Supporting Information

Contents

Figure S1: PXRD of Mn-FM; simulated (black) and experimental (red)

Figure S2: Absorption spectra of (a) methyl orange and (b) methylene blue in presence

of Mn-FM adsorbent

Figure S3: Absorption spectra of Rhodamine B (RhB) in presence of Mn-FM adsorbent

Figure S4: PXRD of Mn-FM (red line) and d-Mn-FM (green line)

Figure S5: XPS patterns of (a) Mn-FM and (b) d-Mn-FM MOFs

Figure S6: MO (15 ppm in methanol) adsorption spectra for d-Mn-FM (20 mg)

Figure S7: PXRD spectra of rGO@Mn-FM composite after treatment with water

Figure S8: SEM image of (a) Mn-FM and (b) rGO@Mn-FM composite

Figure S9: Nitrogen adsorption-desorption isotherm of Mn-FM (brown line) and rGO@Mn-FM (black line)

Figure S10: Absorption spectra of 1 ppm aqueous MeB solution in presence of **rGO@Mn-FM** adsorbent

Figure S11: Absorption spectra for dye mixture (MeB/MO) in presence of rGO@Mn-FM

Kinetic equations for the adsorption of dye

Isotherm models for the adsorption of dye

Table S1: List of dye removal rate of some of the reported MOFs

Table S2: Water characterisations table

Table S3: Crystallographic table

Fig S1: PXRD of Mn-FM; simulated (black) and experimental (red).

Fig **S2**: Absorption spectra of (a) methyl orange (MO) and (b) methylene blue (MB) in presence of **Mn-FM** adsorbent.

Fig S3: Absorption spectra of Rhodamine B (RhB) in presence of Mn-FM adsorbent.

Fig S4: PXRD of Mn-FM (red line) and d-Mn-FM (green line).

Fig S5: XPS patterns of (a) Mn-FM and (b) d-Mn-FM MOFs.

Fig S6: MO (15 ppm in methanol) adsorption spectra for d-Mn-FM (20 mg).

Fig S7: PXRD spectra of rGO@Mn-FM composite after treatment with water.

Fig S8: SEM image of (a) Mn-FM and (b) rGO@Mn-FM composite.

Fig **S9**: Nitrogen adsorption-desorption isotherm of **Mn-FM** (brown line) and **rGO@Mn-FM** (black line).

Fig **S10**: Absorption spectra of 1 ppm aqueous MeB solution in presence of **rGO@Mn-FM** adsorbent.

Fig S11: Absorption spectra for dye mixture (MeB/MO) in presence of rGO@Mn-FM.

Kinetic equation for the adsorption of dye

The pseudo-first-order (PFO) kinetic model equation is

$$log(q_e - q_t) = logq_e - k_1 t/2.303$$

where $k_1 \pmod{1}$ is the rate constant of the pseudo-first-order reaction, q_e is the adsorption capacity (mg/g) at equilibrium, q_t is the adsorption capacity (mg/g) at time (min).¹⁴

The Pseudo-second order (PSO) kinetic model equation is as follows

$$t/q_t = 1/(k_2 q_e^2) + t/q_e$$

Where, k_2 (g/mg min⁻¹) is the rate constant for pseudo-second-order kinetic model.

Isotherm models for the adsorption of dye

Langmuir isotherm model

Langmuir model is described by the following equation;

$$\frac{C_e}{q_e} = \frac{1}{q_m \cdot K_L} + \frac{C_e}{q_m}$$

Where, q_m denotes the maximum amount of dye adsorbed per unit mass of adsorbent, q_e denotes the amount of dye per unit mass of adsorbent at equilibrium (mg/g). K_L denotes the Langmuir constant and C_e denotes the equilibrium concentration of adsorbate in solution (mg/L).

Dimensionless constant (R_L) is calculated by using the following equation:

$$R_L = 1/(1 + K_L C_o)$$

 R_L factor is used to determine the favorability of dye adsorption onto adsorbent surface. For linear favorable adsorption (0 < R_L < 1), unfavorable (R_L > 1), linear (R_L = 1) and irreversible (R_L = 0).¹⁵

Freundlich isotherm model

The Freundlich isotherm model is represented by the equation:

$$lnq_e = lnK_F + \left(\frac{1}{n_F}\right) lnC_e$$

where, K_F and n_F are Freundlich isotherm constant; K_F describes adsorption extent and n_F is heterogeneity factor. The K_F and n_F values are calculated by equations:

$$Intercept = lnK_F$$
 $n_F = 1/slope$

If $n_F > 1$, then favorable adsorption, if $n_F < 1$ then chemisorption and $n_F = 1$ then linear adsorption.¹⁶

Dye	MOFs/ Composites	Removal rate	Time (minute)	Ref.
Methylene blue	Fe ₃ O ₄ @MIL-	73.8	420	1
	100(Fe)			
	MIL-100(Fe)	27	30	2
	USTC-1	26.6	240	3
	CuBDC	41.01	20	4
Methyl orange	UiO-66	83.7	120	5
	H ₆ P ₂ W ₁₈ O ₆₂ /MOF-5	10	10	6
Rhodamine B	MIL-125(Ti)	59.92	180	7
	Zn-MOF	3.75	60	8
	H ₆ P ₂ W ₁₈ O ₆₂ /MOF-5	68	10	9
	MIL-68(In)–NH ₂	50	60	10
Reactive black 5	MIL-125(Ti)	60	180	11
Acid blue 92	UiO-66	73	40	12
Direct red 2B	UiO-66	76	40	12
Maxilon blue	UiO-66	46.6	40	12
M2G				
Orange G	POM@UiO-66	40	120	13

Table S1: List of dye removal rate of some of the reported MOFs

Table S2: Water characterisations table

Water Properties	Distilled water	Pond water
Alkalinity	31.2 mg/L	215.2 mg/L
Hardness	9.7 mg/L	41 mg/L
TDS	2 ppm	164 ppm
Turbidity	0 NTU	25 NTU

Table S3: Crystallographic table

Compound No.	Mn-FM
Formulae	$C_{15}H_{15}Mn_3N_9O_{18}$

Mol. wt.	774.18		
CCDC No	2263898		
Crystal system	Trigonal		
Space group	<i>R-3c</i>		
Temperature (K)	298 (2)		
Wavelength (Å)	0.71073		
a (Å)	8.3840(16)		
b (Å)	8.3840(16)		
c (Å)	23.021(6)		
α (°)	90.00		
β (°)	90.00		
γ (°)	120.00		
V (Å ³)	1295.50(17)		
Ζ	2		
Density/gcm ⁻³	1.897		
Abs. Coeff. /mm ⁻¹	1.428		
Abs. correction	none		
F(000)	768		
Total no. of reflections	279		
Reflections, $I > 2\sigma(I)$	277		
Max. 2θ (°)	25.24		
	$-10 \le h \le 10$		
Ranges (h, k, l)	$-10 \le k \le 10$		
	$-27 \le 1 \le 27$		
Completeness to 2θ (%)	0.976		
Data/ Restraints / Parameters	279/0/ 28		
Goof (F^2)	1.262		
R indices $[I > 2\sigma(I)]$	0.0729		
R indices (all data)	0.0730		

References

- Y. Shao, L. Zhou, C. Bao, J. Ma, M. Liu and F. Wang, *Chem. Eng. J.*, 2016, 283, 1127-1136.
- H. Lv, H. Zhao, T. Cao, L. Qian, Y. Wang and G. Zhao, *J. Mol. Catal. Chem.*, 2015, 400, 81-89.
- B. Li, W. Jiang, Y. Xu, Z. Xu, Q. Yan and G. Yong, *Dyes Pigments.*, 2020, 174, 108017.
- V. D. Doan, T. L. Do, T. M. T. Ho, V. T. Le and H. T. Nguyen, Separ. Sci. Technol., 2020, 55, 444-455.
- H. Molavi, A. Hakimian, A. Shojaei and M. Raeiszadeh, *Appl. Surf. Sci.*, 2018, 445, 424-436.
- 6. X. Liu, W. Gong, J. Luo, C. Zou and Y. Yang, S. Appl. Surf. Sci., 2016, 362, 517-524.
- H. Guo, F. Lin, J. Chen, F. Li and W. Weng, *Appl. Organomet. Chem.*, 2015, 29, 12-19.
- 8. J. Zhang, F. Li and Q. Sun, Appl. Surf. Sci. J., 2018, 440, 1219–1226.
- X. Liu, W. Gong, J. Luo, C. Zou, Y. Yang and S. Yang, *Appl. Surf. Sci.*, 2016, 362, 517-524.
- 10. C. Yang, S. Wu, J. Cheng and Y. Chen, J. Alloys Compd., 2016, 687, 804-812.
- 11. M. Hasanzadeh, A. Simchi, H.S. Far, Mater. Chem. Phys., 2019, 233, 267-275.
- M. Oveisi, M. Alinia Asli and N.M. Mahmoodi, *Inorg. Chim. Acta.*, 2019, 487, 169-176.
- 13. L. Zeng, L. Xiao, Y. Long and X. Shi, J. Colloid Interface Sci., 2018, 516, 274-283.
- C. Arora, S. Soni, S. Sahu, J. Mittal, P. Kumar and P. Bajpai, *J. Mol. Liq.*, 2019, 284, 343-352.
- 15. J. Wang and X. Guo, Chemosphere, 2020, 258, 127279.
- 16. M. Korkmaz, C. Ozmetin, B. Fil, E. Ozmetin and Y. Yasar, *Fresenius Environ*. *Bull.*, 2013, **22**, 1524-1533.