Supplementary Information

A Ring-Strain Model for Predicting ²⁹Si NMR Chemical Shifts in Polyhedral Oligomeric Silsesquioxanes and Siloxanes

Mathilde LAIRD^{a,}, Carole CARCEL^b, Michel WONG CHI MAN^b and John R. BARTLETT^{c,*}.

^aUniv. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France ^bICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France ^cWestern Sydney University, Locked Bag 1797 Penrith NSW 2751 Australia. <u>*J.Bartlett@westernsydney.edu.au</u>;

Table of Contents

<u>Figure S1</u> :	3D-projection of the unambiguously identified and characterized Q _n POS cages. the proportion of Si-atom contributing to each ²⁹ Si NMR resonance observed for the compound is given as "/"	2
Figure S2:	T ₆ POSS before and after cleavage of 3-rings	2
<u>Table S1</u> :	Selected 29 Si NMR Data for T ₆ POSS Compounds with equivalent functional groups on all vertices (all Si atoms located in 4^23^1 positions)	3
<u>Table S2</u> :	Selected ²⁹ Si NMR Data for T ₈ POSS Compounds with equivalent functional groups on all vertices (all Si atoms located in 4^3 positions)	3
Table S3:	Selected 29 Si NMR Data for T ₁₀ POSS Compounds with equivalent functional groups on all vertices (all Si atoms located in $5^{1}4^{2}$ positions)	5
<u>Table S4</u> :	Selected $^{29}\mbox{Si}$ NMR Data for T_{12} POSS Compounds with equivalent functional groups on all vertices	7
<u>Table S5</u> :	Selected 29 Si NMR Data for T _n POSS Compounds with n > 12 and with equivalent functional groups on all vertices	8
<u>Table S6</u> :	Selected $^{29}\mbox{Si}$ NMR Data for Q_n POS Compounds with equivalent functional groups on all vertices	8
<u>Table S7</u> :	Functional groups used to derive parameters A' , B' , C' and D' in Equation 2 for Q_n compounds, together with the values of k_i obtained via least-squares fitting	9
Reference:		10

Figure S1. 3D-projection of the unambiguously identified and characterized Q_n POS cages. the proportion of Si-atom contributing to each ²⁹Si NMR resonance observed for the compound is given as ".../..."

Figure S2. T₆ POSS before and after cleavage of 3-rings

<u>**Table S1**</u>. Selected ²⁹Si NMR Data for T₆ POSS Compounds with equivalent functional groups on all vertices (all Si atoms located in 4^23^1 positions)

Entry	Functional Group	NMR Solvent	Chemical Shift (ppm)	Ref
T ₆ -001	vinyl	CDCI ₃	-71.40	1
T ₆ -002	phenyl	CDCI ₃	-66.9	2
T ₆ -003	ethyl	CDCI ₃	-56.93	1
T ₆ -004	isopropyl	CDCI ₃	-54.16	3
T ₆ -005		CDCl ₃	-56.6	2
	cyclohexyl	CDCI ₃ /Et ₃ N	-56.23	4
		THF- <i>d</i> ଃ	-56.72	5
T ₆ -006	octyl	CDCl ₃	-54.2	2

<u>**Table S2**</u>. Selected ²⁹Si NMR Data for T₈ POSS Compounds with equivalent functional groups on all vertices (all Si atoms located in 4^3 positions)

Entry	Functional Group	NMR Solvent	Chemical Shift (ppm)	Ref
		C ₆ D ₆	-84.45	6
		C ₆ D ₆	-84.73	7
		CDCI3	-84.5	8
T ₈ -001	Н	CDCI3	-84.7	9
		CDCI3	-84.12	10
		CDCI3	-84.70	11
		CDCI3	-84.70	12
		Acetone-d ₆	-65.78	13
		Acetone-d ₆	-79.7	14
		THF-d ₈	-78.1	15
T ₈ -002	phenyl	THF-d ₈	-78.3	16
		CD ₂ Cl ₂	-78.3	17
		CDCI ₃	-78.3	18
		CDCI ₃	-78.07	19
		Acetone-d ₆	-80.2	14, 20, 21
		THF-d ₈	-80.11	22
		CDCI ₃	-80.19	21, 23
		CDCI ₃	-79	24
		CDCl ₃	-87	25
		CDCl₃	-80.20	26
		CDCl₃	-80	27
T ₈ -003	CH ₂ =CH-	CDCl₃	-81.81	28
		CDCl ₃	-80.2	29, 30
		CDCI ₃	-79.5	31
			-81.63	7
		CDCI₃	-80.19	32
		CDCI3	-79.80	33
			-79.3	20
T. 004	1 nitronhonyl	Acotopo da	-00.0	10
T ₈ -004	4-muophenyi		-19.22	34
18-005			-70.4	54
I 8-006		CDCI3	-78.19	35
T ₈ -007		CDCl₃ or DMSO-d ₆	-78.15	36
T ₈ -008	Ethyl	CDCI ₃	-65.5	37

Entry	Functional Group	NMR Solvent	Chemical Shift (ppm)	Ref
		CDCl ₃	-65.71	38
		CDCl₃	-65.74	11
T ₈ -009	ⁱ C ₃ H ₇ -	CDCl₃	-66.26	3
			-68.7	39
T ₈ -010	Cyclohexyl	CDCI ₃	-69.8	40
			-71.19	41
			-66.6	39
T ₈ -011	ⁿ C ₈ H ₁₇ -	CDCI ₃	-66.64	11
			-67.16	42
T ₈ -012	C ₈ H ₁₇ -	CDCI ₃	-66.74	38
		C_6D_6	-67.11	43
		CDCI ₃	-67.07	44
		CDCI ₃	-67.28	45
		CDCI ₃	-67.1	46
		CDCl ₃	-66.2	47
		CDCl₃	-67.0	48
		CDCl₃	-67.0	49
		CDCI3	-67.1	50
		CDCI3	-67.05	51
			-67.35	52
I ₈ -013	CICH ₂ CH ₂ CH ₂ -		-67.35	53
			-60.05	54
			-67.00	55
		CDCI3	-67.08	56
			-67.08	57
			-07.08	38 59
			-07.08	58 50
		DIVISO-06	-00.04	59 60 61
			-00.00	62
			-67.10	63
		THF-da	-66.7	15
T ₈ -014	CF ₃ -CH ₂ CH ₂ -	DMSO-d ₆	-67.3	64
T ₈ -015	HOOC-CH ₂ CH ₂ -	DMSO-d ₆	-66.5	65
T ₈ -016	CH ₃ CH ₂ OOC-CH ₂ CH ₂ -	DMSO-d ₆	-66.8	65
T 017	sc ∧ OH		69.44	66
18-017	,	DIM30-06	-00.44	00
T ₈ -018	prt s of the second sec	DMSO-d₀	-68.51	66
			-67.04	67
			-67.1	68
T ₈ -019	N ₃ -CH ₂ CH ₂ -	CDCI ₃	-69.1	46
			-69.07	52
			-69.07	53
T ₀₋ 020		C_6D_6	-66.62	43
18-020		CDCl₃	-67.58	38
T ₈ -021	P ^{2⁵}	CDCI ₃	-66.52	57
T ₈ -022	, ^{2⁵} , Si N ₃	CDCI ₃	-66.60	57
T ₈ -023		CDCl ₃	-67.11	69
T ₈ -024	0	CDCI ₃	-66.81	70

Entry	Functional Group	NMR Solvent	Chemical Shift (ppm)	Ref
T ₈ -025		CDCl₃ CDCl₃ DMSO-d₀	-66.79 -68.5 -66.2	70 16 71
T ₈ -026		CDCl₃	-66.76	72
T ₈ -027	0 ₂ NO	CD ₂ Cl ₂	-66.7	72
T ₈ -028		CDCl₃	-66.70	44
T ₈ -029		CDCl₃	-66.70	44
T ₈ -030	Br	CDCl₃	-66.77	72
T ₈ -031	3-ammoniumpropyl, trifluoromethanesulfonate salt	DMSO- <i>d</i> ₆ DMSO- <i>d</i> ₆ DMSO- <i>d</i> ₆ DMSO- <i>d</i> ₆ DMSO- <i>d</i> ₆ D2O	-66.53 -66 -66.4 -66.63 -66.3 to -66.6 -66.7	73 74 75 76 77 78
T ₈ -032	$\begin{array}{c} H_3^{+}N \\ \hline \\ 2(CF_3SO_3) \end{array} H_2^{+} \\ \hline \\ \end{array}$	DMSO-d ₆	-66.7 -66.92 -66.8 to -66.9	75 76 77

<u>**Table S3**</u>. Selected ²⁹Si NMR Data for T₁₀ POSS Compounds with equivalent functional groups on all vertices (all Si atoms located in $5^{1}4^{2}$ positions)

Entry	Functional Group	NMR Solvent	Chemical Shift (ppm)	Ref
T ₁₀ -001	Н	$\begin{array}{c} C_6 D_6 \\ C_6 D_{12} \\ CDC I_3 \end{array}$	-86.26 -86.50 -86.4	6 7, 79 9
T ₁₀ -002	vinyl	CDCl₃	-81.40 -80.5	17 29
T ₁₀ -003	phenyl	CDCI ₃	-79.61	80
T ₁₀ -004	p-nitrophenyl	Acetone-d ₆	-80.92	34
T ₁₀ -005	p-(trimethylsilyl)phenyl	CDCl₃	-79.6	34
T ₁₀ -006		CDCl₃	-79.59	35, 81
T ₁₀ -007		CDCl₃	-78.85	82
T ₁₀ -008	Ethyl	CDCl₃	-67.56	38
T ₁₀ -009	3-chloropropyl	CDCl₃	-68.94 -68.95	44 57

Entry	Functional Group	NMR Solvent	Chemical Shift (ppm)	Ref
T ₁₀ -010	CI-C ₃ H ₆ -	CDCI ₃	-68.97	38
T ₁₀ -011	3-azidopropyl	CDCl ₃	-68.94	67
T ₁₀ -012	NCS-C ₃ H ₆ -	CDCl ₃	-69.56	38
T ₁₀ -013	HOOC-CH ₂ CH ₂ -	DMSO-d ₆	-68.7	65
T ₁₀ -014	CH ₃ CH ₂ OOC-CH ₂ CH ₂ -	DMSO-d ₆	-68.9	65
T ₁₀ -015	H ₃ ⁺ N CF ₃ SO ₃	DMSO-d₅	-68.3 -68.3 to -68.6	75 77
T ₁₀ -016	$H_3^*N \underbrace{N_{+}}_{2(CF_3SO_3)} H_2^* \underbrace{N_{+}}_{J_2} \mathcal{I}^{J_2}$	DMSO-d ₆	-68.9 -68.7 to -69.0	75 77
T ₁₀ -017		CDCl₃	-68.70	70
T ₁₀ -018	0 	CDCl₃ DMSO-d₀	-68.64 -68.1	70 71
T ₁₀ -019	C ₈ H ₁₇ -	CDCI ₃	-68.68	38
T ₁₀ -020	PH S	DMSO-d ₆	-70.65	66
T ₁₀ -021	prt-solutions	DMSO-d ₆	-70.69	66
T ₁₀ -022	, ^{2⁵} , Si, Cl	CDCl ₃	-68.45	57
T ₁₀ -023	s ² , N ₃	CDCl₃	-68.51	57
T ₁₀ -024		CDCl₃	-68.62	72
T ₁₀ -025	0 ₂ N-0	DMSO-d ₆	-68.1	72
T ₁₀ -026	O ₂ N	CDCI ₃	-68.53	44
T ₁₀ -027		CDCl₃	-68.41	44
T ₁₀ -028		CDCl₃	-68.95	69
T ₁₀ -029	Br	CDCI3	-68.6	72

<u>**Table S4**</u>. Selected ²⁹Si NMR Data for T_{12} POSS Compounds with equivalent functional groups on all vertices

Entry	Functional Group	NMR Solvent	Si Speciation ar Shift (pr	Ref	
			5 ¹ 4 ²	5 ² 4 ¹	
T ₁₂ -001	Н	C_6D_6	-85.78	-87.76	6
T ₁₂ -002	Vinyl	CDCl₃	-80.24 -81.36	-83.26 -83.37	17 29
T ₁₂ -003	phenyl	CDCl ₃ or THF-d ₈	-78.2	-80.1	83
T ₁₂ -004	p-nitrophenyl	Acetone-d ₆	-80.34	-82.24	34
T ₁₂ -005	p-(trimethylsilyl)phenyl	CDCI ₃	-79.4	-81.5	34
T ₁₂ -006		CDCl₃	-79.45	-81.29	35
T ₁₂ -007		CDCl₃	-78.69	-80.44	82
T ₁₂ -008	Ethyl	CDCI ₃	-67.53	-69.79	38
T ₁₂ -009	Cyclohexyl	CDCI ₃ or C ₆ D ₆	-71.29	-74.29	40
T ₁₂ -010	CI-CaHe-		-68.73	-71.37	38
112-010		00013	-68.71	-71.37	57
T ₁₂ -011	NCS-C ₃ H ₆ -	CDCI3	-69.27	-72.07	38
T ₁₂ -012	3-chloropropyl	CDCl ₃	-68.68	-71.34	44
T ₁₂ -013	3-azidopropyl		-68.69	-71.36	67
I ₁₂ -014	CF ₃ CH ₂ CH ₂ -	IHF-d ₈	-69.24	-72.05	84
T ₁₂ -015	^{sst} S	DMSO-d ₆	-70.44	-72.89	66
T ₁₂ -016		DMSO-d ₆	-70.48	-72.92	66
T ₁₂ -017	^₂ ² , Si, Cl	CDCI ₃	-68.25	-70.94	57
T ₁₂ -018	^₂ ^s , Si, N ₃	CDCl₃	-68.37	-71.04	57
T ₁₂ -019		CDCl₃	-68.47	-71.18	70
T ₁₂ -020		CDCl₃ DMSO-6 ₆	-68.44 -67.3	-71.14 -70.3	70 71
T ₁₂ -021	H ₃ ⁺ N CF ₃ SO ₃	DMSO-d₀	-67.6	-70.7	75
T ₁₂ -022	$\begin{array}{c} H_3^+ N \\ \hline \\ 2(CF_3 SO_3) \end{array} H_2^+ \\ \hline \\ \end{array} J^{J^5}$	DMSO-d ₆	-68.0 -68.7 to-69.0	-71.3 -71.2	75 77
T ₁₂ -023		CDCl₃	-68.30	-71.03	72
T ₁₂ -024	0 ₂ N	DMSO-d₀	-67.8	-70.3	72

Entry	Functional Group	NMR Solvent	Si Speciation ar Shift (pr	Ref	
			5 ¹ 4 ²	5 ² 4 ¹	
T ₁₂ -025	O ₂ N	CDCl₃	-68.21	-70.90	44
T ₁₂ -026		CDCl₃	-67.98	-70.75	44
T ₁₂ -027	Br	CDCl₃	-68.30	-70.97	72
T ₁₂ -028		CDCl ₃	-68.74	-71.46	69

<u>**Table S5**</u>. Selected ²⁹Si NMR Data for T_n POSS Compounds with n > 12 and with equivalent functional groups on all vertices

Cage Functional NMR		NMR	Chemical shift (ppm) and silicon speciation						Def		
Туре	Group	Solvent	6 ² 4 ¹	6 ¹ 4 ²	6 ² 5 ¹	6 ¹ 5 ¹ 4 ¹	5 ¹ 4 ²	5 ² 4 ¹	5 ³	4 ³	Rei
Т ₁₄ , D _{3h}	Н	C_6D_6						-87.89 -88.03	-89.71		6
T ₁₄ , D _{3h}	Ph	CDCl₃ C ₆ D ₆	-80.1 -79.1	-78.3 -77.6						-76.9 -76.2	85
T ₁₄ C _{2v}	Н			-85.35		-87.68	-85.76	-87.95	-88.72		6
T ₁₆ D _{4d}	Н							-88.10	-89.27		6
T ₁₈		CDCl ₃	-77.40	-78.35	-79.12	-79.18	-79.35				86

Table S6. Selected ²⁹Si NMR Data for Qn POS Compounds with equivalent functional groups on all vertices

Entry	Functional Group	NMR Solvent	Cage Chemical Shift (ppm)	Ref
Q ₆ -001	OSi(Me)₃	Heptane	-98.84	87
Q ₆ -002	OSi(Me)₂H	CDCl₃	-99.03 -98.94	88 89
Q ₆ -003	OSi(Me)₂OH	THF-d ₈	-99.94	88
Q ₆ -004	-OH ¹	(CD ₃) ₂ CO	-90.9	90
Q ₈ -001	OSi(Me)₃	Benzene THF- <i>d</i> ଃ	-109.3 -108.95	91 92
Q ₈ -002	OSiMe₂H	CDCl₃ CDCl₃ Heptane	-108.7 -110.6 -109.36	93 7

Entry	Functional Group	NMR Solvent	Cage Chemical Shift (ppm)	Ref
		THF-d ₈	-110.34	94
		CDCI ₃	-108.65	92
				95
Q8-003	OSiMe ₂ OH	THF-d ₈	-109.42	96
Q8-004	OSi(Me) ₂ CHCH ₂	CDCl ₃	-109.03	97
Q ₈ -005	-OSi(OMe)₃	CD₃CN	-110.3	98
Q ₈ -006	-OSi(Vi)(OMe) ₂	CD₃CN	-110.2	98
0,007		THF-d ₈	-100.0	93
Q8-007	-011	(CD ₃) ₂ CO	-100.2	90
Q8-008	-OSi(Me) ₂ CH ₂ Cl	CDCI ₃	-109.32	97
Q ₈ -009	-OSi(ⁱ Pr)₂H	CDCl ₃	-109.02	99
Q8-010	-OSi(ⁱ Pr)₂OH	THF-d ₈	-109.7	99
Q ₈ -011	-OSi(Ph)₂OH	THF-d ₈	-109.9	100
Q8-013	-OSi(OEt) ₂ H	DMF-d7	-110.2	101
Q ₁₀ -001	-OSi(Me)₃	Benzene	-110.2	91, 102
Q ₁₀ -002	-OSi(Me) ₂ CHCH ₂	CDCl ₃	-110.36	97
Q ₁₀ -003	-OSiMe ₂ CH ₂ Cl	CDCl ₃	-110.82	97
Q ₁₂ -001	-OSi(Me)₃	C ₆ D ₆	-108.77 (5 ¹ 4 ²) -110.48 (5 ² 4 ¹)	103
Q ₁₂ -002	-OSi(Me) ₂ H (6 ¹ 4 ²), D _{6h}	CDCl₃	-109.58 -109-54	95 104
Q ₁₂ -003	-OSi(Me) ₂ OH (6 ¹ 4 ²), D _{6h}	THF-d ₈	-110.62	104
Q ₁₂ -004	-OH, D _{6h} ¹	DMSO-d ₆	-101.2	105
Q14-001	-OSi(Me)₃ (D₃h)	C ₆ D ₆	-110.61 (5 ² 4 ¹) -110.77 (5 ² 4 ¹) -112.35 (5 ³)	103
Q ₁₄ -002	-OSi(Me) ₃ (C _{2v})	C ₆ D ₆	-108.75 (6 ¹ 4 ²) -108.96 (6 ¹ 5 ¹ 4 ¹) -110.39 (5 ¹ 4 ²) -110.78 (5 ² 4 ¹) -111.53 (5 ³)	103

¹ The Si sites in these compounds are Q^3 ; all others are Q^4 .

<u>**Table S7**</u>. Functional groups used to derive parameters A', B', C' and D' in Equation 2 for Q_n compounds, together with the values of k_i obtained via least-squares fitting

Functional Group	Q _n cages used to derive <i>k_i</i> for each functional group (no. chemical shifts shown in parenthesis)							
	Q ₆ (1)	Q8 (1)	Q ₁₀ (1)	Q ₁₂ (D _{6h}) (1)	Q ₁₂ (D _{2d}) (2)	Q ₁₄ (A) (D _{3h}) (2)	Q ₁₄ (C) (C _{2v}) (5)	ki ki
-OSi(Me)₃	Х	Х	Х		х	х	х	-108.6
-OSi(Me) ₂ H	Х	Х		Х				-109.4
-OSi(Me) ₂ OH	Х	Х		Х				-110.0
-OH ¹	Х	х						-100.0

¹ The Si sites in these compounds are Q^3 ; all others are Q^4 .

References

- 1. S. V. Basenko and A. A. Maylyan, *Russ. Chem. Bull.*, 2016, **65**, 1034-1038.
- 2. A. R. Bassindale, I. A. MacKinnon, M. G. Maesano and P. G. Taylor, *Chem. Commun.*, 2003, **3**, 1382-1383.
- 3. M. Unno, A. Suto, K. Takada and H. Matsumoto, *Bull. Chem. Soc. Jpn.*, 2000, **73**, 215-220.
- 4. F. J. Feher, D. A. Newman and J. F. Walzer, *J. Am. Chem. Soc.*, 1989, **111**, 1741-1748.
- 5. P. P. Pescarmona, J. C. Van Der Waal and T. Maschmeyer, *Eur. J. Inorg. Chem.*, 2004, DOI: 10.1002/ejic.200300494, 978-983.
- 6. P. A. Agaskar and W. G. Klemperer, *Inorg. Chim. Acta*, 1995, **229**, 355-364.
- 7. P. G. Harrison and C. Hall, *Main Group Met. Chem.*, 1997, **20**, 515-529.
- 8. W. J. Lin, W. C. Chen, W. C. Wu, Y. H. Niu and A. K. Y. Jen, *Macromolecules*, 2004, **37**, 2335-2341.
- 9. A. R. Bassindale and T. E. Gentle, J. Mater. Chem., 1993, **3**, 1319-1325.
- 10. E. Markovic, M. Ginic-Markovic, S. Clarke, J. Matisons, M. Hussain and G. P. Simon, *Macromolecules*, 2007, **40**, 2694-2701.
- 11. C. Bolln, A. Tsuchida, H. Frey and R. Mülhaupt, *Chem. Mater.*, 1997, **9**, 1475-1479.
- 12. A. Tsuchida, C. Bolln, F. G. Sernetz, H. Frey and R. Mülhaupt, *Macromolecules*, 1997, **30**, 2818-2824.
- 13. S. Rakesh, C. P. S. Dharan, M. Selladurai, V. Sudha, P. R. Sundararajan and M. Sarojadevi, *High Perform Polym*, 2013, **25**, 87-96.
- 14. A. R. Bassindale, D. J. Parker, M. Pourny, P. G. Taylor, P. N. Horton and M. B. Hursthouse, *Organometallics*, 2004, **23**, 4400-4405.
- 15. S. E. Anderson, D. J. Bodzin, T. S. Haddad, J. A. Boatz, J. M. Mabry, C. Mitchell and M. T. Bowers, *Chem. Mater.*, 2008, **20**, 4299-4309.
- 16. H. Cai, X. Zhang, K. Xu, H. Liu, J. Su, X. Liu, Z. Fu, Y. Guo and M. Chen, *Polym. Adv. Technol.*, 2012, **23**, 765-775.
- 17. JP2008266248, 2008.
- 18. M. A. Hoque, Y. H. Cho and Y. Kawakami, *React Funct Polym*, 2007, **67**, 1192-1199.
- 19. B. M. Moore, S. M. Ramirez, G. R. Yandek, T. S. Haddad and J. M. Mabry, *J. Organomet. Chem.*, 2011, **696**, 2676-2680.
- 20. B. H. Yang, H. Y. Xu, C. Li and S. Y. Guang, *Chin. Chem. Lett.*, 2007, **18**, 960-962.
- 21. P. Siripanich, T. Bureerug, S. Chanmungkalakul, M. Sukwattanasinitt and V. Ervithayasuporn, *Organometallics*, 2022, **41**, 201-210.
- 22. X. M. Wang, Q. Y. Guo, S. Y. Han, J. Y. Wang, D. Han, Q. Fu and W. B. Zhang, *Chem. Eur. J.*, 2015, **21**, 15246-15255.
- 23. W. Zeng, H. Huang, L. Song, X. Jiang and X. Zhang, J. Coat. Tech. Res., 2020, 17, 181-191.
- 24. W. Tao, H. Zhou, Y. Zhang and G. Li, *Appl Surf Sci*, 2008, **254**, 2831-2836.
- 25. C. Zhao, X. Yang, X. Wu, X. Liu, X. Wang and L. Lu, *Polym. Bull.*, 2008, **60**, 495-505.
- 26. Y. Xia, H. Yao, M. Cui, Y. Ma, Z. Kong, B. Wu, Z. Qi and Y. Sun, *RSC Adv.*, 2015, **5**, 80339-80345.
- 27. J. Il So, D. H. Shin, J. B. Kim, H. W. Jeong, C. H. Kim, J. Choi, S. E. Shim and Y. Qian, *J. Ind. Eng. Chem.*, 2022, **113**, 502-512.
- 28. H. Berk, M. Kaya and A. Cihaner, *Polym. Chem.*, 2022, **13**, 5152-5158.
- 29. D. L. Zhou, J. H. Li, Q. Y. Guo, X. Lin, Q. Zhang, F. Chen, D. Han and Q. Fu, *Adv. Funct. Mater.*, 2021, DOI: 10.1002/adfm.202102074.
- 30. Z. Qi, W. Zhang, X. He and R. Yang, *Composites Science and Technology*, 2016, **127**, 8-19.
- 31. B. Yang, H. Xu, J. Wang, S. Gang and C. Li, J. Appl. Polym. Sci., 2007, **106**, 320-326.
- 32. Y. Leng, J. Zhao, P. Jiang and J. Wang, *RSC Adv.*, 2015, **5**, 17709-17715.
- 33. Y. Y. Yang, X. Wang, Y. Hu, H. Hu, D. C. Wu and F. J. Xu, ACS Appl. Mater. Interfaces, 2014, **6**, 1044-1052.
- 34. A. Miyazato, C. Pakjamsai and Y. Kawakami, *Dalton Trans.*, 2010, **39**, 3239-3244.
- 35. M. Laird, A. Van Der Lee, D. G. Dumitrescu, C. Carcel, A. Ouali, J. R. Bartlett, M. Unno and M. Wong Chi Man, *Organometallics*, 2020, **39**, 1896-1906.

- 36. S. Sulaiman, A. Bhaskar, J. Zhang, R. Guda, T. Goodson III and R. M. Laine, *Chem. Mater.*, 2008, **20**, 5563-5573.
- 37. G. M. Poliskie, T. S. Haddad, R. L. Blanski and K. K. Gleason, *Thermochim Acta*, 2005, **438**, 116-125.
- 38. E. Rikowski and H. C. Marsmann, *Polyhedron*, 1997, **16**, 3357-3361.
- 39. A. R. Bassindale, Z. Liu, I. A. MacKinnon, P. G. Taylor, Y. Yang, M. E. Light, P. N. Horton and M. B. Hursthouse, *Dalton Trans.*, 2003, DOI: 10.1039/b302950f, 2945-2949.
- 40. F. J. Feher and T. A. Budzichowski, *J. Organomet. Chem.*, 1989, **373**, 153-163.
- 41. M. Unno, S. B. Alias, M. Arai, K. Takada, R. Tanaka and H. Matsumoto, *Appl. Organomet. Chem.*, 1999, **13**, 303-310.
- 42. J. Falkenhagen, H. Jancke, R. P. Krüger, E. Rikowski and G. Schulz, *Rapid Commun. Mass Spectrom.*, 2003, **17**, 285-290.
- 43. U. Dittmar, B. J. Hendan, U. Flörke and H. C. Marsmann, J. Organomet. Chem., 1995, 489, 185-194.
- 44. S. Hanprasit, N. Tungkijanansin, A. Prompawilai, S. Eangpayung and V. Ervithayasuporn, *Dalton Trans.*, 2016, **45**, 16117-16120.
- 45. B. Marciniec, M. Dutkiewicz, H. Maciejewski and M. Kubicki, *Organometallics*, 2008, **27**, 793-794.
- 46. Z. Ge, D. Wang, Y. Zhou, H. Liu and S. Liu, *Macromolecules*, 2009, **42**, 2903-2910.
- 47. J. Shen and S. Zheng, J Polym Sci Part B, 2006, 44, 942-952.
- 48. L. Liu, W. Wang and X. Guo, *E-Polymers*, 2010, DOI: 10.1515/epoly.2010.10.1.1587.
- 49. W. Wang, M. Fei, X. Jie, P. Wang, H. Cao and J. Yu, *Polym. Bull.*, 2010, **65**, 863-872.
- 50. W. Yuan, J. Shen, L. Li, X. Liu and H. Zou, *Carbohydr Polym*, 2014, **113**, 353-361.
- 51. X. Qiang, X. Ma, Z. Li and X. Hou, *Colloid and Polymer Science*, 2014, **292**, 1531-1544.
- 52. A. Uner, E. Doganci, M. A. Tasdelen, F. Yilmaz and A. G. Gürek, *Polym. Int.*, 2017, **66**, 1610-1616.
- 53. E. Doganci, A. Uner, B. Canimkurbey, R. Ozdogan and M. A. Tasdelen, *Polym. Adv. Technol.*, 2018, **29**, 3020-3026.
- 54. J. Chojnowski, W. Fortuniak, P. Rościszewski, W. Werel, J. Łukasiak, W. Kamysz and R. Hałasa, *Journal of Inorganic and Organometallic Polymers and Materials*, 2006, **16**, 219-230.
- 55. J. Tan, D. Ma, X. Sun, S. Feng and C. Zhang, *Dalton Trans.*, 2013, **42**, 4337-4339.
- 56. Y. Leng, J. Liu, P. Jiang and J. Wang, ACS Sustainable Chem. Eng., 2015, **3**, 170-176.
- 57. H. Wang, M. X. Nie, X. Lin, X. Q. Li, H. Liu, Q. Y. Guo, D. Han and Q. Fu, *Dalton Trans.*, 2024, DOI: 10.1039/d4dt00440j.
- 58. Y. Xu, J. Long, R. Zhang, Y. Du, S. Guan, Y. Wang, L. Huang, H. Wei, L. Liu and Y. Huang, *Polym Degradation Stab*, 2020, **174**.
- 59. A. M. C. Dumitriu, M. Balan, A. Bargan, S. Shova, C. D. Varganici and M. Cazacu, *J. Mol. Struct.*, 2016, **1110**, 150-155.
- 60. N. L. Dias Filho, R. M. Costa, F. Marangoni and D. S. Pereira, *J. Colloid Interface Sci.*, 2007, **316**, 250-259.
- 61. N. L. Dias Filho, R. M. Costa and M. S. Schultz, *Inorg. Chim. Acta*, 2008, **361**, 2314-2320.
- 62. V. Elumalai and D. Sangeetha, *J Power Sources*, 2018, **375**, 412-420.
- 63. L. Ma, Y. Zhu, M. Wang, X. Yang, G. Song and Y. Huang, *Composites Science and Technology*, 2019, **170**, 148-156.
- 64. S. T. Iacono, A. Vij, W. Grabow, D. W. Smith Jr and J. M. Mabry, *Chem. Commun.*, 2007, DOI: 10.1039/b712976a, 4992-4994.
- 65. T. Kozuma and Y. Kaneko, *J Polym Sci Part A*, 2019, **57**, 2511-2518.
- 66. X. Lin, M. X. Nie, H. Liu, D. L. Zhou, S. R. Fu, Q. Zhang, D. Han and Q. Fu, *Chem. Mater.*, 2024, **296**, 575-584.
- 67. V. Ervithayasuporn, X. Wang and Y. Kawakami, *Chem. Commun.*, 2009, DOI: 10.1039/b909802j, 5130-5132.
- 68. J. Zhang, D. Si, S. Wang, H. Liu, X. Chen, H. Zhou, M. Yang and G. Zhang, *Macromol. Res.*, 2020, **28**, 152-158.
- 69. T. Jaroentomeechai, P. K. Yingsukkamol, C. Phurat, E. Somsook, T. Osotchan and V. Ervithayasuporn, *Inorg. Chem.*, 2012, **51**, 12266-12272.
- 70. V. Ervithayasuporn and S. Chimjarn, *Inorg. Chem.*, 2013, **52**, 13108-13112.
- 71. J. Peng, K. Xu, H. Cai, J. Wu, W. Lin, Z. Yu and M. Chen, *RSC Adv.*, 2014, **4**, 7124-7131.

- 72. S. Chimjarn, R. Kunthom, P. Chancharone, R. Sodkhomkhum, P. Sangtrirutnugul and V. Ervithayasuporn, *Dalton Trans.*, 2015, **44**, 916-919.
- 73. M. Janeta, Ł. John, J. Ejfler and S. Szafet, *Chem. Eur. J.*, 2014, **20**, 15966-15974.
- 74. Y. Kaneko, M. Shoiriki and T. Mizumo, J. Mater. Chem., 2012, 22, 14475-14478.
- 75. K. Imai and Y. Kaneko, *Inorg. Chem.*, 2017, **56**, 4133-4140.
- 76. T. Matsumoto and Y. Kaneko, *Chem. Lett.*, 2018, **47**, 864-867.
- 77. T. Matsumoto and Y. Kaneko, *Bull. Chem. Soc. Jpn.*, 2019, **92**, 1060-1067.
- 78. G. Soufi, H. Bagheri, L. Yeganeh Rad and S. Minaeian, *Anal. Chim. Acta*, 2022, **1198**.
- 79. J. Kowalewski, T. Nilsson and K. W. Törnroos, *Journal of the Chemical Society Dalton Transactions*, 1996, DOI: 10.1039/DT9960001597, 1597-1599.
- 80. J. C. Furgal, T. Goodson, III and R. M. Laine, *Dalton Trans.*, 2016, **45**, 1025-1039.
- 81. M. Laird, J. Yokoyama, C. Carcel, M. Unno, J. R. Bartlett and M. Wong Chi Man, *J Sol Gel Sci Technol*, 2020, **95**, 760-770.
- 82. J. C. Furgal, J. H. Jung, T. Goodson and R. M. Laine, J. Am. Chem. Soc., 2013, 135, 12259-12269.
- 83. A. S. Lee, S. S. Choi, H. S. Lee, K. Y. Baek and S. S. Hwang, *Dalton Trans.*, 2012, **41**, 10585-10588.
- 84. M. Iacob, A. Bele, A. Airinei and M. Cazacu, *Colloids Surf. A Physicochem. Eng. Asp.*, 2017, **522**, 66-73.
- 85. M. Hunsicker, B. Morgenstern, M. Zimmer and D. Scheschkewitz, *Chem. Eur. J.*, 2023, Art. e202303640.
- 86. M. Laird, N. Herrmann, N. Ramsahye, C. Totée, C. Carcel, M. Unno, J. R. Bartlett and M. Wong Chi Man, *Angew. Chem. Int. Ed.*, 2021, **60**, 3022-3027.
- 87. D. Hoebbel, G. Engelhardt, A. Samoson, K. Újszászy and Y. I. Smolin, *Z. Anorg. Allg. Chem.*, 1987, **552**, 236-240.
- 88. N. Sato, K. Tochigi, Y. Kuroda, H. Wada, A. Shimojima and K. Kuroda, *Dalton Trans.*, 2019, **48**, 1969-1975.
- 89. P. G. Harrison, R. Kannengiesser and C. J. Hall, *Main Group Met. Chem.*, 1997, **20**, 137-141.
- 90. WO2018193732, 2018.
- 91. D. Hoebbel, W. Wieker, G. Garzó, G. Engelhardt, H. Jancke and P. Franke, Z. Anorg. Allg. Chem., 1976, **424**, 115-127.
- 92. I. Hasegawa, K. Ino and H. Ohnishi, *Appl. Organomet. Chem.*, 2003, **17**, 287-290.
- 93. T. Nozawa, T. Matsumoto, F. Yagihashi, T. Beppu, K. Sato and M. Igarashi, *Chem. Lett.*, 2018, **47**, 1530-1533.
- 94. D. Hoebbel, I. Pitsch, A. R. Grimmer, H. Jancke, W. Hiller and R. K. Harris, *Zeitschrift für Chemie*, 1989, **29**, 260-261.
- 95. M. Kikuchi, T. Hayashi, T. Matsuno, K. Kuroda and A. Shimojima, *Dalton Trans.*, 2024, **53**, 6256-6263.
- 96. N. Sato, Y. Kuroda, H. Wada, A. Shimojima and K. Kuroda, *Chem. Eur. J.*, 2018, **24**, 17033-17038.
- 97. P. A. Agaskar, Synth. React. Inorg. Met-Org. Chem., 1990, 20, 483-493.
- 98. T. Nozawa, T. Kobayashi, T. Matsumoto, F. Yagihashi, K. Sato and M. Igarashi, *Dalton Trans.*, 2021, **50**, 1594-1598.
- 99. N. Sato, Y. Kuroda, H. Wada, A. Shimojima and K. Kuroda, *Chem. Lett.*, 2021, **50**, 1770-1772.
- 100. K. Kawahara, H. Tachibana, Y. Hagiwara and K. Kuroda, *New J. Chem.*, 2012, **36**, 1210-1217.
- 101. WO2021085482, 2021.
- 102. D. Hoebbel, W. Wieker, P. Franke and A. Otto, Z. Anorg. Allg. Chem., 1975, 418, 35-44.
- 103. P. A. Agaskar, V. W. Day and W. G. Klemperer, J. Am. Chem. Soc., 1987, 109, 5554-5556.
- 104. N. Sato, H. Wada, K. Kuroda and A. Shimojima, *Chem. Lett.*, 2024, **53**.
- 105. JP2023130962, 2023.