Electronic Supplementary Information

A trade-off between migration and association energies for hydride-ion conductivity in the SrLiH₃-CaLiH₃-NaLiH₂ system

Takashi Hirose,^a Naoki Matsui,^{*b} Kenta Watanabe,^{a,b} Takashi Saito,^{c,d} Kazuhiro Mori,^c Kota Suzuki,^b Masaaki Hirayama^{*a,b} and Ryoji Kanno^{*b}

^aDepartment of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori–ku, Yokohama 226–8501, Japan

^bResearch Center for All–Solid–State Battery, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori–ku, Yokohama 226–8501, Japan

^cNeutron Science Division (KENS), Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 203–1 Shirakata, Tokai, Ibaraki 319–1106, Japan

^dDepartment of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, SOKENDAI, 203–1 Shirakata, Tokai, Ibaraki 319–1106, Japan

*Corresponding author.

Email: Naoki Matsui, matsui.n.ee49@m.isct.ac.jp Masaaki Hirayama, hirayama@mac.titech.ac.jp

Ryoji Kanno, kanno.r.ade9@m.isct.ac.jp

Figure S1. Impurities of $Sr_{1-x}Ca_xLiH_3$ ($0.5 \le x \le 0.7$).

Figure S2. The pre-exponential factor and activation energy versus Ca amount in Sr_{1-x}Ca_xLiH₃.

Figure S3. (a) Synchrotron XRD patterns and (b) lattice parameters of $Sr_{1-x}Na_xLiH_{3-x}$ ($0 \le x \le 0.4$) samples ball milled for 12 hours.

Figure S4. SEM image and EDX mapping of Sr_{0.8}Na_{0.2}LiH_{2.8}.

Figure S5. XRD patterns of $Sr_{1-x}Na_xLiH_{3-x}$ samples ball milled for 3 hours. The results for $0 \le x \le 0.1$ were cited from the previous study.¹

Figure S6. (a) Nyquist plots of $Sr_{1-x}Na_xLiH_{3-x}$ ($0.1 \le x \le 0.4$) at 100 °C. The inset shows the equivalent circuit used for fitting. (b) Arrhenius plots of the total ionic conductivity for $Sr_{1-x}Na_xLiH_{3-x}$ ($0.1 \le x \le 0.4$) samples. (c) Ionic conductivity and activation energy versus nominal Na amount in $Sr_{1-x}Na_xLiH_{3-x}$. The activation energy is shown as blue circles against the right axis.

Figure S7. The pre-exponential factor and activation energy versus Na amount in Sr_{1-x}Na_xLiH_{3-x}.

Figure S8. (a) Synthesised compositions are indicated by the black points in the $SrLiH_3$ – $CaLiH_3$ – $NaLiH_2$ pseudo-ternary diagram. The XRD patterns of the samples (b) No. 1–15 and (c) No. 16–26.

Figure S9. SEM image and EDX mapping of Sr_{0.7}Ca_{0.1}Na_{0.2}LiH_{2.8}.

composition	$\sigma_{\rm r.t.}$ [S cm ⁻¹]	σ _{100 °C} [S cm ⁻¹]	E _a [kJ mol ⁻¹]
Sr _{0.8} Na _{0.2} LiH _{2.8}	5.1×10^{-6}	1.7×10^{-4}	45.0
Sr _{0.7} Ca _{0.1} Na _{0.2} LiH _{2.8}	4.2×10^{-6}	4.6×10^{-5}	45.1
Sr _{0.75} Ca _{0.1} Na _{0.15} LiH _{2.85}	3.7×10^{-6}	1.2×10^{-4}	47.0
Sr0.78Ca0.02Na0.2LiH2.8	3.7×10^{-6}	1.1×10^{-4}	43.8
Sr0.825Ca0.075Na0.1LiH2.9	3.5×10^{-6}	1.1×10^{-4}	45.5
Sr0.925Na0.075LiH2.925	1.9×10^{-6}	6.4×10^{-5}	46.3
Sr _{0.825} Ca _{0.025} Na _{0.15} LiH _{2.85}	7.0×10^{-7}	1.7×10^{-5}	41.8
Sr _{0.725} Ca _{0.2} Na _{0.075} LiH _{2.925}	3.4×10^{-7}	3.2×10^{-5}	43.8

Table S1. Several perovskite-type hydride-ion conductors showing high performance in the SrLiH₃–CaLiH₃–NaLiH₂ pseudo-ternary system and their ionic conductivities and activation energies.

Figure S10. Plot of ionic conductivity at 25 °C and activation energy versus Ca dopant amount in $Sr_{0.8-x}Ca_xNa_{0.2}LiH_{2.8}$.

Figure S11. Time variation of the current change at an applied voltage of 50 mV using a Mo|SE|Mo symmetric cell obtained by direct current (DC) measurement at 50 °C; (a) $Sr_{0.7}Ca_{0.1}Na_{0.2}LiH_{2.8}$ and (b) $Sr_{0.8}Na_{0.2}LiH_{2.8}$.

Figure S12. Current *vs.* Time curve from DC polarization measurements using a $(-)Mo|Ti+TiH_2+Sr_{0.8}Na_{0.2}LiH_{2.8}+AB|Sr_{0.8}Na_{0.2}LiH_{2.8}|TiH_2+Sr_{0.8}Na_{0.2}LiH_{2.8}+AB|Mo(+)$ cell at 50 °C. The relaxation time was 1 hour. The applied voltage was -0.3 V *vs.* OCV. The Ti composite electrode or Ti/TiH₂ composite electrode was synthesized under the conditions of 100 rpm for 8 hours with weight ratios of TiH₂:SE:AB = 20:75:5 wt.% and Ti:TiH₂:SE:AB = 12:8:75:5 wt.%, respectively.

Figure S13. Arrhenius plots of Sr_{0.8}Na_{0.2}LiH_{2.8}, LiH, and NaH.

Figure S14. Neutron Rietveld refinement profiles of (a) $Sr_{0.8}Na_{0.2}LiH_{2.8}$ and (b) $Sr_{0.7}Ca_{0.1}Na_{0.2}LiH_{2.8}$. The refined structure of (c) $Sr_{0.8}Na_{0.2}LiH_{2.8}$ and (d) $Sr_{0.7}Ca_{0.1}Na_{0.2}LiH_{2.8}$.

Table S2. Rietveld refinement results of Neutron diffraction patterns of (a) $Sr_{0.8}Na_{0.2}LiH_{2.8}$ and (b) $Sr_{0.7}Ca_{0.1}Na_{0.2}LiH_{2.8}$.

 $(a)Sr_{0.8}Na_{0.2}LiH_{2.8}$

Atom	Site	g	x	у	Z	$B_{ m eq}$ / Å ²	B_{11} / Å ²	B_{22} / Å ²	B_{33} / Å ²
Sr	1 <i>a</i>	0.819(11)	0	0	0	0.38(2)	0.38(2)	$=U_{11}(Sr)$	$=U_{11}(Sr)$
Na	1 <i>a</i>	=1-g(Sr)	0	0	0	0.38(2)	$=U_{11}(Sr)$	$=U_{11}(Sr)$	$=U_{11}(Sr)$
Li	1b	1	0.5	0.5	0.5	0.84(3)	0.84(3)	$=U_{11}(Li)$	$=U_{11}(Li)$
Н	3 <i>c</i>	0.930(8)	0.5	0.5	0	2.30(4)	2.46(7)	$=U_{11}(H)$	1.98(5)
Unit cell: Cubic <i>Pm</i> -3 <i>m</i> (221); $a = b = c = 3.83868(3)$ Å, $V = 56.5296(13)$ Å ³ ; $R_{wp} = 0.426\%$, $R_e = 0.19\%$, $R_p = 0.426\%$									

0.32%, $R_{\rm B} = 1.87\%$, $R_{\rm F} = 2.22\%$, goodness of fit $S = R_{\rm wp}/R_{\rm e} = 2.19$.

1	• \	~	~	ъ.т	· · · ·	-
1	h	NYra	-('a	1 N a		
١.	υ	1910	7 Can	IINCU	261	1 7 X

Atom	Site	g	x	У	Z	$B_{ m eq}$ / Å ²	B_{11} / Å ²	B_{22} / Å ²	B_{33} / Å ²
Sr	1a	0.703(5)	0	0	0	0.47(3)	0.47(3)	$=U_{11}(Sr)$	$=U_{11}(Sr)$
Ca	1a	0.106(18)	0	0	0	0.47(3)	$=U_{11}(Sr)$	$=U_{11}(Sr)$	$=U_{11}(Sr)$
Na	1a	0.192(24)	0	0	0	0.47(3)	$=U_{11}(Sr)$	$=U_{11}(Sr)$	$=U_{11}(Sr)$
Li	1b	1	0.5	0.5	0.5	0.85(3)	0.85(3)	$=U_{11}(Li)$	$=U_{11}(Li)$
Η	3 <i>c</i>	0.936(14)	0.5	0.5	0	2.34(4)	2.88(8)	$=U_{11}(H)$	1.25(6)
11 + 11 = (1 + 1) = (2 +									

Unit cell: Cubic *Pm*–3*m* (221); a = b = c = 3.82772(3) Å, V = 56.0404(13) Å³; $R_{wp} = 0.378\%$, $R_e = 0.20\%$, $R_p = 0.28\%$, $R_B = 1.93\%$, $R_F = 3.67\%$, goodness of fit $S = R_{wp}/R_e = 1.88$.

Figure S15. The crystal structure of Sr_{0.5}Ca_{0.5}LiH₃ used in the theoretical calculations.

Figure S16. The association energy of (a)CaLiH₃, (b)Sr_{0.5}Ca_{0.5}LiH₃, (c)SrLiH₃, and (d)BaLiH₃.

References

1. T. Hirose, T. Mishina, N. Matsui, K. Suzuki, T. Saito, T. Kamiyama, M. Hirayama and R. Kanno, *ACS Appl. Energy Mater.*, 2022, **5**, 2968-2974.