Supporting Information

Unveiling surface reactivity: the crucial role of auxiliary ligands in Gallium amidinate-based precursors for Atomic Layer Deposition

Eva Pugliese,^{a,b} Damien Coutancier,^a Paul-Alexis Pavard,^a Julien Hervochon,^a Bram van der Linden,^{c,d} Nicolas Casaretto,^b Sophie Bourcier,^b Geoffrey Pourtois,^d Muriel Bouttemy,^{a,e} Audrey Auffrant,^b and Nathanaelle Schneider^{a,*}

Table of contents

1.	General procedures	2
2.	Molecular compound characterisation	3
2.1. terti	¹ H and ¹³ C NMR spectra of LLi, LGaCl ₂ , LGaMe ₂ and LGa(NMe ₂) ₂ with L = N,N'-di- outylacetamidinato	3
2.2.	X-ray Diffraction data	7
3.	Quartz Crystal Microbalance (QCM) data	9
4.	Thin film characterisation	. 13
4.1.	Ellipsometry data	. 13
4.2.	X-ray Reflectometry (XRR) data	. 15
4.3.	X-ray Photoelectron Spectroscopy (XPS) data	. 17
5.	DFT calculations	. 19
6.	References	. 30

a. Institut Photovoltaïque d'Île-de-France (IPVF), UMR 9006, CNRS, Ecole Polytechnique - IP Paris, Chimie Paristech - PSL, 18 Boulevard Thomas Gobert, Palaiseau, 91120, France

^{b.} Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France.

^{c.} Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium

^{d.} IMEC, Kapeldreef 75, 3001 Leuven, Belgium

e Institut Lavoisier de Versailles (ILV), Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, CNRS, UMR 8180, 78035Versailles CEDEX, France

1. General procedures

All air and moisture sensitive reactions were performed under inert atmosphere using a vacuum line, inert Schlenk techniques (N₂) and a glove box (Ar, <0.1 ppm H₂O, <0.1 ppm O₂) with oven-dried glassware unless other notified. Reagents were used as received from commercially available suppliers without further purification unless otherwise noticed. CH₂Cl₂, pentane, and toluene were taken from solvent purification system (MBraun-SPS). THF, ⁱPrOH, and Et₂O were distilled over Na and degassed using freeze-pump technique. NMR spectra were recorded on a Bruker AC-300 SY spectrometer at 300 MHz for ¹H, 120 MHz for ³¹P and 75 MHz for ¹³C. Solvent peaks were used as internal references for ¹H and ¹³C chemical shifts (ppm). ³¹P{¹H} NMR spectra are relative to an 85% H₃PO₄ external reference. Unless otherwise mentioned, NMR spectra were recorded at 300 K. The spectra were analysed with Topspin software.

Mass spectrometry experiments were performed on a Tims-TOF mass spectrometer (Bruker, France) equipped with atmospheric pressure chemical ionization (APCI) source with one direct probe to introduce solid compounds. Few μ g of sample were deposit into glass capillary. All mass spectra were produced in positive mode. Capillary and end plate voltages were set at 4.2 kV and 0.5 kV for experiments, Corona for APCI was set at 4000nA. Nitrogen was used as the nebuliser and drying gas at 3 bar and 2 L min⁻¹, respectively, with a drying temperature of 250 °C. APCI heater was set at 300°C. Tuning mix (Agilent, France) was used for calibration. The elemental compositions of all ions were determined with the instrument software Data Analysis, the precision of mass measurement was less than 5 ppm.

X-ray crystallography data were collected at 150 K on a Bruker Kappa APEX II diffractometer using a Mo-κ ($\lambda = 0.71069$ Å) X-ray source and a graphite monochromator. The crystal structures were solved using Shelxt33¹ or olex² and refined using Shelxl-97 or Shelxl-2014.¹ ORTEP drawings were made using ORTEP III³ for Windows. Details of crystal data Details of crystal data and structure refinements are summarized in Table S1.

2. Molecular compound characterisation

2.1. ¹H and ¹³C NMR spectra of LLi, LGaCl₂, LGaMe₂ and LGa(NMe₂)₂ with L = N,N'-di-tertbutylacetamidinato

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) Figure S2: ¹³C-NMR of **LLi** in THF-d₈, 300 MHz.

Figure S3: ¹H-NMR of LGaCl₂ in THF-d₈, 300 MHz.

190 185 180 175 170 165 160 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 f1 (ppm) Figure S4: 13 C-NMR of LGaCl₂ in THF-d₈, 300 MHz.

Figure S5: ¹H-NMR of **LGaMe₂** in THF-d₈, 300 MHz.

Figure S8: ¹H-NMR of LGa(NMe₂)₂ in THF-d₈, 300 MHz.

Figure S7: ¹³C-NMR of LGa(NMe₂)₂ in THF-d₈, 300 MHz.

2.2. X-ray Diffraction data

Compound	LLi	LGaCl ₂
Empirical formula	C ₁₅ H _{31.5} Li _{1.5} N ₃	$C_{10}H_{21}Cl_2GaN_2$
Formula weight	264.34	309.91
Temperature/K	149.99	150.0
Crystal system	monoclinic	monoclinic
Space group	C _{2/c}	P2₁/n
a/Å	16.5502(14)	8.1083(10)
b/Å	11.7796(10)	11.6422(13)
c/Å	19.403(2)	15.6810(18)
α/°	90	90
β/°	114.049(3)	96.471(4)
γ/°	90	90
Volume/ų	3454.3(6)	1470.8(3)
Z	8	4
$\rho_{calc}g/cm^3$	1.017	1.400
µ/mm⁻¹	0.059	2.209
F(000)	1176	640.0
Crystal size/mm ³	0.32 × 0.20 × 0.16	0.36 × 0.14 × 0.08
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.42 to 48.32	5.228 to 58.256
Index ranges	-20 ≤ h ≤ 13, -14 ≤ k ≤ 14, -23 ≤ l ≤ 24	$-11 \le h \le 10, -15 \le k \le 15, -21 \le l \le 21$
Reflections collected	23662	22842
Independent reflections	3662 [R _{int} = 0.0607, R _{sigma} = 0.0423]	3948 [R _{int} = 0.0795, R _{sigma} = 0.0552]
Data/restraints/parameters	3662/3/202	3948/0/143
Goodness-of-fit on F ²	1.031	1.016
Final R indexes [I>=2σ (I)]	$R_1 = 0.0528$, $wR_2 = 0.1318$	$R_1 = 0.0349$, w $R_2 = 0.0731$
Final R indexes [all data]	$R_1 = 0.0804$, $wR_2 = 0.1503$	R ₁ = 0.0577, wR ₂ = 0.0840
Largest diff. peak/hole / e Å ⁻³	0.44/-0.22	0.46/-0.53
CCDC number	2409944	2409945

Table S1: Crystal data and structure refinement of LLi and LGaCl₂ with L = N,N'-di-tert butylacetamidinato

Figure S9: X-ray structure of **LLi** (with thermal ellipsoids drawn at the 20% probability level). The H atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Li1-N1= 1.960(3); Li1-N3= 2.000(3); Li1-N2= 2.223(3); Li2-N2= 1.9624(14); Li2-N3= 2.321(3); N1-C5= 1.3337(17); N2-C11= 1.348(2); N3-C11= 1.332(2); N1-C5-N1= 117.02(19); N3-C11-N2= 112.15(14); N1-Li1-N2= 168.55(19); N1-Li1-N3= 127.93(18); Li1-N2-Li2= 74.11(16); Li1-N3-Li2= 71.26(13).

3. Quartz Crystal Microbalance (QCM) data

Figure S10: Mass variations measured by *in situ* QCM measurements during ALD of GaO_x (red) and GaS_x (orange) at $T_{dep} = 150^{\circ}C$ using **TDMAG** as gallium precursor. The lower part of the graphs indicates the pulse sequence.

Figure S12: Overlay of consecutive cycles of ALD of GaS_x measured by in situ QCM using $LGa(NMe_2)_2$ as gallium precursor. Green traces indicate initial cycles and red traces the last ones (15 total cycles).

Figure S14: Overlay of consecutive cycles of ALD of GaO_x measured by in situ QCM using **TDMAG** as gallium precursor. Green traces indicate initial cycles and red traces the last ones (15 total cycles).

Figure S13: Overlay of consecutive cycles of ALD of GaS_x measured by in situ QCM using **TDMAG** as gallium precursor. Green traces indicate initial cycles and red traces the last ones (15 total cycles).

Modelling of the growth mechanism of Ga₂S₃ from TDMAG and H₂S

Figure S15: Mass variations measured by in situ QCM measurements during ALD of GaSx at $T_{dep} = 150^{\circ}$ C using **TDMAG** and H_2 S. The lower part of the graphs indicates the pulse sequence. (Δm corresponds to overall mass variation after one cycle and and m_1 to the mass variation after the pulse of metal precursor).

The Ga_2S_3 growth mechanism has already been attributed to the following surface reactions by Meng et al.⁴:

$$\vdash (SH)_n + Ga(NMe_2)_3 \rightarrow \vdash S_nGa(NMe_2)_{(3-n)} + n HNMe_2$$
 Equation S1

during the TDMAG pulse, and:

$$\vdash S_n Ga(NMe_2)_{(3-n)} + 1.5 H_2 S \rightarrow \vdash S_{1.5} Ga(SH)_n + (3-n)HNMe_2 \qquad Equation S2$$

during the H₂S pulse, where " \vdash " represent the surface species, *n* the number of ligand released during the TDMAG pulse. The n value can be determined from the (Δ m / m1) ratio. In our case, (Δ m / m1) = 0.82, which corresponds to *n* = 0.79, which is slightly higher than reported value ((Δ m / m1) = 0.63, n = 0.32 at T_{dep} = 200-250 °C).⁴

The same reasoning can be applied to the reaction with H₂O in the place of H₂S.

Figure S16: Mass variations measured by in situ QCM measurements during ALD of GaO_x at $T_{dep} = 150^{\circ}$ C using **TDMAG** and H₂O. The lower part of the graphs indicates the pulse sequence. (Δm corresponds to overall mass variation after one cycle and and m_1 to the mass variation after the pulse of metal precursor).

Parallel to the H_2S case, the surface reactions can be described as follows:

$$\vdash (OH)_n + Ga(NMe_2)_3 \rightarrow \vdash O_nGa(NMe_2)_{(3-n)} + n HNMe_2$$
 Equation S3

during the TDMAG pulse, and:

$$\vdash O_n Ga(NMe_2)_{(3-n)} + 1.5 H_2 O \rightarrow \vdash O_{1.5}Ga(OH)_n + (3-n)HNMe_2 \qquad \qquad \text{Equation S4}$$

during the H₂O pulse, where " \vdash " represent the surface species, *n* the number of ligand released during the TDMAG pulse. The n value can be determined from the (Δ m / m1) ratio. In our case, (Δ m / m1) = 0.76, which corresponds to *n* = 2.05.

4. Thin film characterisation

Figure S17: Spectroscopic ellipsometry data of the Ga_2O_3 film on Si 100 wafer produced by 400 ALD cycles of $LGa(NMe_2)_2$ and H_2O precursors. Dots: experimental values, solid line: data fitting. Fitting with X²=0.112, yielding 22.9 nm thickness and 4.50 eV bandgap.

Figure S18: Spectroscopic ellipsometry data of the Ga_2O_3 film on Si 100 wafer produced by 150 ALD cycles of **TDMAG** and H_2O precursors. Dots: experimental values, solid line: data fitting. Fitting with X²=0.150, yielding 13.6 nm thickness and 4.45 eV bandgap.

Figure S19: Spectroscopic ellipsometry data of the Ga_2S_3 film on Si 100 wafer produced by 400 ALD cycles of $LGa(NMe_2)_2$ and H_2S precursors. Dots: experimental values, solid line: data fitting. Fitting with $X^2=0.052$, yielding 5.1 nm thickness and 4.30 eV bandgap.

Figure S20: Spectroscopic ellipsometry data of the Ga_2S_3 film on Si 100 wafer produced by 150 ALD cycles of **TDMAG** and H_2S precursors. Dots: experimental values, solid line: data fitting. Fitting with $X^2=2.55$, yielding 18.6 nm thickness and 3.95 eV bandgap.

4.2. X-ray Reflectometry (XRR) data

Figure S21: X-ray Reflectometry (XRR) data of the Ga_2O_3 film on Si 100 wafer produced by 150 ALD cycles of **TDMAG** and H_2O precursors. Solid line: experimental values, dots: data fitting. Fitting finds a 12.3 nm film.

Figure S22: X-ray Reflectometry (XRR) data of the Ga_2O_3 film on Si 100 wafer produced by 400 ALD cycles of LGa(NMe₂)₂ and H₂O precursors. Solid line: experimental values, dots: data fitting. Fitting finds a 21.2 nm film.

Figure S23: X-ray Reflectometry (XRR) data of the Ga_2S_3 film on Si 100 wafer produced by 150 ALD cycles of **TDMAG** and H_2S precursors. Solid line: experimental values, dots: data fitting. Fitting finds a 22.9 nm film.

Figure S24: X-ray Reflectometry (XRR) data of the Ga₂S₃ film on Si 100 wafer produced by 400 ALD cycles of LGa(NMe₂)₂ and H₂S precursors. Solid line: experimental values, dots: data fitting. Fitting finds a 3.9 nm film.

4.3. X-ray Photoelectron Spectroscopy (XPS) data

Figure S25: XPS survey spectra of thin films deposited on Si_{ox}/Si substrates: (a) Ga_xS from TDMAG/H₂S (dark green) and LGa(NMe₂)₂ /H₂S (orange); (a) Ga_xO from TDMAG/H₂O (green) and LGa(NMe₂)₂ /H₂O (orange)

Figure S26: High energy resolution spectral regions of the main elements of Ga-containing films obtained from **TDMAG** precursor (a) Ga 2p (b) S 2p/Ga3s (c) O 1s.

Figure S27: High energy resolution spectral regions of C 1s of Ga-containing films obtained from **TDMAG** precursor and (a) H_2O , (b) H_2S) and **LGa(NMe₂)₂** with (c) H_2O , and (d) H_2S) (Ar+-etching time = 0s).

Table S2: Atomic % compositions	for the GaY _x films	obtained (Y=O, S).
---------------------------------	--------------------------------	------------------	----

	Ga	S/O	O contamination	C contamination	N (C-N)
GaS _x / TDMAG	30.10	34.59	9.03	24.47	1.81
GaS _x /LGa(NMe ₂) ₂	26.25	26.37	12.10	29.55	5.73
GaO _x /TDMAG	38.09	43.10	6.47	11.97	0.37
GaO _x /LGa(NMe ₂) ₂	34.62	46.14	4.10	14.42	0.71

5. DFT calculations

The reactions taken into consideration for DFT calculations are as follows.

0.23 eV

Figure S28: Surface reactions computed for DFT calculations following model A (a and b) and model B (c and d) for LGa(NMe₂)₂ (a and c) and for LGaMe₂ (b and d); the values represent the corresponding enthalpies. The structures formulas are made with RDKit.

Structural formula	File name with optimized atomic coordinates
	prec1.xyz
	prec2.xyz
HO HO OH	SiOH4.xyz
	product1.xyz
CH ₄	product2.xyz
Ga Si OH HO	product3.xyz
	product4.xyz
N	product5.xyz
HO HO	product6.xyz

Table S3: Structural formulas and corresponding file names with the atomic positions that were relaxed with DFT are shown. The structures formulas are made with RDKit. ⁵ Optimized coordinates for each are given in Tables S3 to S11.

Table S3: Optimised molecular coordinates of "prec1".

Lattice="18.05941000 0.00000000 0.00000000 16.5020000 0.00000000 0.00000000 0.00000000 16.65885000" pbc=[T, T, T] Properties=species:S:1:pos:R:3

Ga	9.57785987	9.55671075	8.11292655
н	9.20496880	5.74442313	11.07269288
Н	9.49793572	7.36916930	11.73015403
н	10.73655631	6.10204482	11.88220144
н	10.48359834	5.01783103	8.87726832
н	12.00121435	5.30423096	9.74284905
н	11.68674631	6.12925409	8.19662617
н	11.33859694	8.84200658	10.76867866
н	12.21487585	8.33660665	9.30269293
н	12.50299670	7.49699801	10.84401354
Н	8.48840270	5.25938188	9.02921358
Н	7.10057399	5.76819247	8.04775338
Н	7.15411662	6.15614292	9.77611259
Н	6.71193946	6.41912085	6.17594225
Н	7.52665445	7.68431747	5.23674914
н	5.74824664	7.60684220	5.28312289
Н	5.38745573	7.13196059	8.35479210
н	4.50621950	8.36885307	7.44757819
Н	5.46185910	8.82947916	8.87499795
Н	7.41511226	10.10903713	5.91769934
Н	6.55293766	10.59114618	7.39961994
Н	5.64012535	10.01485529	5.98345476
н	11.76060150	9.95647971	6.77456876
Н	10.35986643	10.41657826	5.79825361
Н	10.78110561	8.69872528	5.98528095
Н	8.60366903	10.74401532	10.19861415
Н	8.77555687	11.90169623	8.85896643
Н	10.19761496	11.42381586	9.79620198

С	10.60332640	6.98159336	9.88826921
С	9.96664546	6.51860349	11.21796265
С	11.22508809	5.78513883	9.13129250
С	11.73471258	7.97540167	10.22263029
С	8.45268821	7.37389155	8.57248380
С	7.76406322	6.06285963	8.86619785
С	6.65996242	8.42973034	7.09511537
С	6.66175649	7.47410051	5.87946320
С	5.43475314	8.16750588	7.99956265
С	6.55979845	9.87540784	6.56663788
С	10.73782247	9.66438292	6.50299632
С	9.25341238	11.05751131	9.37291226
Ν	9.66114288	7.72839998	9.03994786
Ν	7.93112901	8.36727905	7.83329658

Table S4: Optimised molecular coordinates of "prec2".

Lattice="18.60063000 0.00000000 0.00000000 17.82771000 0.00000000 0.00000000 17.28835000" pbc=[T, T, T] Properties=species:S:1:pos:R:3

Ga	9.85238205	9.45473271	8.28647419
Н	8.10555749	7.42624522	12.35956378
Н	8.57251492	9.14026119	12.42218113
Н	9.50310170	7.92292039	13.32389905
Н	9.61331510	5.75223315	10.98706751
Н	10.98069190	6.22247146	12.00859898
Н	11.09918283	6.37068383	10.23825611
Н	10.79536264	9.92010493	11.40999426
Н	11.82922206	8.75935879	10.54817209
Н	11.63871237	8.63487518	12.31347564
Н	6.49779259	7.52561900	10.53479130
Н	7.67487375	6.20406019	10.53254311
н	6.59743851	6.43056399	9.13943371

Н	8.40734270	9.00658070	5.49318081
н	7.53999976	10.31960907	6.32199526
Н	6.68875587	9.30790646	5.12851801
Н	7.83504917	6.58870173	5.98747387
Н	6.12533816	6.92878011	5.63038974
Н	6.57399809	6.15902224	7.16010334
Н	5.82417184	9.79108163	8.11408290
Н	5.30443276	8.11673846	8.41027134
Н	4.93651418	8.89152565	6.86257338
Н	12.48105459	10.55236009	7.66002747
Н	13.11922779	9.49500802	6.38028991
Н	13.24208748	9.00296465	8.08276131
Н	10.38665589	7.00848896	6.79854032
Н	11.96237741	6.87186866	7.61643844
Н	11.88692270	7.33336618	5.90294492
Н	10.72142537	11.78940486	6.76177549
Н	10.39600055	13.17417612	7.82889534
Н	9.08152121	12.46560847	6.86668164
Н	8.51167280	11.10539174	10.27378927
Н	7.73108974	12.01536193	8.95708346
Н	9.02282058	12.76924919	9.91519823
С	9.90543810	7.93566414	11.18051021
С	8.95902165	8.11295526	12.38837248
С	10.42435072	6.48275662	11.09745238
С	11.11607392	8.87026895	11.37724349
С	8.20063391	7.87846405	9.27742742
С	7.18661627	6.95168858	9.89861479
С	7.03406157	8.32050418	7.04860087
С	7.44133813	9.29852869	5.92767517
С	6.88258084	6.91392767	6.42658030
С	5.69685366	8.80320950	7.65095550

С	12.58456037	9.50496174	7.34662269
С	11.38442090	7.46148004	6.87798847
С	9.98662968	12.21889351	7.45540999
С	8.69895561	11.81752003	9.45833781
Ν	9.28228597	8.36189818	9.91405332
Ν	8.13845229	8.36294201	8.02625427
Ν	11.27655292	8.87250041	7.22184704
N	9.72183508	11.30239070	8.55847128

Table S5: Optimised molecular coordinates of "SiOH4".

Lattice="13.53818000 0.00000000 0.00000000 13.49583000 0.00000000 0.00000000 0.00000000 13.05688000" pbc=[T, T, T] Properties=species:S:1:pos:R:3

Si	6.64875291	6.76109834	6.58077600
Н	5.87956383	8.44043314	7.85148997
н	5.48331994	6.48385443	4.68451019
Н	6.47035230	4.87330043	7.77591125
Н	8.75789569	7.25624450	6.00369932
0	5.70799900	7.49489295	7.71849166
0	6.23069950	7.01216477	5.00620608
0	6.49825078	5.14097956	6.84377281
0	8.15984219	7.39553198	6.75475251

Table S6: Optimised molecular coordinates of "product1".

Lattice="18.02654000 0.00000000 0.00000000 14.97671000 0.00000000 0.00000000 18.61824000" pbc=[T, T, T] Properties=species:S:1:pos:R:3

Ga	8.46629582	7.67669978	9.42098233
Si	5.98293506	7.69831726	9.54353003
Н	11.07418011	9.32393246	12.06811492
Н	12.53526691	8.39791193	11.65309287
Н	11.82324150	8.24259923	13.26490501
н	8.85636451	8.13442072	12.50005574

Н	9.66374416	7.04427891	13.65493491
н	8.74299844	6.36759386	12.29164992
н	12.32860798	5.78711787	11.31568331
н	10.73829595	5.02908183	11.54040762
н	11.63791282	5.66257305	12.93975504
н	12.85470275	7.07324946	9.85644372
н	12.74867754	8.69041914	9.12765759
н	12.67943487	7.25242142	8.09528636
н	9.95633714	5.96118968	6.34923522
Н	11.66366564	6.44087072	6.46748953
н	10.72909313	6.86294356	5.02366774
н	8.09841414	7.67905070	6.40370547
н	8.89203550	8.59484246	5.10151848
Н	8.47710829	9.40309086	6.63307553
н	12.23511237	8.99802869	6.74259515
н	10.89731752	10.15569333	6.93623939
н	11.22318801	9.41484789	5.35363917
н	4.10965511	7.77204353	8.34358397
н	5.31288751	6.75219561	11.45739292
С	10.68079643	7.20296906	11.73046064
С	11.58539113	8.36119796	12.19897043
С	9.40679927	7.18839517	12.59755885
С	11.39190419	5.84136236	11.88396754
С	10.88038637	7.65380844	9.20541602
С	12.37631564	7.65771011	9.06639380
С	10.22024664	8.08848348	6.75510225
С	10.67395721	6.75894681	6.11611577
С	8.83727599	8.46468535	6.19000686
С	11.20856290	9.22917770	6.43630357
Ν	10.20670069	7.40382344	10.34465299
N	10.01684846	7.92999962	8.21111456

0	7.10049793	8.88831336	9.86252111

O 4.99238537 8.16968428 8.30749308

0 4.92292010 7.30023393 10.75962214

O 7.04886696 6.46064599 9.19630531

Table S7: Optimised molecular coordinates of "product2".

Lattice="11.47920000 0.00000000 0.00000000 11.66469000 0.00000000 0.00000000 0.00000000 11.79903000" pbc=[T, T, T] Properties=species:S:1:pos:R:3

Н	6.83672566	5.83240556	5.89947326
Н	5.37379376	6.24054223	6.85007663
Н	5.37377189	4.80517872	5.77759870
Н	5.37380546	6.45167336	5.07067258
С	5.73949814	5.83248094	5.89942927

Table S8: Optimised molecular coordinates of "product3".

Lattice="16.13380000 0.00000000 0.00000000 16.56252000 0.00000000 0.00000000 13.21898000" pbc=[T, T, T] Properties=species:S:1:pos:R:3

Ga	9.45482233	9.22209448	6.60754690
Si	6.97062742	7.33580084	6.99091318
Н	6.35645106	7.00451408	9.11634423
Н	5.23590521	8.16458823	5.83703163
Н	7.38632498	5.28863578	6.18872879
Н	8.07227640	9.67601662	4.52752455
Н	9.24756058	8.38840883	4.21208099
Н	9.78602520	10.09512547	4.19927627
Н	11.78233622	9.69047077	7.56128341
Н	10.56631442	9.64807923	8.87049919
Н	10.72570601	11.08789287	7.82063832
С	9.11652689	9.37357806	4.67985973
С	10.76622145	9.99119281	7.84947873
0	6.23584714	6.56386055	8.26092836

- O 6.02888998 8.50228374 6.28135634
- 0 7.17075756 6.16502252 5.83430828
- 0 8.31940898 8.06924711 7.50878504

Table S9: Optimised molecular coordinates of "product4".

Lattice="18.37766000 0.00000000 0.00000000 14.28497000 0.00000000 0.00000000 15.28557000" pbc=[T, T, T] Properties=species:S:1:pos:R:3

Н	8.36513921	7.81303035	5.69931921
Н	7.31724789	9.03944650	6.43036723
н	6.65332091	7.87127072	5.26487781
н	8.04071507	5.26105355	6.49780659
н	6.33425804	5.36589749	6.03949630
н	6.78859942	4.92957746	7.70289485
н	5.40472568	8.40617307	7.96368232
н	5.18574481	6.72422008	8.47464313
н	4.82762748	7.19198364	6.78945615
н	8.74225551	7.91041935	10.60724983
н	10.34703386	8.34080615	9.95858190
н	10.02203192	6.67278910	10.46033655
н	9.45254529	6.60442183	6.76166511
Н	11.36975862	9.08472924	8.24225498
Н	11.08497879	8.95685790	6.49577095
Н	12.71928437	8.70759736	7.15382653
Н	12.08440892	6.94097361	9.56014381
Н	13.27151704	6.45953081	8.34158513
Н	11.93943828	5.35765110	8.76408066
Н	11.16285255	6.71546585	5.31543114
Н	11.55253208	5.23578204	6.23094866
Н	12.80384797	6.46675460	5.93747914
С	6.97019147	7.05718259	7.26893302
С	7.35837345	7.99349400	6.09869117

С	7.04799631	5.57012946	6.84944163
С	5.50181561	7.36217857	7.63947634
С	9.02058979	7.23027978	8.62246155
С	9.57584344	7.56013288	9.99103433
С	11.36212048	7.02307053	7.47773898
С	11.64972818	8.53267551	7.33646026
С	12.20763928	6.41061846	8.61036868
С	11.74001654	6.31550604	6.16172380
Ν	7.73589181	7.33661998	8.49808694
N	9.90796922	6.75524890	7.65498136

Table S10: Optimised molecular coordinates of "product5".

Lattice="13.47423000 0.00000000 0.00000000 12.28135000 0.00000000 0.00000000 0.00000000 13.04699000" pbc=[T, T, T] Properties=species:S:1:pos:R:3

Н	6.03885685	5.97493940	7.74264462
Н	6.19410252	6.22065943	4.81350517
Н	4.79852779	5.67526290	5.75924557
Н	6.25034370	4.64176997	5.62870544
н	8.28860938	6.94135665	6.10884628
н	8.32213702	5.35489335	6.91030200
Н	8.22328601	6.85427446	7.87734253
С	5.89570188	5.68414628	5.72549963
С	7.88220348	6.36793412	6.95422355
Ν	6.41952658	6.39353197	6.89424796

Table S11: Optimised molecular coordinates of "product6".

Lattice="17.47975000 0.00000000 0.00000000 17.91416000 0.00000000 0.00000000 0.00000000 13.57455000" pbc=[T, T, T] Properties=species:S:1:pos:R:3

Ga	9.32253571	8.25050479	6.46516461
Si	7.54801473	10.66323460	7.35430671
н	6.29204577	11.40378261	5.65260534

Н	6.33194039	9.82205023	9.04491912
н	8.49171437	12.52404431	8.16016830
н	9.72160968	5.33466517	6.52331328
н	8.54253332	4.78768791	5.31420128
н	8.04121316	5.02335660	7.00587551
н	6.73834903	8.04169329	5.27880781
н	6.25256640	6.66400919	6.29195917
н	6.72702753	6.39990998	4.59282983
н	10.91279048	10.41808236	7.39922585
н	12.54145846	9.93231195	6.86764750
н	11.95724084	9.47397190	8.48706000
н	11.60639861	6.38670291	6.38418407
н	12.29948725	6.96231170	7.92146126
н	12.96249432	7.52418208	6.36859526
С	8.67775768	5.43006348	6.20077276
С	6.94769162	6.98814661	5.49911677
С	11.65284965	9.60925349	7.43538597
С	12.02854305	7.26140551	6.89400873
Ν	8.34645357	6.81564146	5.88464376
Ν	11.09907499	8.38355183	6.86634110
0	6.53808652	11.69711776	6.54315929
0	6.77012168	9.49933129	8.24237600
0	8.32770608	11.61688147	8.46076508
0	8.48849984	9.88058691	6.29499901

6. References

- 1 G. M. Sheldrick, Acta Crystallogr C Struct Chem, 2015, 71, 3–8.
- 2 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J Appl Crystallogr*, 2009, **42**, 339–341.
- 3 L. J. Farrugia, ORTEP University of Glasgow 2001.
- 4 X. Meng, J. A. Libera, T. T. Fister, H. Zhou, J. K. Hedlund, P. Fenter and J. W. Elam, *Chem. Mater.*, 2014, **26**, 1029–1039.
- 5 RDKit: Open-source cheminformatics, https://www.rdkit.org/, (accessed December 5, 2024).