Electronic Supplementary Information

Ambient-Pressure Selective Hydrogenation of Unsaturated Aldehydes and Ketones into Unsaturated Alcohols in Water

Phase

Contents			
I. General information	2		
II. Experimental section	3		
III. Synthetic details	4		
IV. X-ray crystallographic analysis			
V. Activity tests			
VI. NMR spectra	18		
VII. GC spectra	53		
VIII. References	56		

I. General information

All manipulations were carried out under a dry Ar or N₂ atmosphere by using Schlenk line and glovebox techniques. Organic solvents such as toluene, *n*-hexane and tetrahydrofuran (THF) were dried by refluxing with sodium/potassium benzophenone under N₂ prior to use. CDCl₃ and 1,4-dioxane was distilled from CaH₂ and kept in the glovebox for use. Ligands (CH₂NH₂)₂, (CH₂NHMe)₂ and (CH₂NHEt)₂ were purchased from J&K Scientific Ltd. and used as received. Compounds *o*-PPh₂C₆H₄NHMe^[11], *o*-PPh₂C₆H₄NMe₂^[21], RuCl₂(DMSO)₄^[3] and (*o*-PPh₂C₆H₄NMe₂)(PPh₃)RuCl₂^[4] were prepared according to the literatures. ¹H, ¹³C {¹H}, and ³¹P {¹H} NMR spectra were measured on a Bruker AVIII-500 or a Bruker AVIII-400 spectrometer with chemical shifts (δ) referenced to the residual solvent signal. The chemical shifts for protons and carbons were reported using TMS (0.05%) as the internal reference ($\delta = 0$ ppm). Solid state ³¹P (162 MHz) NMR spectra were measured on a Bruker AVIII SS-400 spectrometer. Infrared (IR) spectra were recorded using a Nicolet FT-IR 330 spectrometer. Elemental analysis was performed on a Thermo Quest Italia SPA EA 1110 instrument.

II. Experimental section

General procedure for activity tests

The hydrogenation reactions were performed in a 25 mL stainless-steel autoclave equipped with a quartz lining (Anhui Kemi Machinery Technology Co., Ltd). Generally, ruthenium complex, NaOH, substrate, and dodecane (internal standard) were added into an autoclave in the glovebox. The autoclave was sealed and transferred out of the glovebox, the solvent water was injected under the protection of nitrogen. Then, the autoclave was flushed with hydrogen three times, and pressurized with hydrogen (10 atm). After stirring at 40 °C for 2 h, the autoclave was cooled to approximately 5 °C using an ice bath and slowly depressurized. The reaction solution was extracted with ether (3×2 mL), and the combined organic phase was dried over Na₂SO₄, passed through a short silica column, analyzed by gas chromatography (GC, SHANGHAI INSTRUMENT, 9310-VI) equipped with a KB-Wax column ($30 \text{ m} \times 0.32 \text{ mm} \times 0.33 \mu\text{m}$) and a flame ionization detector (FID). The injector and detector temperature were 250 °C. Program used: 80 °C for 5 minutes and then ramped to 200 °C at 10 °C/min, and maintained for 20 minutes. The conversion of carbonyl substrates and the yield of alcohols were calculated using dodecane as the internal standard.

Procedure for gram-scale tests

The reaction was performed as described above but with a 50 mL stainless-steel autoclave, followed by heating at 100 °C. The reaction solution was evaporated to dryness under reduced pressure at room temperature, diluted with ether, passed through a short silica column and analyzed by GC.

General procedure for isolation

For isolation and purification, the combined ether phase was dried over Na_2SO_4 , concentrated , and filtered by silica gel column chromatography (hexane-ethyl acetate as eluent, 20/1 ratio). Then, the solvent was removed under reduced pressure to afford the corresponding alcohol products. The purity was verified using NMR spectroscopy.

III. Synthetic details

Synthesis of $(o-Ph_2PC_6H_4NHMe)RuCl_2(DMSO)_2$ (9) A mixture of RuCl_2(DMSO)_4 (0.48 g, 1.0 mmol) and $o-PPh_2C_6H_4NHMe$ (0.29 g, 1.0 mmol) in THF (40 mL) was added into a Schlenk flask (100 mL) in the glovebox. The flask was sealed and transferred out of the glovebox, and heated to 70 °C for 12 h. During the reaction, a brick-red solid was gradually formed. After the reaction and cooling to room temperature, the brick-red solid of compound 9 was collected by filtration and washed with *n*-hexane (2 mL). Yield: 0.40 g, 64%. During to insolubility in organic solvents, the solid state ³¹P NMR spectrum was recorded.

³¹P NMR (162 MHz, in solid, 298 k, ppm): δ = 66.41 (br).

IR (Nujol mull, KBr, cm^{-1}): v = 3139 (NH).

Anal. Calcd (%) for RuCl₂C₂₃H₃₀NPS₂O₂ ($M_r = 619.7$): C 44.57, N 2.26, H 4.88, S 10.33; found: C 45.03, N 2.18, H 5.07, S 10.15.

Synthesis of (*o*-**PPh₂C₆H₄NHMe)[NH₂(CH₂)₂NH₂]RuCl₂ (10)** A mixture of **9** (185.9 mg, 0.3 mmol) and NH₂(CH₂)₂NH₂ (18.0 mg, 0.3 mmol) in 1,4-dioxane (30 mL) was added into a Schlenk flask (100 mL) in the glovebox. The flask was sealed and transferred out of the glovebox, and heated to 101 °C for 4 d. During the reaction, solid precipitate was gradually formed. After the reaction and cooling to room temperature, the off-white solid of compound **10** was collected by filtration and washed with *n*-hexane (2 mL). Yield: 0.14 g, 89%. During to insolubility in organic solvent, the solid state ³¹P NMR spectrum was recorded.

³¹P NMR (162 MHz, in solid, 298 k, ppm): δ = 63.98 (br).

IR (Nujol mull, KBr, cm⁻¹): *v* = 3088, 3114, 3192, 3251 (NH, NH₂).

Anal. Calcd (%) for RuCl₂C₂₁H₂₆N₃P ($M_r = 523.40$): C 48.19, N 8.03, H 5.01; found: C 47.81, N 8.27, H 5.16.

Synthesis of $(o-PPh_2C_6H_4NHMe)$ [MeNH(CH₂)₂NHMe]RuCl₂ (11) A mixture of 9 (185.9 mg, 0.3 mmol) and (CH₂NHMe)₂ (26.5 mg, 0.3 mmol) in THF (30 mL) was added into a Schlenk flask (100 mL) in the glovebox. The flask was sealed and transferred out of the glovebox, and heated to 70 °C for 4 d. During the reaction, a yellow-green solution was gradually formed. After the reaction and cooling to room temperature, the solution was concentrated to ca. 1 mL, and *n*-hexane (5 mL) was added. A yellow-green precipitate of 11 was quickly formed, which was collected and washed with *n*-hexane (2 mL). Yield: 91.0 mg, 55%.

¹H NMR plus ¹H-¹³C HSQC (500 MHz, CDCl₃, 298 k, ppm): $\delta = 2.22$ (br), 2.38 (d, $J_{\text{HH}} = 5.0$ Hz), 2.79 (d, $J_{\text{HH}} = 5.0$ Hz), 3.69 (br), 4.81 (m), 5.29 (m) (3 H, NH), 2.59 (d, $J_{\text{HH}} = 5.0$ Hz, 3 H, CH_3), 2.68 (d, $J_{\text{HH}} = 15.0$ Hz, 1 H, CH_2), 2.73 (d, $J_{\text{HH}} = 10.0$ Hz, 3 H, CH_3), 2.91 (m, 1 H, CH_2), 3.10 (d, $J_{\text{HH}} = 5.0$ Hz, 3 H, CH_3), 3.13-3.23 (m, 2 H, CH_2), 7.21 (t, $J_{\text{HH}} = 7.5$ Hz), 7.24-7.43 (m), 7.72 (br), 7.85 (t, $J_{\text{HH}} = 7.5$ Hz), 7.95 (t, $J_{\text{HH}} = 10$ Hz) (14 H, C_6H_4 and *Ph*).

¹³C{¹H} NMR (125 MHz, CDCl₃, 298 k, ppm): δ = 36.74 (s, 1 C, *C*H₃), 44.40 (s, 1 C, *C*H₃), 47.69 (s, 1 C, *C*H₃), 53.43 (d, 1 C, *C*H₂), 54.52 (s, 1 C, *C*H₂), 123.86 (d, *J*_{PC} = 8.8 Hz), 127.10 (s), 127.57 (d, *J*_{PC} = 5.0 Hz), 127.60 (d, *J*_{PC} = 2.5 Hz), 127.81 (s), 128.25 (d, *J*_{PC} = 8.8 Hz), 128.74 (s), 129.74 (s), 130.16 (s), 132.20 (s), 132.63 (d, *J*_{PC} = 10.0 Hz), 134.68 (d, *J*_{PC} = 10.0 Hz), 136.97 (t, *J*_{PC} = 38.8 Hz), 157.81 (d, *J*_{PC} = 17.5 Hz) (*C*₆H₄ and *Ph*).

³¹P{¹H} NMR (202 MHz, CDCl₃, 298 k, ppm): δ = 65.80 (s).

IR (Nujol mull, KBr, cm⁻¹): v = 3142, 3192, 3212 (NH).

Anal. Calcd (%) for RuCl₂C₂₃H₃₀N₃P ($M_r = 551.1$): C 50.13, N 7.63, H 5.49; found: C 49.87, N 7.46, H 5.63.

Synthesis of $(o-PPh_2C_6H_4NHMe)$ [EtNH(CH₂)₂NHEt]RuCl₂ (12) A mixture of 9 (185.9 mg, 0.3 mmol) and (CH₂NHEt)₂ (34.9 mg, 0.3 mmol) in THF (30 mL) was added into a Schlenk flask (100 mL) in the glovebox. The flask was sealed and transferred out of the glovebox, and heated to 70 °C for 2 d. During the reaction, a yellow solution was gradually formed. After the reaction and cooling to room temperature, the solution was concentrated to ca. 1 mL, and *n*-hexane (5 mL) was added. A large amount of solid was quickly formed, which was collected and subjected to recrystallization in toluene at -20 °C, giving earthy-yellow precipitate of **12**. Yield: 80.0 mg, 46%.

¹H NMR plus ¹H-¹³C HSQC (500 MHz, CDCl₃, 298 k, ppm): $\delta = 0.89$ (t, $J_{\text{HH}} = 5.0$ Hz, 3 H, CH_3), 1.09 (t, $J_{\text{HH}} = 5.0$ Hz, 3 H, CH_3), 2.44 (m, 1 H, CH_2), 2.52 (d, $J_{\text{HH}} = 5.0$ Hz, 3 H, CH_3), 2.62 (m, 1 H, CH_2), 2.79 (m, 1 H, CH_2), 2.96 (m, 2 H, CH_2), 3.30 (m, 1 H, CH_2), 3.46 (m, 1 H, NH), 3.48 (m, 1 H, CH_2), 3.62 (t, $J_{\text{HH}} = 10.0$ Hz, 1 H, CH_2), 4.44 (br, 1 H, NH), 5.47 (d, $J_{\text{HH}} = 5.0$ Hz, 1 H, NH), 7.21 (m), 7.24 (br), 7.25-7.27 (m), 7.32 (m), 7.36 (m), 7.38 (s), 7.40 (m), 7.42 (m), 7.46 (m), 7.71 (t, $J_{\text{HH}} = 5.0$ Hz) (14 H, C_6H_4 and *Ph*).

¹³C {¹H} NMR (125 MHz, CDCl₃, 298 k, ppm): δ = 13.69 (s, 1 C, *C*H₃), 14.32 (s, 1 C, *C*H₃), 43.66 (s, 1 C, *C*H₂), 47.57 (s, 1 C, *C*H₂), 48.48 (s, 1 C, *C*H₃), 49.67 (s, 1 C, *C*H₂), 51.80 (s, 1 C, *C*H₂), 123.60 (s), 123.76 (d, *J*_{PC} = 8.8 Hz), 126.54 (s), 127.04 (d, *J*_{PC} = 5.0 Hz), 127.60 (d, *J*_{PC} = 8.8 Hz), 127.65(d, *J*_{PC} = 16.3 Hz), 128.20 (d, *J*_{PC} = 8.8 Hz), 128.92 (d, *J*_{PC} = 5.0 Hz), 129.26 (d, *J*_{PC} = 120.0 Hz), 129.57 (d, *J*_{PC} = 133.8 Hz), 131.19 (d, *J*_{PC} = 256.3 Hz), 132.70 (d, *J*_{PC} = 8.8 Hz), 133.56 (d, *J*_{PC} = 123.8 Hz), 134.56 (d, *J*_{PC} = 11.3 Hz), 135.32 (d, *J*_{PC} = 32.5 Hz), 136.63 (d, *J*_{PC} = 43.8 Hz), 137.11 (d, *J*_{PC} = 36.3 Hz), 142.82 (d, *J*_{PC} = 18.8 Hz) (*C*₆H₄ and *Ph*).

³¹P{¹H} NMR (202 MHz, CDCl₃, 298 k, ppm): δ = 61.96 (s).

IR (Nujol mull, KBr, cm⁻¹): *v* = 3136, 3189, 3212 (NH).

Anal. Calcd (%) for RuCl₂C₂₅H₃₄N₃P (*M*_r = 579.5): C 51.81, N 7.25, H 5.91; found: C 52.37, N 6.95, H 6.12.

Synthesis of $(o-PPh_2C_6H_4NMe_2)$ [EtNH(CH₂)₂NHEt]RuCl₂ (13) A mixture of $(o-PPh_2C_6H_4NMe_2)$ (PPh₃)RuCl₂ (147.9 mg, 0.2 mmol) and (CH₂NHEt)₂ (23.2 mg, 0.2 mmol) in THF (30 mL) was added into a Schlenk flask (100 mL) in the glovebox. The flask was sealed and transferred out of the glovebox, and heated to 65 °C for 2 d. During the reaction, a brown solution was gradually formed. After the reaction and cooling to room temperature, the solution was concentrated to ca. 1 mL, and *n*-hexane (5 mL) was added. A large amount of solid was quickly formed, which was collected and subjected to recrystallization in toluene/n-hexane (4 mL/2 mL) at -20 °C, giving yellow precipitate of **13**. Yield: 90.2 mg, 76%.

¹H NMR plus ¹H-¹³C HSQC (500 MHz, CDCl₃, 298 k, ppm): $\delta = 0.77$ (t, $J_{HH} = 5.0$ Hz, CH_3), 0.79 (t, $J_{HH} = 5.0$ Hz, CH_3), 1.49 (t, $J_{HH} = 5.0$ Hz, CH_3), 1.51 (t, $J_{HH} = 5.0$ Hz, CH_3), 2.51 (s, CH_3), 2.66 (s, CH_3), 3.15 (s, CH_3), 3.19 (s, CH_3), 2.74-3.07 (m), 3.42-3.53 (m), 3.74 (m), 4.11 (m), 4.45 (br) (NH and CH_2), 7.13-7.19 (m), 7.22-7.39 (m), 7.45 (m), 7.53 (m), 7.25-7.27 (m), 7.82 (m) (C_6H_4 and Ph). ¹³C {¹H} NMR (125 MHz, CDCl₃, 298 k, ppm): $\delta = 14.06$ (s), 14.49 (s), 14.50 (s), 14.81 (s), 45.23 (s), 45.42 (s), 47.53 (s), 47.90 (s), 48.65 (s), 49.52 (s), 51.05 (s), 51.14 (s), 51.15 (s), 52.92 (s), 60.54 (s), 60.59 (s) (CH_2 and CH_3), 118.37 (d, $J_{PC} = 8.8$ Hz), 119.26 (d, $J_{PC} = 10.0$ Hz), 125.30 (s), 125.82 (d, $J_{PC} = 5.0$ Hz), 126.02 (d, $J_{PC} = 5.0$ Hz), 127.82 (d, $J_{PC} = 133.8$ 76.3Hz), 127.58 (s), 127.66 (d, $J_{PC} = 3.8$ Hz), 127.75 (s), 128.16 (d, $J_{PC} = 8.8$ Hz), 128.22 (s), 128.96 (s), 129.03 (s), 129.31 (d, $J_{PC} = 52.5$ Hz), 130.39 (s), 130.80 (s), 132.60 (s), 133.15 (d, $J_{PC} = 8.8$ Hz), 133.38 (d, $J_{PC} = 12.5$ Hz), 133.75 (d, $J_{PC} = 10.0$ Hz), 134.12 (d, $J_{PC} = 10.0$ Hz), 134.30 (d, $J_{PC} = 38.8$ Hz), 163.47 (d, $J_{PC} = 16.3$ Hz), 136.19 (d, $J_{PC} = 17.5$ Hz), 126.62 (d, $J_{PC} = 38.8$ Hz), 137.32 (d, $J_{PC} = 38.8$ Hz), 163.47 (d, $J_{PC} = 16.3$ Hz), 164.53 (d, $J_{PC} = 17.5$ Hz) (C_6 H₄ and Ph).

³¹P{¹H} NMR (202 MHz, CDCl₃, 298 k, ppm): $\delta = 61.75$ (s), 64.32 (s).

IR (Nujol mull, KBr, cm⁻¹): *v* = 3164, 3192 (NH).

Anal. Calcd (%) for RuCl₂C₂₆H₃₆N₃P (*M*_r = 593.5): C 52.61, N 7.08, H 6.11; found: C 52.67, N 6.95, H 6.17.

IV. X-ray crystallographic analysis

X-ray crystallographic analysis of 11: Crystallographic data for 11 was collected at 173 K on an Agilent Super Nova system using Mo- K_{α} radiation ($\lambda = 0.71073$ Å). Intensity measurements were performed on a rapidly cooled crystal with dimensions of $0.10 \times 0.05 \times 0.05$ mm³ in the range 6.9° < $2\theta < 49.998^{\circ}$. The data completeness collected was 99.8 %. Absorption correction was applied using the spherical harmonic program (multi-scan type). The structure was solved by direct method $(SHELXS-96)^{[5]}$ and refined against F^2 using SHELXL-97 program.^[6] In general, non-hydrogen atoms were located from different Fourier synthesis and refined anisotropically, and hydrogen atoms were included using a riding mode with U_{iso} tied to the U_{iso} of the parent atom unless otherwise specified. Crystal data for 11: $C_{24}H_{31}Cl_5N_3PRu$, $M_r = 670.81$, monoclinic, space group P2(1)/n, a =11.8765(4), b = 11.6572(3), c = 20.7114(7) Å, $a = 90^{\circ}$, $\beta = 97.282(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 2844.30(16) Å³, Z = 4, $\rho_{\text{calcd}} = 1.567 \text{ g} \cdot \text{cm}^{-3}$, $\mu(\text{Mo}_{K\alpha}) = 1.096 \text{ mm}^{-1}$, F(000) = 1360; 11354 measured reflections, 5001 independent ($R_{int} = 0.0294$). The final refinements converged at $R_1 = 0.0312$ and $wR_2 = 0.0742$ for I > $2\sigma(I)$ and $R_1 = 0.0370$ and $wR_2 = 0.0778$ for all data. The goodness of fit (GOF) is 1.034. Fourier synthesis gave a min/max residual electron density -1.62/1.00 e Å³. CCDC-2384770 contains the supplementary crystallographic data. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

X-ray crystallographic analysis of 12: Crystallographic data for **12** was collected at 125 K on an Agilent Super Nova system using graphite-monochromated Cu- K_a radiation ($\lambda = 1.54184$ Å). Intensity measurements were performed on a rapidly cooled crystal with dimensions of $0.1 \times 0.05 \times 0.05 \text{ mm}^3$ in the range 7.442° $< 2\theta < 129.966^\circ$. The data completeness collected was 96.6 %. Absorption correction was applied using the spherical harmonic program (multi-scan type). The structure was solved by direct method (SHELXS-96)^[5] and refined against F^2 using SHELXL-97 program.^[6] In general, non-hydrogen atoms were located from different Fourier synthesis and refined anisotropically, and hydrogen atoms were included using a riding mode with U_{iso} tied to the U_{iso} of the parent atom unless otherwise specified. Crystal data for **12**: C₅₄H₇₆Cl₄N₆OP₂Ru₂, $M_r = 1231.08$, triclinic, space group *P*-1, a = 11.2337(17), b = 11.6564(17), c = 11.8853(15) Å, $a = 88.336(11)^\circ$, $\beta = 89.350(12)^\circ$, $\gamma = 76.815(13)^\circ$, V = 1514.6(4) Å³, Z = 1, $\rho_{calcd} = 1.350$ g·cm⁻³, μ (Cu_{Ka}) = 6.468 mm⁻¹, F(000) = 636; 8644 measured reflections, 4976 independent ($R_{int} = 0.1404$). The final refinements converged at $R_1 = 0.1251$ and $wR_2 = 0.2891$ for $I > 2\sigma(I)$ and $R_1 = 0.1771$ and $wR_2 = 0.3539$ for all data. The goodness of fit (GOF) is 0.979. Fourier synthesis gave a min/max residual electron density –

1.55/3.34 e Å³. CCDC-2384771 contains the supplementary crystallographic data. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

X-ray crystallographic analysis of 13: Crystallographic data for 13 was collected at 100 K on an Agilent Super Nova system using graphite-monochromated Cu- K_{α} radiation ($\lambda = 1.54178$ Å). Intensity measurements were performed on a rapidly cooled crystal with dimensions of $0.02 \times 0.02 \times$ 0.02 mm³ in the range $7.774^{\circ} < 2\theta < 143.772^{\circ}$. The data completeness collected was 96.6%. Absorption correction was applied using the spherical harmonic program (multi-scan type). The structure was solved by direct method (SHELXS-96)^[5] and refined against F^2 using SHELXL-97 program.^[6] In general, non-hydrogen atoms were located from different Fourier synthesis and refined anisotropically, and hydrogen atoms were included using a riding mode with U_{iso} tied to the U_{iso} of the parent atom unless otherwise specified. Crystal data for 13: $C_{66}H_{88}Cl_4N_6P_2Ru_2$, $M_r = 1371.30$, triclinic, space group P-1, a = 12.2517(10), b = 15.2233(12), c = 19.4390(14) Å, $a = 73.615(7)^{\circ}$, $\beta = 10.4390(14)$ 79.904(7)°, $\gamma = 68.630(7)°$, V = 3228.5(5) Å³, Z = 2, $\rho_{calcd} = 1.411$ g·cm⁻³, $\mu(Cu_{K\alpha}) = 6.117$ mm⁻¹, F(000) = 1424; 22325 measured reflections, 12211 independent ($R_{int} = 0.0671$). The final refinements converged at $R_1 = 0.0453$ and $wR_2 = 0.0981$ for $I > 2\sigma(I)$ and $R_1 = 0.0718$ and $wR_2 = 0.1107$ for all data. The goodness of fit (GOF) is 1.014. Fourier synthesis gave a min/max residual electron density -0.69/1.04 e Å³. CCDC-2384772 contains the supplementary crystallographic data. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Fig. S1 X-ray crystal structure of 11 with thermal ellipsoids at 30% probability level. Hydrogen atoms except for H(1), H(2) and H(3) are omitted for clarity. Selected bond lengths [Å] and angles [°] for 11: Ru(1)-P(1) 2.2234(7), Ru(1)-N(1) 2.164(2), Ru(1)-N(2) 2.212(3), Ru(1)-N(3) 2.115(3), Ru(1)-Cl(1) 2.4078(7), Ru(1)-Cl(2) 2.4132(7); P(1)-Ru(1)-N(1) 82.07(7), N(2)-Ru(1)-N(3) 81.30(10).

Fig. S2 X-ray crystal structure of 12 with thermal ellipsoids at 30% probability level. Hydrogen atoms except for H(1), H(2) and H(3) are omitted for clarity. Selected bond lengths [Å] and angles [°] for 12: Ru(1)-P(1) 2.243(3), Ru(1)-N(1) 2.177(11), Ru(1)-N(2) 2.215(9), Ru(1)-N(3) 2.154(11), Ru(1)-Cl(1) 2.417(3), Ru(1)-Cl(2) 2.415(3); P(1)-Ru(1)-N(1) 82.1(3), N(2)-Ru(1)-N(3) 82.2(4).

Fig. S3 X-ray crystal structure of 13 with thermal ellipsoids at 30% probability level. Hydrogen atoms except for H(2) and H(3) are omitted for clarity. Selected bond lengths [Å] and angles [°] for 13: Ru(1)-P(1) 2.2261(11), Ru(1)-N(1) 2.246(3), Ru(1)-N(2) 2.229(3), Ru(1)-N(3) 2.143(4), Ru(1)-Cl(1) 2.4249(10), Ru(1)-Cl(2) 2.4093(10); P(1)-Ru(1)-N(1) 80.38(10), N(2)-Ru(1)-N(3) 81.29(15).

V. Activity tests

Fig. S4 Catalytic hydrogenation of benzaldehyde into benzyl alcohol by ruthenium complexes 10-13 in water. Reaction condition: 2.0 mmol benzaldehyde, 0.1 mol% ruthenium, 1.0 mol% NaOH, 2 mL H_2O , 10 atm H_2 , 40 °C, 1 h. The conversion of benzaldehyde and the yield of benzyl alcohol were analyzed by GC.

Fig. S5 Catalytic hydrogenation of acetophenone into 1-phenylethanol by ruthenium complexes 10-13 in water. Reaction condition: 2.0 mmol acetophenone, 0.1 mol% ruthenium, 1.0 mol% NaOH, 2 mL H_2O , 10 atm H_2 , 40 °C, 1 h. The conversion of acetophenone and the yield of 1-phenylethanol were analyzed by GC.

Table S1Hydrogenation of cinnamaldehyde into cinnamyl alcohol by ruthenium complex 12 indifferent solvents.

	H_{2}, C	cat.	Н
Entry	Solvent	Conv. of CAL (%)	Yield of COL (%)
1	<i>i</i> -PrOH	99	98
2	<i>n</i> -PrOH	97	83
3	MeOH	95	82
4	EtOH	70	58
5	Toluene	7	7
6	THF	61	61
7	1,4-dioxane	9	9
8^a	H ₂ O	65	64
9	CH ₃ CN	2	2

Reaction conditions: 2.0 mmol cinnamyl aldehyde, 0.1 mol% **12**, 1.0 mol% NaOMe, 2 mL solvent, 10 atm H₂, 40 °C, 1 h. The conversion of CAL and the yield of COL were analyzed by GC. ^a 1.0 mol% NaOH.

			H₂, cat.		ОН	
					Conv. of	Vield of
Entry	Ru (mol%)	T (°C)	$p(\mathrm{H}_2)$ (atm)	Time (h)	CAL (%)	COL (%)
1	0.1	40	10	1	99	98
2	0.1	40	1	2	96	94
3	0.1	RT	20	6	93	92
4	0.1	RT	1	10	53	51
5 ^{<i>a</i>}	0.05	40	10	2	27	27
6 ^{<i>a</i>}	0.05	60	10	2	98	98
7^b	0.02	100	30	6	89	88
8 ^c	0.01	100	50	16	90	89

Table S2Hydrogenation of cinnamaldehyde into cinnamyl alcohol by 12 in *i*-PrOH.

0

Reaction conditions: 2.0 mmol cinnamaldehyde, 2 mL *i*-PrOH, n(NaOMe)/n(Ru) = 10. The conversion of CAL and the yield of COL were analyzed by GC. ^a 4.0 mmol cinnamaldehyde. ^b 10.0 mmol cinnamaldehyde, 4 mL *i*-PrOH. ^c 20.0 mmol cinnamaldehyde, 6 mL *i*-PrOH.

-66.41

Fig. S6 Solid state ³¹P NMR spectrum of 9.

Fig. S7 Solid state ³¹P NMR spectrum of **10**.

$\begin{array}{c} 7.97\\ 7.95\\ 7.95\\ 7.95\\ 7.95\\ 7.95\\ 7.95\\ 7.95\\ 7.95\\ 7.95\\ 7.95\\ 7.25\\ 7.33\\ 7.25\\ 7.33\\ 7.25\\ 7.33\\ 7.25\\ 7.33\\ 7.25\\$

Fig. S8 ¹H NMR spectrum of 11 in CDCl₃.

Fig. S9 ${}^{31}P{}^{1}H$ NMR spectrum of 11 in CDCl₃.

Fig. S10 ${}^{13}C{}^{1}H$ NMR spectrum of 11 in CDCl₃.

Fig. S11 ¹H-¹³C HSQC NMR spectrum of 11 in CDCl₃.

-61.96

Fig. S12 ¹H NMR spectrum of 12 in CDCl₃.

Fig. S13 ${}^{31}P{}^{1}H$ NMR spectrum of 12 in CDCl₃.

Fig. S14 ${}^{13}C{}^{1}H$ NMR spectrum of 12 in CDCl₃.

Fig. S15 ¹H-¹³C HSQC NMR spectrum of 12 in CDCl₃.

Fig. S16 ¹H NMR spectrum of 13 in CDCl₃.

Fig. S17 ${}^{31}P{}^{1}H$ NMR spectrum of 13 in CDCl₃.

= 123.33 + 123.34 + 123.34 + 123.34 + 133.42 + 133.42 + 133.42 + 133.42 + 133.42 + 133.43 + 133.43 + 133.43 + 133.43 + 133.43 + 133.43 + 133.43 + 133.43 + 133.44 + 133.43 + 133.44 + 133.44 + 133.44 + 123.44 +

Fig. S18 ${}^{13}C{}^{1}H$ NMR spectrum of 13 in CDCl₃.

Fig. S19 ¹H-¹³C HSQC NMR spectrum of 13 in CDCl₃.

Fig. S20 ¹H NMR spectrum of cinnamyl alcohol.^[7] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): δ = 2.38 (br, 1 H), 4.32 (d, J_{HH} = 5.6 Hz, 2 H), 6.37 (m, 1 H), 6.61 (d, J_{HH} = 16.0 Hz, 1 H), 7.24-7.40 (m, 6 H).

Fig. S21 ¹³C{¹H} NMR spectrum of cinnamyl alcohol. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): $\delta = 63.61, 126.53, 127.72, 128.61, 128.65, 131.05, 136.76.$

Fig. S22 ¹H NMR spectrum of **15a**.^[7] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): δ = 1.74 (br, 1 H), 2.35 (s, 3 H), 4.32 (d, J_{HH} = 5.2 Hz, 2 H), 6.29-6.36 (m, 1 H), 6.59 (d, J_{HH} = 15.6 Hz, 1 H), 7.10-7.15 (m, 2 H), 7.29 (d, J_{HH} = 8.0 Hz, 2 H).

Fig. S23 ¹³C{¹H} NMR spectrum of 15a. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 21.27, 63.80, 126.47, 127.57, 129.37, 131.16, 133.98, 137.58.

Fig. S24 ¹H NMR spectrum of **15b**.^[7] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 1.60$ (br, 1 H), 3.31 (s, 3 H), 4.29 (d, $J_{\text{HH}} = 6.0$ Hz, 2 H), 6.20-6.27 (m, 1 H), 6.55 (d, $J_{\text{HH}} = 16.0$ Hz, 1 H), 6.86 (d, $J_{\text{HH}} = 8.8$ Hz, 2 H), 7.32 (d, $J_{\text{HH}} = 8.8$ Hz, 2 H).

Fig. S25 ¹³C{¹H} NMR spectrum of 15b. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 55.37, 63.91, 114.10, 126.40, 127.75, 129.54, 130.93, 159.36.

Fig. S26 ¹H NMR spectrum of **15c**.^{[7] 1}H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 1.46$ (t, $J_{\text{HH}} = 5.2$ Hz, 1 H), 4.33 (t, $J_{\text{HH}} = 4.8$ Hz, 2 H), 6.33-6.39 (m, 1 H), 6.57 (d, $J_{\text{HH}} = 16.0$ Hz, 1 H), 7.24-7.26 (m, 2 H), 7.43-7.45 (m, 2 H).

Fig. S27 ¹³C{¹H} NMR spectrum of **15c**. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): $\delta = 63,70$, 121.61, 128.14, 129.46, 129.96, 131.86, 135.78.

Fig. S28 ¹H NMR spectrum of **15d**.^{[8] 1}H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 1.70$ (br, 1 H), 4.40 (dd, $J_{\text{HH}} = 1.6$, 3.6 Hz, 2 H), 6.50-6.57 (m, 1 H), 6.71 (d, $J_{\text{HH}} = 1.6$ Hz, 1 H), 7.50 (d, $J_{\text{HH}} = 8.8$ Hz, 2 H), 8.17 (d, $J_{\text{HH}} = 8.8$ Hz, 2 H).

Fig. S29 ¹³C{¹H} NMR spectrum of **15d**. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 63.23, 124.16, 127.05, 128.38, 133.72, 143.39, 147.07.

Fig. S30 ¹H NMR spectrum of **15e**.^{[8] 1}H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 2.09$ (br, 1 H), 3.84 (s ,3 H), 4.32 (dd, $J_{\text{HH}} = 1.2$, 6.0 Hz, 2 H), 6.35-6.42 (m, 1 H), 6.86-6.96 (m, 3 H), 7.22-7.26 (m, 1 H), 7.44 (dd, $J_{\text{HH}} = 1.6$, 7.6 Hz, 1 H).

Fig. S31 ¹³C{¹H} NMR spectrum of 15e. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 55.47, 64.19, 110.89, 120.74, 125.81, 126.11, 127.06, 128.79, 129.43, 156.78.

Fig. S32 ¹H NMR spectrum of **15f**.^{[7] 1}H NMR (400 MHz, CDCl₃, 298 k, ppm): δ = 1.67 (br, 1 H), 4.36 (dd, J_{HH} = 1.6, 5.2 Hz, 2 H), 6.41-6.47 (m, 1 H), 6.66 (d, J_{HH} = 16.0 Hz, 1 H), 7.41-7.64 (m, 4 H).

Fig. S33 ¹³C{¹H} NMR spectrum of 15f. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): $\delta = 63.52$, 123.25 (q, $J_{FC} = 3.8$ Hz), 124.34 (q, $J_{FC} = 3.8$ Hz), 129.20, 129.54, 129.73, 130.70, 137.65.

Fig. S34 ¹H NMR spectrum of **15g**.^[7] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 1.83$ (s, 3 H), 2.76 (br, 1 H), 4.11 (s, 2 H), 6.47 (s, 1 H), 7.14-7.29 (m, 5 H).

Fig. S35 ¹³C{¹H} NMR spectrum of 15g. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 15.28, 68.72, 124.88, 126.40, 128.15, 128.90, 137.63, 137.67.

Fig. S36 ¹H NMR spectrum of **15h**.^{[9] 1}H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 0.90$ (t, $J_{\text{HH}} = 10.0$ Hz, 3 H), 1.29-1.36 (m, 6 H), 1.48-1.55 (m, 2 H), 2.08 (br, 1 H), 2.31 (t, $J_{\text{HH}} = 8.0$ Hz, 2 H), 2.23 (d, $J_{\text{HH}} = 0.8$ Hz, 2 H), 6.55 (s, 1 H), 7.22-7.28 (m, 3 H), 7.35 (t, $J_{\text{HH}} = 7.2$ Hz, 2 H).

Fig. S37 ¹³C{¹H} NMR spectrum of 15h. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 14.19, 22.73, 28.48, 28.89, 29.63, 31.73, 67.19, 125.42, 126.57, 128.31, 128.77, 137.71, 142.55.

Fig. S38 ¹H NMR spectrum of **15i**.^[10] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 2.78$ (br, 1 H), 4.54 (s, 2 H), 6.25 (d, $J_{\text{HH}} = 2.8$ Hz, 1 H), 6.32 (dd, $J_{\text{HH}} = 1.2$, 2.0 Hz, 1 H), 7.37 (m, 1 H).

Fig. S39 ¹³C{¹H} NMR spectrum of **15i**. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 57.25, 107.76, 110.39, 142.54, 154.11.

Fig. S40 ¹H NMR spectrum of **15j**.^[11] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 2.25$ (s, 3 H), 2.90 (br, 1 H), 4.46 (s, 2 H), 5.87 (d, $J_{\text{HH}} = 2.4$ Hz, 1 H), 6.11 (dd, $J_{\text{HH}} = 2.8$ Hz, 1 H).

Fig. S41 ¹³C{¹H} NMR spectrum of **15j**. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 13.47, 57.17, 106.19, 108.63, 152.20, 152.38.

Fig. S42 ¹H NMR spectrum of **15k**.^[10] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 2.93$ (br, 1 H), 4.70 (s, 2 H), 6.51 (d, $J_{\text{HH}} = 3.2$ Hz, 1 H), 7.21 (d, $J_{\text{HH}} = 3.6$ Hz, 1 H), 9.56 (s, 1 H).

Fig. S43 ¹³C{¹H} NMR spectrum of **15k**. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 57.70, 110.13, 123.08, 152.44, 160.84, 177.85.

Fig. S44 ¹H NMR spectrum of **151**.^[10] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 1.91$ (br, 2 H), 4.60 (s, 4 H), 6.24 (s, 2 H).

Fig. S45 ¹³C{¹H} NMR spectrum of **151**. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 57.69, 108.74, 154.19.

Fig. S46 ¹H NMR spectrum of **15m**.^[7] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 2.21$ (br, 1 H), 4.26 (dd, , $J_{\text{HH}} = 1.2$, 4.0 Hz, 2 H), 6.21-6.44 (m, 4 H), 7.33 (s, 1 H).

Fig. S47 ¹³C{¹H} NMR spectrum of **15m**. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): $\delta = 63.18$, 107.99, 111.34, 119.22, 127.41, 142.06, 152.52.

Fig. S48 ¹H NMR spectrum of **15n**.^{[12] 1}H NMR (400 MHz, CDCl₃, 298 k, ppm): δ = 4.33 (d, J_{HH} = 4.4 Hz, 2 H), 4.37 (d, J_{HH} = 3.6 Hz, 1 H), 6.69-6.81 (m, 2 H), 7.05-7.08 (m, 1 H), 7.24 (d, J_{HH} = 7.6 Hz, 1 H), 7.54-7.58 (m, 1 H), 8.46 (d, J_{HH} = 4.8 Hz, 1 H).

Fig. S49 ¹³C{¹H} NMR spectrum of **15n**. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): $\delta = 62.59$, 121.55, 122.12, 129.20, 134.72, 136.79, 149.17, 155.48.

Fig. S50 ¹H NMR spectrum of **15q**.^[7] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 3.70$ (s, 1 H), 4.70 (s, 2 H), 6.97-6.99 (m, 2 H), 7.27 (dd, $J_{\text{HH}} = 2.0, 2.4$ Hz, 1 H).

Fig. S51 ¹³C{¹H} NMR spectrum of **15q**. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 59.35, 125.33, 125.49, 126.74, 143.96.

Fig. S52 ¹H NMR spectrum of **15r**.^[13] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 0.84$ (s, 3 H), 1.18 (d, $J_{\text{HH}} = 8.8$ Hz, 1 H), 1.29 (s, 3 H), 2.09-2.43 (m, 7 H), 3.99 (s, 1 H), 5.47 (s, 1 H).

Fig. S53 ¹³C{¹H} NMR spectrum of 15r. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 21.26, 26.28, 31.28, 31.77, 38.10, 41.07, 43.53, 66.16, 118.06, 147.95.

Fig. S54 ¹H NMR spectrum of **15s**.^[9] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): δ = 1.41-1.52 (m, 1 H), 1.72 (s, 3 H), 1.79-1.98 (m, 3 H), 2.06-2.16 (m, 4 H), 3.98 (s, 2 H), 4.71 (d, *J*_{HH} = 4.8 Hz, 2 H), 5.69 (s, 1 H).

Fig. S55 ¹³C{¹H} NMR spectrum of 15s. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 20.87, 26.18, 27.56, 30.49, 41.23, 67.24, 108.74, 122.46, 137.33, 149.89.

Fig. S56 ¹H NMR spectrum of **15t**.^{[9] 1}H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 1.17-1.27$ (m, 1 H), 1.65-1.79 (m, 3 H), 1.99-2.09 (m, 3 H), 2.75 (s, 1 H), 3.41-3.49 (m, 2 H), 5.63 (s, 2 H).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 f1 (ppm)

Fig. S57 ¹³C{¹H} NMR spectrum of 15t. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 24.64, 25.25, 28.14, 36.26, 67.58, 125.95, 127.12.

Fig. S58 ¹H NMR spectrum of **15u**.^{[14] 1}H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 1.68$ (s, 3 H), 3.01 (t, $J_{\text{HH}} = 4.8$ Hz, 1 H), 3.95 (d, $J_{\text{HH}} = 3.6$ Hz, 2 H), 4.79 (s, 1 H), 4.91 (s, 1 H).

Fig. S59 ¹³C{¹H} NMR spectrum of 15u. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 19.11, 66.50, 109.70, 144.95.

Fig. S60 ¹H NMR spectrum of **15v**.^{[15] 1}H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 1.64$ (s, 3 H), 1.71 (s, 3 H), 1.92 (br, 1 H), 4.08 (d, $J_{\text{HH}} = 6.8$ Hz, 2 H), 5.37 (t, $J_{\text{HH}} = 7.2$ Hz, 1 H).

Fig. S61 ¹³C{¹H} NMR spectrum of 15v. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 17.85, 25.79, 59.27, 123.75, 136.17.

Fig. S62 ¹H NMR spectrum of **15w**.^[16] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 0.86$ (t, $J_{\text{HH}} = 6.8$ Hz, 3 H), 1.23-1.39 (m, 6 H), 2.01 (q, $J_{\text{HH}} = 6.8$ Hz, 3 H), 5.56-5.70 (m, 2 H).

Fig. S63 ¹³C{1H} NMR spectrum of 15w. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 14.10, 22.60, 28.91, 31.47, 32.27, 63.74, 128.93, 133.48.

Fig. S64 ¹H NMR spectrum of 15x.^[15] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 0.91$ (d, $J_{\text{HH}} = 6.8$ Hz, 3 H), 1.10-1.17 (m, 1 H), 1.37-1.46 (m, 1 H), 1.59 (s, 3 H), 1.60-1,63 (m, 1 H), 1.66 (s, 3 H), 1.90-2.04 (m, 3 H), 3.37-3.42 (m, 1 H), 3.46-3.51 (m, 1 H), 5.08 (t, $J_{\text{HH}} = 7.2$ Hz, 1 H).

Fig. S65 ¹³C{1H} NMR spectrum of 15x. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 16.59, 17.69, 25.48, 25.75, 33.34, 35.39, 68.22, 124.70, 131.43.

Fig. S66 ¹H NMR spectrum of **15y**.^{[7] 1}H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 0.87$ (d, $J_{\text{HH}} = 6.4$ Hz, 3 H), 1.10-1.19 (m, 1 H), 1.27-1.39 (m, 2 H), 1.49-1.60 (m, 5 H), 1.65 (s, 3 H), 1.87-2.02 (m, 2 H), 2.23 (s, 1 H), 3.57-3.67 (m, 2 H), 5.06 (t, $J_{\text{HH}} = 6.8$ Hz, 1 H).

Fig. S67 ¹³C{1H} NMR spectrum of 15y. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 17.67, 19.56, 25.52, 25.75, 29.26, 37.30, 39.91, 61.02, 124.81, 131.23.

Fig. S68 ¹H NMR spectrum of **15z**.^[17] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 1.74$ (d, $J_{\text{HH}} = 6.8$ Hz, 3 H), 2.02 (br, 1 H), 4.12 (d, $J_{\text{HH}} = 6.0$ Hz, 2 H), 5.64-5.74 (m, 2 H), 6.01-6.21 (m, 2 H).

Fig. S69 ¹³C{¹H} NMR spectrum of **15z**. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 18.19, 63.46, 129.27, 130.14, 130.84, 131.96.

Fig. S70 ¹H NMR spectrum of **15aa**.^[7] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 1.52$ (s, 1 H), 1.58 (s, 3 H), 1.67 (s, 3 H), 1.73 (s, 3 H), 2.07 (s, 4 H), 4.06 (d, $J_{\text{HH}} = 7.2$ Hz, 2 H), 5.08 (br, 1 H), 5.43 (t, $J_{\text{HH}} = 6.4$ Hz, 2 H).

Fig. S71 ¹³C{¹H} NMR spectrum of 15aa. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 17.73, 23.50, 25.73, 26.62, 32.05, 59.00, 123.92, 124.57, 132.47, 139.86.

Fig. S72 ¹H NMR spectrum of **15ac**.^[18] ¹H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 1.13$ (d, $J_{\text{HH}} = 6.4$ Hz, 3 H), 1.38-1.48 (m, 2 H), 1.56 (s, 3 H), 1.63 (s, 3 H), 1.95-2.06 (m, 2 H), 2.45 (br, 1 H), 3.69-3.77 (m, 1 H), 5.07 (t, $J_{\text{HH}} = 7.2$ Hz, 1 H).

Fig. S73 ¹³C{¹H} NMR spectrum of **15ac**. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 17.63, 23.33, 24.48, 25.68, 39.21, 67.73, 124.17, 131.84.

Fig. S74 ¹H NMR spectrum of **15ad**.^{[9] 1}H NMR (400 MHz, CDCl₃, 298 k, ppm): $\delta = 1.38$ (d, $J_{\text{HH}} = 6.4$ Hz, 3 H), 1.89 (s, 1 H), 4.49 (m, 1 H), 6.27 (dd, $J_{\text{HH}} = 6.4$, 9.6 Hz, 1 H), 6.57 (d, $J_{\text{HH}} = 15.6$ Hz, 1 H), 7.23-7.39 (m, 5 H).

Fig. S75 ¹³C{¹H} NMR spectrum of 15ad. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 k, ppm): δ = 23.51, 69.01, 126.56, 127.73, 128.68, 129.46, 133.68, 136.80.

Fig. S76 GC analysis result for catalytic hydrogenation of cinnamaldehyde by 12 (Entry 1, Table 1).

Fig. S77 GC analysis result for catalytic hydrogenation of cinnamaldehyde by 12 (Entry 5, Table 1).

Fig. S78 GC analysis result for catalytic hydrogenation of cinnamaldehyde by 12 (Entry 6, Table 1).

Fig. S79 GC analysis result for catalytic hydrogenation of 140 by 12.

Fig. S80 GC analysis result for catalytic hydrogenation of 14p by 12.

Fig. S81 GC analysis result for catalytic hydrogenation of 14ab by 12.

Fig. S82 GC analysis result for catalytic hydrogenation of 14ae by 12.

VIII. References

- [1] H. Y. Wang and J. X. Gao, Eur. J. Inorg. Chem. 2005, 2005, 1665-1670.
- [2] V. Richard, M. Ipouck, D. S. Merel, S. Gaillard, R. J. Whitby, B. Witulski and J. L. Renaud, *Chem. Commun.* 2014, 50, 593-595.
- [3] I. P. Evans, A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton Trans. 1973, 2, 204-209.
- [4] D. C. Mudalige, S. J. Rettig, B. R. James and W. R. Cullen, J. Chem. Soc. Chem. Commun. 1993, 10, 830-832.
- [5] G. M. Sheldrick, SHELXS-90, Program for structure solution. *Acta Crystallogr. Sect. A* 1990, 46, 467-473.
- [6] G. M. Sheldrick, SHELXL-97, Program for crystal structure refinement. University of Göttingen: Göttingen, Germany, 1997.
- [7] Y. Duan, Y. Zeng, Z. Cui, J Wen and X. Zhang, J. Catal. 2023, 417, 109-115.
- [8] X. Wu, C. Corcoran, S. Yang and J. Xiao, ChemSusChem 2008, 1, 71-74.
- [9] R. Wang, Y. Yue, J. Qi, S. Liu, A. Song, S. Zhuo and L. Xing, J. Catal. 2021, 399, 1-7.
- [10] S. S. Gholap, A. A. Dakhil, P. Chakraborty, H. Li, I. Dutta, P. K. Das and K. Huang, Chem. Comm. 2021, 57, 11815-11818.
- [11] A. J. Kumalaputri, G. Bottari, P. M. Erne, H. J. Heeres, and K. Barta, *ChemSusChem* 2014, 7, 2266-2275.
- [12] P. Xu, B. Qian, Z. Qi, B. Gao, B. Hu and H. Huang, Org. Biomol. Chem. 2021, 19, 1274-1277.
- [13] L. H. R. Passos, V. Martínez-Agramunt, D. G. Gusev, E. Peris and E. N. dos Santos, *ChemCatChem* 2023, 15, e202300394.
- [14] M. Ueshima and Y. Shimasaki, Chem. Lett. 1992, 7, 1345-1348.
- [15] T. Mizugaki, Y. Kanayama, K. Ebitani and K. Kaneda, J. Org. Chem. 1998, 63, 2378-2381.
- [16] J. Song, Z. Xue, C. Xie, H. Wu, S. Liu, L. Zhang, and B. Han, ChemCatChem 2018, 10, 725-730.
- [17] J. P. Gordon, An Asymmetric Hydrovinylation of 1,4-Substituted Linear 1,3-Dienes. The Ohio State University, American, 2018.
- [18] S. G. Davies and G. Darren Smyth, J. Chem. Soc., Perkin Trans. 1 1996, 20, 2467-2477.