Electronic Supplementary Information for

On the reactivity of complexes [Ni(NHC)₂] with CS₂

Martin S. Luff^[a], Celine S. Corsei, Udo Radius*^[a]

[a] Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

*Corresponding author Email address: u.radius@uni-wuerzburg.de

Table of Content

1	NMR Spectra	2
2	IR Spectra	8
3	High Resolution Mass Spectrometry (HRMS) Data	11
4	Cartesian Coordinates of Geometry Optimized Complexes	13

1 NMR Spectra

[Ni(l*i*Pr^{Me})₂(η²-CS₂)] (1a)

Figure S1. ¹H NMR spectrum of [Ni($IiPr^{Me}$)(η^2 -CS₂)] (1a) in C₆D₆.

Figure S2. ¹³C{¹H} NMR spectrum of [Ni($IiPr^{Me}$)(η^2 -CS₂)] (1a) in C₆D₆.

Figure S3. ¹H NMR spectrum of [Ni(IiPr)₂(η^2 -CS₂)] (1b) in C₆D₆.

Figure S4. ¹³C{¹H} NMR spectrum of [Ni(IiPr)₂(η^2 -CS₂)] (1b) in C₆D₆.

[{Ni(IDipp)(µ²-CS₂)}₂] (2c)

Figure S5. ¹H NMR spectrum of [{Ni(IDipp)(μ^2 -CS₂)}₂] (2c) in C₆D₆.

Figure S6. ¹³C{¹H} NMR spectrum of [{Ni(IDipp)(μ^2 -CS₂)}₂] (**2c**) in C₆D₆.

Figure S7. ¹H NMR spectrum of [{Ni(IMes)(μ^2 -CS₂)}₂] (2d) in C₆D₆.

Figure S8. ¹³C{¹H} NMR spectrum of [{Ni(IMes)(μ^2 -CS₂)}₂] (2d) in C₆D₆.

Figure S9. ¹H NMR spectrum of [Ni(cAAC^{Me}-CS₂)₂] (3e) in C₆D₆.

Figure S10. ¹³C{¹H} NMR spectrum of $[Ni(cAAC^{Me}-CS_2)_2]$ (**3e**) in CDCl₃. Resonances of the former carbone carbon atom as well as of the CS₂ group were not detected.

Figure S11. ¹H NMR spectrum of the isolated side-product IMes-CS₂ obtained from the reaction of $[Ni(IMes)_2]$ with CS₂ in CDCI₃.

2 IR Spectra

Figure S12. FT-IR spectrum (ATR) of $[Ni(IiPr^{Me})_2(\eta^2-CS_2)]$ (1a).

Figure S13. FT-IR spectrum (ATR) of $[Ni(liPr)_2(\eta^2-CS_2)]$ (1b).

Figure S14. FT-IR spectrum (ATR) of $[{Ni(IDipp)(\mu^2-CS_2)}_2]$ (2c).

Figure S15. FT-IR spectrum (ATR) of $[{Ni(IMes)(\mu^2-CS_2)}_2]$ (2d).

Figure S16. FT-IR spectrum (ATR) of $[Ni(cAAC^{Me}-CS_2)_2)]$ (3e).

3 High Resolution Mass Spectrometry (HRMS) Data

[{Ni(IMes)(µ²-CS₂)}₂] (2d)

Figure S17. Results of the mass spectrometric investigations of $[{Ni(IMes)(\mu^2-CS_2)}_2]$ (2d).

[Ni(cAAC^{Me}-CS₂)₂] (3e)

Figure S18. Results of the LIFDI mass spectrometric investigations of $[Ni(cAAC^{Me}-CS_2)_2]$ (**3e**) dissolved in THF.

4 Cartesian Coordinates of Geometry Optimized Complexes (PBE0-D3(BJ)//def2-TZVP(Ni)/def2-SVP(C,H,N,S))

[Ni(l*i*Pr^{Me})₂(η²-CS₂)] (**1a**)

Energy = -3421.559356860

Ni	-0.0676394	-0.1156625	1.3457645
С	1.3207145	-0.5464111	0.1354872
Ν	2.5573944	0.0019701	0.0353959
С	3.3030239	-0.6278628	-0.9582029
С	2.5004646	-1.6004722	-1.4871389
Ν	1.2902829	-1.5213630	-0.8038557
С	3.0154290	1.0088654	0.9986024
н	2.1003989	1.2184881	1.5774659
С	4.0405829	0.4369234	1,9670338
Ĥ	3.6611774	-0.5000256	2.4011672
н	4 2109744	1 1523520	2 7851535
н	5 0110604	0 2488006	1 4831561
C	3 4771384	2 3013517	0 3396345
й	1 1127317	2 1883033	_0 173/810
Ц	3 6060/23	2.1003933	1 1113001
Ľ	2 7421272	2 6711000	0 2007077
	2.1421212	2.0711000	-0.300/9//
Ц Ц	0.1407034	-2.4310037	-0.0730734
	-0.3000033	-1.9200090	-0.2252679
C III	0.4736251	-3.7715497	-0.2324229
н	1.2004932	-4.3504026	-0.8227993
н	-0.4408481	-4.3770789	-0.142/123
Н	0.8867654	-3.6094029	0.7750693
С	-0.4546060	-2.5258110	-2.2672103
н	-0.6601352	-1.5235459	-2.6728305
н	-1.4085145	-3.0715678	-2.2156729
н	0.1887001	-3.0662595	-2.9757379
С	-1.4395696	0.6589987	0.1668253
Ν	-1.3456058	1.6534175	-0.7513331
С	-2.5385339	1.8225818	-1.4473772
С	-3.4093156	0.8974171	-0.9405266
Ν	-2.7116407	0.1981921	0.0383674
С	-0.0792329	2.3499227	-0.9656594
Н	0.5405077	1.9652896	-0.1431782
С	0.5767538	1.9254862	-2.2726025
Н	0.6913035	0.8323215	-2.3038666
Н	1.5780089	2.3733240	-2.3561569
Н	-0.0012002	2.2434877	-3.1531382
С	-0.1901795	3.8575378	-0.7947028
н	-0.7023954	4.3463105	-1.6353717
Н	0.8183196	4.2925689	-0.7299392
Н	-0.7246977	4.1036173	0.1342773
С	-3.2243557	-0.8589624	0.9150983
Н	-2.3220255	-1.1979098	1.4479738
С	-4.1651362	-0.3038571	1.9726194
н	-3.6705982	0.5073079	2.5253222
Н	-4.4174460	-1.0952960	2.6935033
Н	-5.1055680	0.0775262	1.5460841
С	-3.7918089	-2.0454185	0.1499662
н	-4.7779044	-1.8422390	-0.2911477
н	-3.9107300	-2.8939458	0.8394377
н	-3.1097658	-2.3573877	-0.6546823
С	0.6003822	-0.9943712	2.8165588
С	-2.7847621	2.8451297	-2.4991039
Н	-2.0165690	2.8321382	-3.2860078
Н	-3.7501523	2.6539699	-2.9849146
н	-2.8193892	3.8661083	-2.0876464
С	-4.8206505	0.6441514	-1.3361171
Н	-4.9369045	-0.3042968	-1.8833877

Н	-5.4953425	0.6099920	-0.4687153
Н	-5.1743820	1.4491795	-1.9930063
С	4.6802430	-0.2445586	-1.3661156
Н	4.7049321	0.7266180	-1.8859303
Н	5.3661732	-0.1804020	-0.5097656
Н	5.0863205	-0.9951020	-2.0566035
С	2.7954130	-2.5499096	-2.5924026
Н	2.5438208	-3.5864384	-2.3250518
Н	2.2475041	-2.3022068	-3.5157255
Н	3.8668069	-2.5243622	-2.8299822
S	-0.7606097	-0.2009960	3.4318888
S	1.7230187	-2.0769979	3.3084220

 $[{Ni(IMes)(\mu^2-CS_2)}_2]$ (2d)

Energy = -6529.247110910

Ni	8.0267690	3.8083571	6.3404149
S	8.1841686	6.9266518	7.5045918
S	6.6394931	5.2673016	5.4327349
Ν	8.6060972	1.2365196	4.9096418
Ν	6.6636277	1.2541317	5.8025393
С	5.5110687	1.7041409	6.5166061
С	7.7758376	2.0154274	5.6478515
С	9.9166039	1.6402236	4.5078734
С	10.0489560	2.5716793	3.4710099
С	11.0248800	1.1098721	5.1861809
С	4.4523445	2.2641231	5.7921680
С	5.4981129	1.6095467	7.9148673
С	8.0225609	0.0187455	4.6026484
Н	8.5329507	-0.7327990	4.0073476
С	12.2916503	1.5397493	4.7941004
Н	13.1651217	1.1471141	5.3224203
С	3.3474628	2.7282282	6.5081065
Н	2.5143604	3.1757587	5.9590047
С	11.3413501	2.9713979	3.1194361
Н	11.4630010	3.7034793	2.3161225
С	12.4713583	2.4703527	3.7660676
С	6.7903616	0.0288631	5.1721479
Н	5.9992973	-0.7152649	5.1884475
С	4.5317805	2.3968170	4.3012819
Н	5.4197770	2.9832353	4.0161885
Н	3.6427908	2.9037600	3.9036626
Н	4.6185751	1.4175737	3.8046076
С	3.2882707	2.6500061	7.9010917
С	4.3704101	2.0876164	8.5838474
Н	4.3422707	2.0233864	9.6754907
С	7.7610038	5.5821565	6.6253698
С	10.8513895	0.1572094	6.3312174
Н	10.3193438	0.6533680	7.1591572
Н	11.8264222	-0.1761239	6.7103528
Н	10.2700808	-0.7340920	6.0504248
С	8.8501727	3.1500983	2.7815802
Н	9.1352239	3.6208004	1.8309921
Н	8.3707513	3.9158911	3.4147575
Н	8.0876719	2.3835747	2.5768668
С	6.6705096	1.0526851	8.6637675
Н	7.5076276	1.7716996	8.6614592
Н	7.0457690	0.1251058	8.2056817
Н	6.4053373	0.8421275	9.7084987
С	2.1057312	3.1827907	8.6566413
Н	2.3598674	4.1289253	9.1614112

Н	1.7757739	2.4788125	9.4356574
Н	1.2543605	3.3795103	7.9901676
С	13.8511517	2.9066704	3.3674634
Н	13.8218893	3.7871428	2.7105553
Н	14.3800662	2.1038807	2.8277486
Н	14.4588619	3.1586290	4.2498033
Ni	9.7012984	6.3970011	8.9880891
S	9.6518141	3.3155041	7.7194373
S	11.1071651	4.9469318	9.8803182
Ν	8.7547551	8.7495386	10.5473599
Ν	10.8162270	8.9499675	10.0161863
С	12.1005532	8.6632809	9.4617792
С	9.7532461	8.1202596	9.8756315
С	7.4272019	8.2276372	10.6362873
С	7.1843421	7.1312664	11.4723219
С	6.4255454	8.7956979	9.8340797
С	13.0778738	8.1004916	10.2906656
С	12.3213441	8.9117425	8.1005678
С	9.1869917	9.9423764	11.1006467
Н	8.5306248	10.5807511	11.6849151
С	5.1545882	8.2262261	9.8822984
Н	4.3689049	8.6428480	9.2458148
С	14.3174820	7.8001432	9.7234208
Н	15.0905361	7.3524379	10.3541543
С	5.8936523	6.5951450	11.4792135
Н	5.6896681	5.7295428	12.1157746
С	4.8705613	7.1217469	10.6908736
С	10.4951404	10.0714292	10.7609194
Н	11.2204847	10.8507621	10.9760936
С	12.7765661	7.7883989	11.7257028

Н	11.9055611	7.1172664	11.7966434
Н	13.6306665	7.2953530	12.2082250
Н	12.5335841	8.6939699	12.3036148
С	14.5855199	8.0376706	8.3735957
С	13.5772405	8.5941714	7.5815529
н	13.7687491	8.7804116	6.5208368
С	10.0392581	4.6480066	8.6353415
С	6.7283279	9.9333735	8.9054910
Н	7.4914635	9.6305940	8.1708105
Н	5.8289864	10.2316540	8.3508516
Н	7.1112720	10.8177964	9.4371768
С	8.2731030	6.5207705	12.3022743
Н	7.8508532	5.9091322	13.1111285
Н	8.9171987	5.8734966	11.6830219
Н	8.9258694	7.2865018	12.7470285
С	11.2317198	9.4564179	7.2271664
Н	10.4767818	8.6784822	7.0212827
Н	10.7033300	10.2945445	7.7061500
Н	11.6344204	9.8025093	6.2658699
С	15.9114670	7.6724240	7.7722463
Н	15.8239449	6.7577721	7.1630157
Н	16.2862278	8.4679267	7.1106033
Н	16.6689530	7.4843218	8.5459409
С	3.4927631	6.5269841	10.7090623
Н	3.4929227	5.5247893	11.1604930
Н	2.7955155	7.1541836	11.2889378
Н	3.0850235	6.4444948	9.6902176