Supporting Information

Design of CrZrO_x - Cu₂MnO_x@Na₂WO₄ Catalyst-Oxygen Carrier System for Efficient Chemical Looping Oxidative Dehydrogenation of Propane

Ziyang Liu¹, Peng Bai^{1*}, Benjing Xu¹, Pingping Wu¹, Hao Wu¹, Haoran Sun¹, Junji Li¹,

Zifeng Yan^{1*}

¹ State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical

Engineering, China University of Petroleum (East China), Qingdao, 266580, China

*Corresponding Author. Fax: +86-532-8698-1812 (P. Bai), +86-532-8698-1296 (Z.

Yan); E-mail: baipeng@upc.edu.cn (P. Bai), zfyancat@upc.edu.cn (Z. Yan).

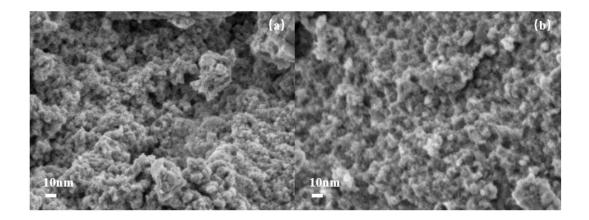


Figure S1. SEM images of sample CZ-10 (a) and CZ-20 (b)

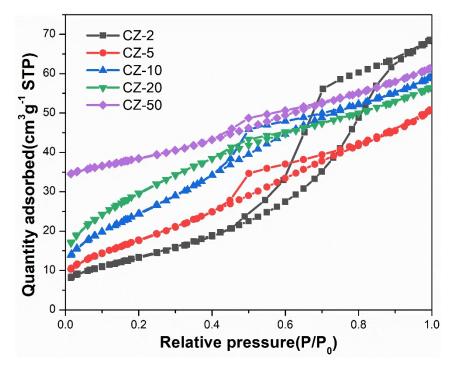


Figure S2. Isotherm linear plots of CrZrOx series catalysts

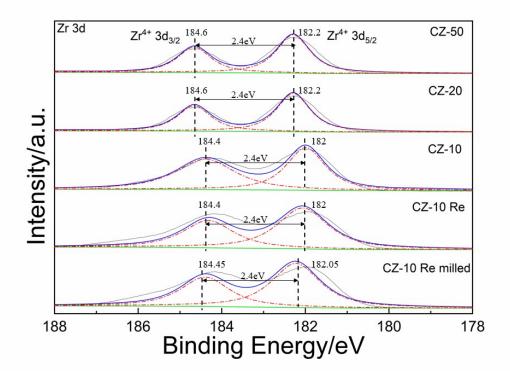


Figure S3. Zr 3d XPS spectra of sample: from top to bottom, CZ-50 and CZ-20 and CZ-10 samples are in oxidation state; (CZ-10 Re) stand for sample in reduction state; (CZ-10 Re milled) stands for CZ-10 Re sample milled with exposed internal surface

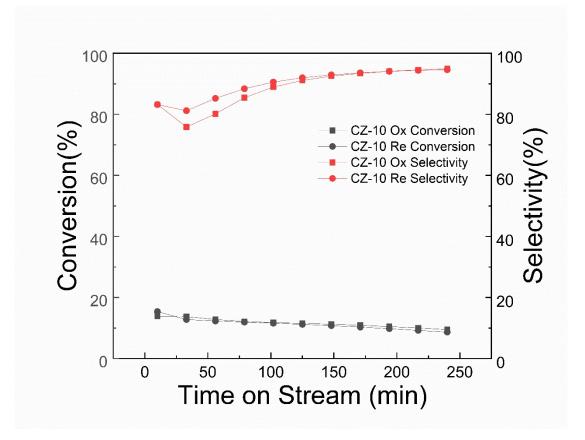


Figure S4. Conversion and selectivity of CZ-10 in oxidation and reduction State, (Reaction

conditions: pure C₃H₈ feed, 550 °C, atmospheric pressure, WHSV=2.94 h⁻¹)

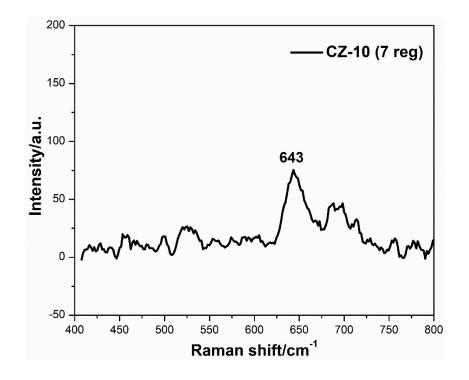


Figure S5. Raman spectrum of CZ-10 (7 reg) sample.

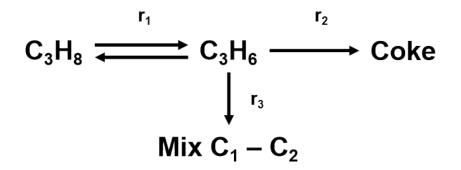


Figure S6. Reaction mechanism from propane to various products

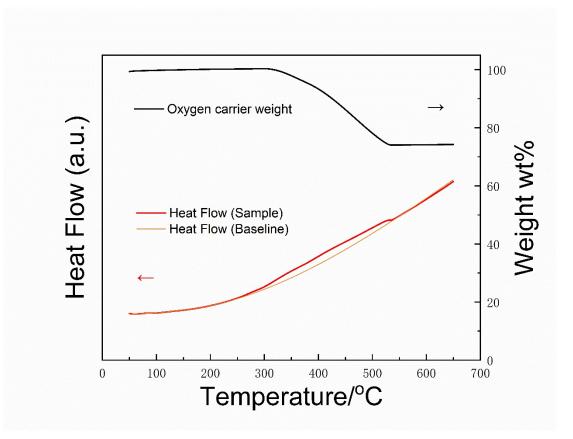


Figure S7. TG curve of oxygen carrier in 5%H₂/Ar flow

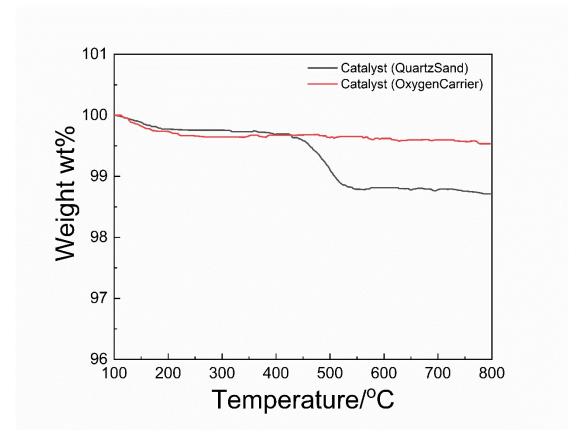


Figure S8. TG curves of deactivated CZ-10 weight loss in air with quartz and oxygen carrier

Sample	BET surface area	Pore volume (cm ³ /g)	Mean pore diameter (nm)
	(m^{2}/g)		
CZ-2	50	0.1	6
CZ-5	67	0.07	4
CZ-10	92	0.08	3
CZ-20	108	0.07	3
CZ-50	34	0.05	4

Table S1. Textural properties of $CrZrO_x$ samples

Table S2. Weight gained in CaCl₂ tube due to water generated in CL-ODH reaction

Reaction	Weight /g	Weight /g	Weight /g
	(before reaction)	(after reaction)	(water generated in CL-ODH)
Fresh	101.317	101.387	0.070
1	101.403	101.473	0.070
2	101.490	101.563	0.073
3	101.579	101.652	0.072
4	101.668	101.734	0.066
5	101.751	101.822	0.071
6	101.838	101.912	0.074

Table S3. Operation parameters of CATOFIN process and this work

Operation parameters	CATOFI	This work
	Ν	
Catalyst amount	100t	0.7g
Feed flowrate*	30t/hr	10ml/min
WHSV	0.3	1.68
Inlet temperature(°C)	~650	580
Outlet Temperature(°C)	~530	580
Average temperature(°C)	~590	580
Absolute Pressure**	0.3-0.5bar	1 bar
Propane per-pass	>50%	Max 35.9%
Conversion		
Propylene Selectivity	>89%	Max 88.6%

 Propylene Selectivity
 >89%
 Max 88.6%

 * Due to mass flow meter accuracy limit, set the flow rate with minimum 10ml/min.

** It is a high risk to operate this reaction with negative pressure in lab condition.