f	Major contributions	Band	
			$\text{H-1}(\beta) \left[\sigma(\text{Ru}_2)\right] \rightarrow \text{L+2}(\beta) \left[\pi^*(\text{Ru}_2)\right] (52\%)$		
3	775.5	0.0039	H-1(β) [$\sigma(Ru_2)$] \rightarrow L+1(β) [π *(npc)] (22%)		
			H-3(β) [π(Ru ₂)] → L+3(β) [π*(Ru ₂)] (14%)	^	
4	764.2	0.0326	$H(\beta) \left[\delta^*(Ru_2) \right] \rightarrow L(\beta) \left[\pi^*(npc) \right] (80\%)$	A	
5	750.0	0.0075	$H(\beta) \left[\delta^*(Ru_2) \right] \rightarrow L^+ 1(\beta) \left[\pi^*(npc) \right] (64\%)$		
5	730.9		H-2(α) [δ *(Ru ₂)] \rightarrow L+1(α) [π *(npc)] (20%)		
			H-3(β) [π(Ru ₂)] → L+3(β) [π*(Ru ₂)] (45%)		
12	611.7	0.0076	H-4(β) [π(Ru ₂)] → L+2(β) [π*(Ru ₂)] (19%)		
			$\text{H-4}(\beta) \left[\pi(\text{Ru}_2) \right] \rightarrow \text{L+1}(\beta) \left[\pi^*(\text{npc}) \right] (10\%)$	D	
14	583.1	0.0021	H-1(α) [π*(Ru ₂)] →L(α) [π*(npc)] (92%)	Б	
15	563 5	0 1154	H-2(α) [δ *(Ru ₂)] \rightarrow L(α) [π *(npc)] (80%)		
15	505.5	0.1154	$H(\beta) \left[\delta^*(Ru_2) \right] \to L(\beta) \left[\pi^*(npc) \right] (11\%)$		
16	541.4	0.0047	H-4(β) [π (Ru ₂)] \rightarrow L+3(β) [π *(Ru ₂)] (69%)		
17	535.8	575 9		H-4(β) [π(Ru ₂)] → L+2(β) [π*(Ru ₂)] (30%)	
			0.0102	H-3(β) [π(Ru ₂)] → L+3(β) [π*(Ru ₂)] (17%)	
		0.0102	$\text{H-4}(\beta) \left[\pi(\text{Ru}_2) \right] \rightarrow \text{L+1}(\beta) \left[\pi^*(\text{npc}) \right] (14\%)$	C	
			$H(\alpha) \left[\pi * (Ru_2)\right] \rightarrow L+6(\alpha) \left[\sigma * (Ru_2)\right] (13\%)$	C	
18	515.4	0.0560	H-2(α) [δ *(Ru ₂)] \rightarrow L+1(α) [π *(npc)] (52%)		
10		0.0309	$H(\beta) \left[\delta^*(Ru_2)\right] \rightarrow L^{+1}(\beta) \left[\pi^*(npc)\right] (15\%)$		
19	503.6	0.0058	H-1(β) [$\sigma(Ru_2)$] \rightarrow L(β) [π *(npc)] (88%)		

Table S5. Result of TDDFT calculation of **1** (H and L indicate the HOMO and LUMO, respectively).

Sn	Wavelength (nm)	f	Major contributions	Band
			$\text{H-1}(\beta) \left[\sigma(\text{Ru}_2)\right] \rightarrow \text{L+2}(\beta) \left[\pi^*(\text{Ru}_2)\right] (47\%)$	
3	778.0	0.0030	H-1(β) [σ (Ru ₂)] \rightarrow L+1(β) [π *(npc)] (25%)	
			H-3(β) [π(Ru ₂)] → L+3(β) [π*(Ru ₂)] (14%)	
4	761.6	0.0334	$H(\beta) [\delta^*(Ru_2)] \rightarrow L(\beta) [\pi^*(npc)] (81\%)$	А
			$H(\beta) \left[\delta^*(Ru_2) \right] \rightarrow L+1(\beta) \left[\pi^*(npc) \right] (44\%)$	
5	748.9	0.0098	$\mathrm{H}(\beta) \left[\delta * (\mathrm{Ru}_2) \right] \rightarrow \mathrm{L} + 2(\beta) \left[\pi * (\mathrm{Ru}_2) \right] (28\%)$	
			H-2(α) [δ *(Ru ₂)] \rightarrow L+1(α) [π *(npc)] (20%)	
			H-3(β) [π(Ru ₂)] → L+3(β) [π*(Ru ₂)] (46%)	
12	612.4	0.0068	H-4(β) [π(Ru ₂)] →L+2(β) [π*(Ru ₂)] (17%)	
			H-4(β) [π (Ru ₂)] \rightarrow L+1(β) [π *(npc)] (12%)	D
14	580.2	0.0017	H-1(α) [π *(Ru ₂)] \rightarrow L(α) [π *(npc)] (91%)	В
15	5(2.2	0.1152	H-2(α) [δ *(Ru ₂)] \rightarrow L(α) [π *(npc)] (79%)	
15	302.5		$H(\beta) [\delta^*(Ru_2)] \rightarrow L(\beta) [\pi^*(npc)] (11\%)$	
16	540.9	0.0061	H-4(β) [π(Ru ₂)] → L+3(β) [π*(Ru ₂)] (69%)	
17			H-4(β) [π(Ru ₂)] → L+2(β) [π*(Ru ₂)] (28%)	
	537.4	527 4 0.0002	H-4(β) [π (Ru ₂)] \rightarrow L+1(β) [π *(npc)] (17%)	
		0.0092	H-3(β) [π(Ru ₂)] → L+3(β) [π*(Ru ₂)] (16%)	G
			$\mathrm{H}(\alpha) \left[\pi^{*}(\mathrm{Ru}_{2})\right] \rightarrow \mathrm{L}^{+}8(\alpha) \left[\sigma^{*}(\mathrm{Ru}_{2})\right] (12\%),$	C
18		0.0702	H-2(α) [δ *(Ru ₂)] \rightarrow L+1(α) [π *(npc)] (53%)	
	515./	H(β) [δ*(Ru2)] -	$H(\beta) \left[\delta^*(Ru_2) \right] \rightarrow L^+1(\beta) \left[\pi^*(npc) \right] (14\%)$	
19	502.4	0.0057	H-1(β) [σ (Ru ₂)] \rightarrow L(β) [π *(npc)] (90%)	

Table S6. Result of TDDFT calculation of **2** (H and L indicate the HOMO and LUMO, respectively).

Sn	Wavelength (nm)	f	Major contributions	Band
			$H(\alpha) [\pi^*(Ru_2)] \rightarrow L^{+1}(\alpha) [\pi^*(\mu\text{-npc})] (35\%),$	
6	701.3	0.0016	H-3(β) [δ (Ru ₂)] \rightarrow L(β) [π *(Ru ₂)/ π *(η ² -npc)] (29%),	
			$\mathrm{H}(\beta) \left[\delta \ast(\mathrm{Ru}_2) \right] \to \mathrm{L}{+}4(\beta) \left[\pi \ast(\mathrm{Ru}_2) \right] (12\%)$	
0	6665	0.0101	H-2(β) [π(Ru ₂)] → L+4(β) [π*(Ru ₂)] (36%),	
9	000.5	0.0101	H-4(β) [π(Ru ₂)] → L(β) [π*(Ru ₂)/π*(η ² -npc)] (18%)	A'
10	654 5	0.0107	$H(\beta) [\delta *(Ru_2)] \rightarrow L+1(\beta) [\pi *(\mu-npc)] (76\%),$	
10	034.3	0.0180	H-2(α) [δ *(Ru ₂)] \rightarrow L(α) [π *(μ -npc)] (11%)	
11	(52.1	0.0120	$H(\beta) [\delta *(Ru_2)] \rightarrow L+2(\beta) [\pi *(\mu-npc)] (69\%),$	
11	033.1	0.0129	H-2(α) [δ *(Ru ₂)] \rightarrow L+1(α) [π *(μ -npc)] (21%)	
17	590.4	0.022	H-1(α) [π *(Ru ₂)] \rightarrow L+2(α) [π *(η ² -npc)] (25%),	
1/	589.4	0.023	$H(\alpha) \left[\pi * (Ru_2)\right] \rightarrow L + 8(\alpha) \left[\sigma * (Ru_2)\right] (10\%)$	D <i>1</i>
20	555 1	0.0028	H(β) [δ*(Ru ₂)] →L+3(β) [π*(η ² -npc)] (62%),	Б
20	555.1	0.0028	H-1(α) [π *(Ru ₂)] \rightarrow L+2(α) [π *(η ² -npc)] (20%)	
24	522 1	0.0107	H(β) [δ*(Ru ₂)] →L+5(β) [π*(Ru ₂)/π*(η ² -npc)] (59%),	
24	323.1	0.0107	$H(\beta) [\delta *(Ru_2)] \rightarrow L(\beta) [\pi *(Ru_2)/\pi *(\eta^2 \text{-npc})] (17\%)$	
			H-2(α) [δ *(Ru ₂)] \rightarrow L(α) [π *(μ -npc)] (53%),	
25	511.1	0.0473	H-3(β) [δ (Ru ₂)] \rightarrow L+2(β) [π *(μ -npc)] (16%),	
			$H(\beta) \left[\delta^{*}(Ru_{2})\right] \rightarrow L+1(\beta) \left[\pi^{*}(\mu\text{-npc})\right] (11\%)$	
			H-3(β) [δ (Ru ₂)] \rightarrow L+2(β) [π *(μ -npc)] (30%),	C′
26	505.7	0.0467	$H(\alpha) \left[\pi^*(Ru_2)\right] \rightarrow L+8(\alpha) \left[\sigma^*(Ru_2)\right] (26\%),$	
			H-2(α) [δ *(Ru ₂)] \rightarrow L(α) [π *(μ -npc)] (24%)	
			H-1(β) [$\sigma(Ru_2)$] \rightarrow L+3(β) [π *(η^2 -npc)] (49%),	
27	500.8	0.0924	H-1(α) [π*(Ru ₂)] → L+3(α) [π*(η ² -npc)] (23%),	
			H-2(α) [δ *(Ru ₂)] \rightarrow L+1(α) [π *(μ -npc)] (10%)	

Table S7. Result of TDDFT calculation of **3** (H and L indicate the HOMO and LUMO, respectively).