# Electronic Supplementary Information Four Noncentrosymmetric Molybdophosphates Discovered by Chemical Substitution Strategy

Zhixia Gao,<sup>a, b</sup> Ke Li,<sup>a</sup> Hong Du,<sup>\*b, c</sup> and Tuohetijiang Baiheti<sup>\*a</sup>

<sup>a</sup>Research Center for Crystal Materials; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.

<sup>b</sup>College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, P. R. China.

<sup>c</sup>Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi, 830054, China.

\*Corresponding authors, \*E-mails: 2629841619@qq.com., 175790509@qq.com

# **Table of Contents**

| Title                                                                                                                                                                                                                                        | Page |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Experimental Section                                                                                                                                                                                                                         | S3   |
| <b>Table S1.</b> Atomic coordinates, equivalent isotropic displacement parameter and bondvalence sum for $A_x B_{4-x} Mo_5 P_2 O_{22}$ (A = Na, K, B = Rb, Cs).                                                                              | S5   |
| <b>Table S2.</b> Bond lengths [Å] and angles [°] for KCs <sub>3</sub> Mo <sub>5</sub> P <sub>2</sub> O <sub>22</sub> .                                                                                                                       | S8   |
| <b>Table S3.</b> Bond lengths [Å] and angles [°] for K <sub>4</sub> Mo <sub>5</sub> P <sub>2</sub> O <sub>22</sub> .                                                                                                                         | S11  |
| <b>Table S4.</b> Bond lengths [Å] and angles [°] for $K_2Rb_2Mo_5P_2O_{22}$ .                                                                                                                                                                | S14  |
| <b>Table S5.</b> Bond lengths [Å] and angles [°] for NaRb <sub>3</sub> Mo <sub>5</sub> P <sub>2</sub> O <sub>22</sub> .                                                                                                                      | S17  |
| Table S6. Dipole moments of $MoO_6$ , and $PO_4$ polyhedra in $K_4Mo_5P_2O_{22}$ , $Rb_4Mo_5P_2O_{22}$ , and $Cs_4Mo_5P_2O_{22}$ .                                                                                                           | S20  |
| Figure S1. TG-DSC curves of $A_xB_{4-x}Mo_5P_2O_{22}$ (A = Na, K, B = Rb, Cs).                                                                                                                                                               | S21  |
| Figure S2. XRD patterns of $A_x B_{4-x} Mo_5 P_2 O_{22}$ (A = Na, K, B = Rb, Cs).                                                                                                                                                            | S22  |
| Figure S3. IR data of $A_x B_{4-x} Mo_5 P_2 O_{22}$ (A = Na, K, B = Rb, Cs).                                                                                                                                                                 | S23  |
| Figure S4. UV–Vis–NIR diffuse–reflectance spectra of (a) $K_4Mo_5P_2O_{22}$ , (b) $K_2Rb_2Mo_5P_2O_{22}$ , (c) $KCs_3Mo_5P_2O_{22}$ , and (d) $NaRb_3Mo_5P_2O_{22}$ .                                                                        | S24  |
| Figure S5. Oscilloscope traces of the SHG signals for the powders for KDP, $K_4Mo_5P_2O_{22}$ (a),<br>and (b) $KCs_3Mo_5P_2O_{22}$ .                                                                                                         | S25  |
| Figure S6. Dipole moment directions of the $PO_4$ and $MoO_6$ polyhedra in $KCs_3Mo_5P_2O_{22}$ ,<br>$K_4Mo_5P_2O_{22}$ , and $Cs_4Mo_5P_2O_{22}$ .                                                                                          | S26  |
| Figure S7. The SHG density maps of the VE occupied (left) and VE unoccupied orbitals (right) of K <sub>4</sub> Mo <sub>5</sub> P <sub>2</sub> O <sub>22</sub> (a-b), NaRb <sub>3</sub> Mo <sub>5</sub> P <sub>2</sub> O <sub>22</sub> (c-d). | S27  |
| Figure S8. Calculated band structures of the GGA method, (a) $K_4Mo_5P_2O_{22}$ , (b)<br>$KCs_3Mo_5P_2O_{22}$ , and (c) $NaRb_3Mo_5P_2O_{22}$ .                                                                                              | S28  |

#### **Experimental Section**

#### **Compound Synthesis.**

Reagents: Na<sub>2</sub>CO<sub>3</sub> (99.9 %), K<sub>2</sub>CO<sub>3</sub> (99.0 %), Rb<sub>2</sub>CO<sub>3</sub> (99.0 %), Cs<sub>2</sub>CO<sub>3</sub> (99.0 %), MoO<sub>3</sub> (99.0 %), NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> (99.0 %) from Aladdin Chemical Industry Co., Ltd. were used as received from commercial sources without any further purification.

The single crystals of  $A_xB_{4-x}Mo_5P_2O_{22}$  (A = Na, K, B = Rb, Cs) were obtained through spontaneous crystallization. The stoichiometric reagents of  $(A/B)_2CO_3$ , (A = Na, K, B = Rb, Cs), MoO\_3, and NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> were mixed thoroughly and placed in platinum crucibles, which were further placed in vertical, programmable temperature furnaces. The mixtures were heated to 780 °C, held at this temperature for 12 h, and then slowly cooled down to 400 °C at a rate of 3 °C·h<sup>-1</sup>, followed by rapid cooling to room temperature. The crystals were separated mechanically from the crucible, and polycrystalline powder was obtained by grinding single crystals from spontaneous crystallization for performance characterization.

#### Single Crystal X-ray Diffraction.

Selected high–quality single crystals with a suitable size were used for structural characterization. The selected single crystals were stuck to a glass fiber separately to collect the crystal structure data by a Bruker D8 Venture diffractometer with Mo target (K $\alpha$  radiation, wavelength  $\lambda$  = 0.71073 Å) at room temperature. The program SAINT was utilized to perform data integration, cell refinement, and absorption corrections. The structure models were solved under the direct method and refined through the full matrix least–squares fitting on  $F^2$  with OLEX2 and SHELXTL programs.<sup>[1-2]</sup> The structural validity of them was confirmed by the ADDSYM algorithm from PLATON.<sup>[3]</sup> Table S6 shows the crystal data and structure refinements. The atomic coordinates, equivalent isotropic displacement parameters, and BVS calculations are given in Table S1. Selected bond lengths and angles are listed in Tables S2–5.

## Powder X-ray Diffraction.

Powder X–ray diffraction (XRD) data of polycrystalline materials were obtained via a Bruker D2 PHASER diffractometer equipped with Cu K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at room temperature. The 2 $\theta$  range, step size, and fixed counting time were adjusted to 10–70°, step size 0.02°, and 1 s/step, respectively. No impurities were observed, and the experimental powder XRD profiles are in good agreement with the calculated ones derived from the single–crystal data (Figure S2).

#### **Thermal Analysis.**

Thermal gravimetric (TG) and differential scanning calorimetry (DSC) were carried out on a NETZSCH STA 449C instrument at a temperature range of 50–650  $^{\circ}$ C with a heating rate of 5  $^{\circ}$ C·min<sup>-1</sup> in an atmosphere of flowing N<sub>2</sub>.

### **Optical Spectroscopy.**

The IR performance of  $A_xB_{4-x}Mo_5P_2O_{22}$  (A = Na, K, B = Rb, Cs) in the wavelength region 400–4000 cm<sup>-1</sup> was inspected via a Shimadzu IR Affinity–1 spectrometer at room temperature. The powder sample (nearly 5 mg) was mixed well with about 500 mg of dried KBr (99.9% purity) and compressed into thin cylindrical plates. Meanwhile, the UV diffuse reflectance data of the four compounds were collected with a Shimadzu SolidSpec–3700DUV spectrophotometer at room temperature; the measurement was carried out within the wavelength region 245–2500 nm. By using the Kubelka–Munk function<sup>[4]</sup> collected UV reflectance spectrum data was translated into absorbance data.

#### Powder SHG Measurement.

This measurement was operated according to the Kurtz–Perry method using a Q–switched Nd:  $YVO_4$  solid–state laser at 1064 nm.<sup>[5]</sup> The polycrystalline samples underwent grinding and sieving, resulting in the classification of particles into specific size ranges as follows: 38–55, 55–88, 88–105, 105–150, 150–200, and 200–250  $\mu$ m. KDP samples were used as the reference.

### **Theoretical Calculations.**

The optical properties and electronic structures were investigated by utilizing CASTEP based on density functional theory, a plane–wave pseudopotential total energy package.<sup>[6-7]</sup> The generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof exchange–correlation functional was opted for all the calculations,<sup>[8-9]</sup> with the energy cutoffs 750 eV. Norm–conserving pseudopotentials were used, and valence electrons were established by considering the following orbital electrons: O  $2s^22p^4$ , Na  $3s^1$ , P  $3s^23p^3$ , K  $4s^1$ , Rb  $5s^1$ , Cs  $6s^1$ .<sup>[10]</sup> In the Brillouin zone corresponding to the primitive cell, the k–point separation for K<sub>4</sub>Mo<sub>5</sub>P<sub>2</sub>O<sub>22</sub>, KCs<sub>3</sub>Mo<sub>5</sub>P<sub>2</sub>O<sub>22</sub>, and NaRb<sub>3</sub>Mo<sub>5</sub>P<sub>2</sub>O<sub>22</sub> were set as 0.02, 0.04, and 0.04 Å<sup>-1</sup> respectively. The value of the scissor operator was set as the difference between the experimental band gap and the band gap calculated by the GGA method for the calculation of optical properties. The refractive indices were determined from the real part of the dielectric constant, which was obtained by a Kramers–Kronig transformation of the calculated imaginary part of the dielectric function.

| Atom              | x        | У                                 | Z                              | U( <sub>eq</sub> ) | BVS   |  |
|-------------------|----------|-----------------------------------|--------------------------------|--------------------|-------|--|
|                   |          | K₄Mo₅F                            | P <sub>2</sub> O <sub>22</sub> |                    |       |  |
| K(1)              | 5406(3)  | 7400(1)                           | 3972(1)                        | 42(1)              | 0.992 |  |
| К(2)              | 475(4)   | 5000                              | 5000                           | 47(1)              | 0.723 |  |
| К(З)              | 10000    | 4228(1)                           | 7500                           | 31(1)              | 1.292 |  |
| Mo(1)             | 5000     | 7447(1)                           | 7500                           | 16(1)              | 6.119 |  |
| Mo(2)             | 5753(1)  | 6441(1)                           | 5900(1)                        | 20(1)              | 6.107 |  |
| Mo(3)             | 5021(1)  | 4759(1)                           | 6410(1)                        | 19(1)              | 6.033 |  |
| P(1)              | 7812(3)  | 5947(1)                           | 7680(1)                        | 16(1)              | 5.060 |  |
| O(1)              | 6753(9)  | 7996(3)                           | 7924(3)                        | 27(1)              | 2.161 |  |
| O(2)              | 6669(8)  | 7157(3)                           | 6631(3)                        | 20(1)              | 2.074 |  |
| O(3)              | 4062(10) | 6916(3)                           | 5350(3)                        | 32(1)              | 2.090 |  |
| O(4)              | 7998(10) | 6424(3)                           | 5374(4)                        | 39(1)              | 1.903 |  |
| O(5)              | 6689(8)  | 6538(2)                           | 8098(3)                        | 17(1)              | 2.021 |  |
| O(6)              | 10000    | 6294(3)                           | 7500                           | 26(2)              | 2.157 |  |
| O(7)              | 6844(8)  | 5766(2)                           | 6887(3)                        | 19(1)              | 1.949 |  |
| O(8)              | 8078(8)  | 5316(2)                           | 8176(3)                        | 19(1)              | 1.965 |  |
| O(9)              | 7410(9)  | 4460(3)                           | 6145(3)                        | 30(1)              | 1.974 |  |
| O(10)             | 4691(8)  | 5529(2)                           | 5709(3)                        | 24(1)              | 2.041 |  |
| O(11)             | 5000     | 4543(3)                           | 7500                           | 21(1)              | 2.123 |  |
| O(12)             | 3364(9)  | 4151(3)                           | 6047(3)                        | 29(1)              | 1.929 |  |
|                   |          | K <sub>2</sub> Rb <sub>2</sub> Mo | 5P2O22                         |                    |       |  |
| K(1)              | 0        | 5790(1)                           | 2500                           | 30(1)              | 1.28  |  |
| K(2) 0.5 (S.O.F.) | 4630(2)  | 2640(1)                           | 6017(1)                        | 34(1)              | 1.24  |  |
| Rb(1)             | -446(3)  | 5000                              | 5000                           | 47(1)              | 0.83  |  |
| Rb(2) 0.5         | 4630(2)  | 2640(1)                           | 6017(1)                        | 34(1)              | 1.24  |  |
| (S.O.F.)          |          |                                   |                                |                    |       |  |
| Mo(1)             | 4999(1)  | 5264(1)                           | 3573(1)                        | 19(1)              | 6.06  |  |
| Mo(2)             | 4285(1)  | 3580(1)                           | 4078(1)                        | 20(1)              | 6.14  |  |
| Mo(3)             | 5000     | 2574(1)                           | 2500                           | 17(1)              | 6.23  |  |
| P(1)              | 2185(3)  | 4076(1)                           | 2332(1)                        | 16(1)              | 4.99  |  |
| O(1)              | 6647(12) | 5873(4)                           | 3928(5)                        | 30(2)              | 1.97  |  |
| O(2)              | 2644(12) | 5571(4)                           | 3832(5)                        | 30(2)              | 2.00  |  |
| O(3)              | 5000     | 5481(4)                           | 2500                           | 21(2)              | 2.10  |  |
| O(4)              | 5320(11) | 4497(3)                           | 4261(4)                        | 24(2)              | 2.06  |  |
| O(5)              | 3159(10) | 4260(3)                           | 3113(4)                        | 20(1)              | 1.91  |  |

Table S1. Atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>), and bond valence sum (BVS) calculations for  $K_4Mo_5P_2O_{22}$ ,  $K_2Rb_2Mo_5P_2O_{22}$ ,  $KCs_3Mo_5P_2O_{22}$ , and  $NaRb_3Mo_5P_2O_{22}$ .  $U_{eq}$  is defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

| O(6)    | 1953(10)  | 4710(3)                                         | 1840(4)            | 21(2)          | 1.96 |
|---------|-----------|-------------------------------------------------|--------------------|----------------|------|
| O(7)    | 0         | 3729(4)                                         | 2500               | 25(2)          | 2.13 |
| O(8)    | 3309(9)   | 3485(3)                                         | 1925(4)            | 18(1)          | 2.01 |
| O(9)    | 3261(11)  | 2022(3)                                         | 2100(4)            | 27(2)          | 2.26 |
| O(10)   | 3395(10)  | 2864(4)                                         | 3366(4)            | 22(2)          | 2.13 |
| O(11)   | 5994(13)  | 3111(4)                                         | 4617(4)            | 35(2)          | 2.14 |
| O(12)   | 2000(12)  | 2591(1)                                         | 4607(5)            | 29(2)          | 2.02 |
| 0(12)   | 2039(13)  | KCs <sub>2</sub> Mo <sub>5</sub> P <sub>2</sub> | 0 <sub>22</sub>    | 56(2)          | 2.05 |
| K(1)    | 0         | 836(3)                                          | 7500               | 37(1)          | 1.19 |
| Cs(1)   | 4657(3)   | 5000                                            | 5000               | 41(1)          | 0.81 |
| Cs(2)   | 4724(2)   | 2330(1)                                         | 5995(1)            | 40(1)          | 1.35 |
| Mo(1)   | 0         | 2630(1)                                         | 7500               | 21(1)          | 6.35 |
| Mo(2)   | 60(3)     | 5300(1)                                         | 6466(1)            | 23(1)          | 6.16 |
| Mo(3)   | 625(2)    | 3634(1)                                         | 9035(1)            | 24(1)          | 6.15 |
| P(1)    | 2824(6)   | 4119(2)                                         | 7359(3)            | 19(1)          | 5.12 |
| O(1)    | 2720(30)  | 3624(8)                                         | 9575(8)            | 38(4)          | 2.11 |
| O(2)    | -1120(30) | 3203(7)                                         | 9555(8)            | 39(4)          | 2.18 |
| O(3)    | 1492(19)  | 2914(6)                                         | 8364(8)            | 25(3)          | 2.16 |
| O(4)    | 1730(20)  | 2079(6)                                         | 7156(8)            | 29(3)          | 2.31 |
| O(5)    | 5000      | 3780(8)                                         | 7500               | 28(4)          | 2.12 |
| O(6)    | 1700(19)  | 3548(6)                                         | 6965(7)            | 19(2)          | 2.02 |
| O(7)    | 3040(20)  | 4753(6)                                         | 6896(8)            | 24(3)          | 1.92 |
| O(8)    | 0         | 5497(8)                                         | 7500               | 29(4)          | 2.19 |
| O(9)    | -1890(20) | 4303(6)                                         | 6891(7)            | 25(3)          | 1.93 |
| O(10)   | 360(20)   | 4556(6)                                         | 5788(7)            | 31(3)          | 2.05 |
| O(11)   | 1690(20)  | 5888(7)                                         | 6119(9)            | 33(3)          | 2.12 |
| O(12)   | -2220(20) | 5640(7)                                         | 6203(8)            | 31(3)          | 1.99 |
|         |           | NaRb <sub>3</sub> Mo <sub>5</sub> P             | 2 <b>0</b> 22      |                |      |
| Na(1)   | 10000     | 5751(3)                                         | 2500               | 36(2)          | 0.75 |
| Rb(1)   | 5387(2)   | 2645(1)                                         | 6019(1)            | 36(1)          | 1.22 |
| Rb(2)   | 10458(4)  | 5000                                            | 5000               | 55(1)          | 0.80 |
| Mo(1)   | 5679(2)   | 35/2(1)                                         | 4055(1)            | 26(1)          | 6.22 |
| Mo(2)   | 4975(2)   | 5306(1)                                         | 3555(1)            | 27(1)          | 6.25 |
| IVIO(3) | 5000      | 2522(1)                                         | 2500               | 26(1)          | 6.16 |
| P(1)    | 7820(5)   | 4087(Z)                                         | 2342(2)            | 22(1)          | 5.00 |
| O(1)    | 3274(10)  | 1948(5)<br>2921(E)                              | 2880(0)<br>2269(E) | 30(3)<br>27(2) | 2.15 |
| O(2)    | 6700(12)  | 2031(3)                                         | 3308(J)<br>1041(E) | 27(2)          | 2.12 |
| O(3)    | 2070(16)  | 3487(5)                                         | 1941(5)            | 24(2)          | 2.05 |
| O(4)    | 7870(17)  | 3602(6)                                         | 4576(6)            | 39(3)          | 2.21 |
| O(6)    | 4598(15)  | 4514(4)                                         | 4219(5)            | 33(2)          | 2.10 |
| 0(7)    | 7310(16)  | 5604(6)                                         | 3806(6)            | 38(3)          | 2.10 |
| O(8)    | 3335(17)  | 5919(5)                                         | 3911(6)            | 38(3)          | 2.04 |
|         | . /       | · · /                                           | x - /              | . /            | -    |

| O(9)  | 10000    | 3726(6) | 2500    | 27(3) | 2.13 |
|-------|----------|---------|---------|-------|------|
| O(10) | 6870(15) | 4269(5) | 3111(5) | 24(2) | 1.93 |
| O(11) | 8101(14) | 4753(5) | 1874(5) | 28(2) | 1.85 |
| O(12) | 5000     | 5520(6) | 2500    | 29(3) | 2.07 |

 $(BVS)^*$ : The bond valence sums were calculated using the formula  $V_i = \sum S_{ij} = \sum \exp[(r_0 - r_{ij}) / B]$ , where  $S_{ij}$  is the bond valence associated with bond length  $r_{ij}$ , and  $r_0$  and B (usually 0.37) are empirically determined parameters.

Table S2. Selected bond lengths (Å) and angles (°) for  $\mathsf{KCs}_3\mathsf{Mo}_5\mathsf{P}_2\mathsf{O}_{22}.$ 

| Tuble 52. Selected bolld lengt | is (i) and angles ( | 7101 11051 2022.      |           |
|--------------------------------|---------------------|-----------------------|-----------|
| К(1)-О(4)                      | 2.742(13)           | Cs(2)-O(6)            | 3.546(13) |
| К(1)-О(4)#3                    | 2.742(13)           | Cs(2)-O(11)#4         | 3.099(15) |
| K(1)-O(7)#1                    | 2.694(14)           | Cs(2)-O(12)#4         | 3.548(15) |
| K(1)-O(7)#2                    | 2.694(14)           | Mo(1)-O(3)            | 1.910(13) |
| K(1)-O(8)#1                    | 3.352(3)            | Mo(1)-O(3)#3          | 1.910(13) |
| K(1)-O(8)#4                    | 3.352(3)            | Mo(1)-O(4)            | 1.679(14) |
| K(1)-O(11)#1                   | 3.289(16)           | Mo(1)-O(4)#3          | 1.679(14) |
| K(1)-O(11)#2                   | 3.289(16)           | Mo(1)-O(6)            | 2.313(12) |
| K(1)-O(12)#4                   | 2.973(15)           | Mo(1)-O(6)#3          | 2.313(12) |
| K(1)-O(12)#5                   | 2.973(15)           | Mo(2)-O(7)            | 2.360(13) |
| Cs(1)-O(1)#9                   | 3.274(16)           | Mo(2)-O(8)            | 1.887(3)  |
| Cs(1)-O(1)#10                  | 3.274(16)           | Mo(2)-O(9)            | 2.447(13) |
| Cs(1)-O(7)                     | 3.581(14)           | Mo(2)-O(10)           | 1.899(12) |
| Cs(1)-O(7)#8                   | 3.581(14)           | Mo(2)-O(11)           | 1.687(14) |
| Cs(1)-O(10)                    | 3.269(14)           | Mo(2)-O(12)           | 1.707(14) |
| Cs(1)-O(10)#8                  | 3.269(14)           | Mo(3)-O(1)            | 1.680(15) |
| Cs(1)-O(11)                    | 3.282(15)           | Mo(3)-O(2)            | 1.698(15) |
| Cs(1)-O(11)#8                  | 3.282(15)           | Mo(3)-O(3)            | 1.929(14) |
| Cs(1)-O(12)#6                  | 3.221(14)           | Mo(3)-O(6)#3          | 2.356(11) |
| Cs(1)-O(12)#7                  | 3.221(14)           | Mo(3)-O(9)#3          | 2.264(14) |
| Cs(2)-O(1)#10                  | 3.194(16)           | Mo(3)-O(10)#3         | 1.935(11) |
| Cs(2)-O(1)#11                  | 3.530(16)           | P(1)-O(5)             | 1.595(8)  |
| Cs(2)-O(2)#3                   | 3.074(16)           | P(1)-O(6)             | 1.508(12) |
| Cs(2)-O(2)#11                  | 2.923(15)           | P(1)-O(7)             | 1.493(13) |
| Cs(2)-O(3)#10                  | 2.964(12)           | P(1)-O(9)#3           | 1.516(14) |
| Cs(2)-O(4)                     | 2.901(15)           |                       |           |
| O(7)#1-K(1)-O(7)#2             | 77.1(6)             | O(7)-Cs(1)-O(7)#8     | 145.6(4)  |
| O(7)#1-K(1)-O(4)#3             | 125.6(4)            | O(4)-Cs(2)-O(2)#11    | 141.5(4)  |
| O(7)#2-K(1)-O(4)#3             | 142.9(4)            | O(4)-Cs(2)-O(3)#10    | 111.0(4)  |
| O(7)#1-K(1)-O(4)               | 142.9(4)            | O(2)#11-Cs(2)-O(3)#10 | 102.3(4)  |
| O(7)#2-K(1)-O(4)               | 125.6(4)            | O(4)-Cs(2)-O(2)#3     | 78.4(4)   |
| O(4)#3-K(1)-O(4)               | 56.2(6)             | O(2)#11-Cs(2)-O(2)#3  | 99.0(3)   |
| O(7)#1-K(1)-O(12)#4            | 83.1(4)             | O(3)#10-Cs(2)-O(2)#3  | 123.9(4)  |
| O(7)#2-K(1)-O(12)#4            | 85.4(4)             | O(4)-Cs(2)-O(11)#4    | 94.6(4)   |
| O(4)#3-K(1)-O(12)#4            | 122.8(4)            | O(2)#11-Cs(2)-O(11)#4 | 67.0(4)   |
| O(4)-K(1)-O(12)#4              | 71.6(4)             | O(3)#10-Cs(2)-O(11)#4 | 88.2(4)   |
| O(7)#1-K(1)-O(12)#5            | 85.4(4)             | O(2)#3-Cs(2)-O(11)#4  | 147.6(4)  |
| O(7)#2-K(1)-O(12)#5            | 83.1(4)             | O(4)-Cs(2)-O(1)#10    | 135.9(4)  |
| O(4)#3-K(1)-O(12)#5            | 71.6(4)             | O(2)#11-Cs(2)-O(1)#10 | 80.4(4)   |
| O(4)-K(1)-O(12)#5              | 122.8(4)            | O(3)#10-Cs(2)-O(1)#10 | 51.7(4)   |
| O(12)#4-K(1)-O(12)#5           | 165.3(6)            | O(2)#3-Cs(2)-O(1)#10  | 82.4(4)   |
| O(7)#1-K(1)-O(11)#2            | 129.8(4)            | O(11)#4-Cs(2)-O(1)#10 | 121.1(4)  |
| O(7)#2-K(1)-O(11)#2            | 53.7(4)             | O(4)-Cs(2)-O(1)#11    | 96.7(4)   |

| O(4)#3-K(1)-O(11)#2   | 94.5(4)  | O(2)#11-Cs(2)-O(1)#11 | 47.4(4)  |
|-----------------------|----------|-----------------------|----------|
| O(4)-K(1)-O(11)#2     | 82.4(4)  | O(3)#10-Cs(2)-O(1)#11 | 149.4(4) |
| O(12)#4-K(1)-O(11)#2  | 100.5(4) | O(2)#3-Cs(2)-O(1)#11  | 73.2(4)  |
| O(12)#5-K(1)-O(11)#2  | 79.9(4)  | O(11)#4-Cs(2)-O(1)#11 | 76.4(4)  |
| O(7)#1-K(1)-O(11)#1   | 53.7(4)  | O(1)#10-Cs(2)-O(1)#11 | 115.1(2) |
| O(7)#2-K(1)-O(11)#1   | 129.8(4) | O(4)-Cs(2)-O(6)       | 51.9(3)  |
| O(4)#3-K(1)-O(11)#1   | 82.4(4)  | O(2)#11-Cs(2)-O(6)    | 147.5(4) |
| O(4)-K(1)-O(11)#1     | 94.5(4)  | O(3)#10-Cs(2)-O(6)    | 91.5(3)  |
| O(12)#4-K(1)-O(11)#1  | 79.9(4)  | O(2)#3-Cs(2)-O(6)     | 49.8(3)  |
| O(12)#5-K(1)-O(11)#1  | 100.5(4) | O(11)#4-Cs(2)-O(6)    | 143.6(3) |
| O(11)#2-K(1)-O(11)#1  | 176.5(5) | O(1)#10-Cs(2)-O(6)    | 85.7(3)  |
| O(7)#1-K(1)-O(8)#1    | 51.6(4)  | O(1)#11-Cs(2)-O(6)    | 116.6(3) |
| O(7)#2-K(1)-O(8)#1    | 108.3(4) | O(4)-Cs(2)-O(12)#4    | 61.6(3)  |
| O(4)#3-K(1)-O(8)#1    | 76.5(4)  | O(2)#11-Cs(2)-O(12)#4 | 82.9(4)  |
| O(4)-K(1)-O(8)#1      | 125.4(4) | O(3)#10-Cs(2)-O(12)#4 | 128.1(3) |
| O(12)#4-K(1)-O(8)#1   | 125.2(3) | O(2)#3-Cs(2)-O(12)#4  | 105.5(4) |
| O(12)#5-K(1)-O(8)#1   | 51.2(3)  | O(11)#4-Cs(2)-O(12)#4 | 45.9(3)  |
| O(11)#2-K(1)-O(8)#1   | 130.8(3) | O(1)#10-Cs(2)-O(12)#4 | 162.5(4) |
| O(11)#1-K(1)-O(8)#1   | 50.1(3)  | O(1)#11-Cs(2)-O(12)#4 | 54.8(3)  |
| O(7)#1-K(1)-O(8)#4    | 108.3(4) | O(6)-Cs(2)-O(12)#4    | 111.5(3) |
| O(7)#2-K(1)-O(8)#4    | 51.6(4)  | O(4)-Mo(1)-O(4)#3     | 100.6(9) |
| O(4)#3-K(1)-O(8)#4    | 125.4(4) | O(4)-Mo(1)-O(3)       | 97.6(6)  |
| O(4)-K(1)-O(8)#4      | 76.5(4)  | O(4)#3-Mo(1)-O(3)     | 103.6(6) |
| O(12)#4-K(1)-O(8)#4   | 51.2(3)  | O(4)-Mo(1)-O(3)#3     | 103.6(6) |
| O(12)#5-K(1)-O(8)#4   | 125.2(3) | O(4)#3-Mo(1)-O(3)#3   | 97.6(6)  |
| O(11)#2-K(1)-O(8)#4   | 50.1(3)  | O(3)-Mo(1)-O(3)#3     | 146.5(7) |
| O(11)#1-K(1)-O(8)#4   | 130.8(3) | O(4)-Mo(1)-O(6)       | 90.9(5)  |
| O(8)#1-K(1)-O(8)#4    | 157.3(5) | O(4)#3-Mo(1)-O(6)     | 166.2(6) |
| O(12)#6-Cs(1)-O(12)#7 | 100.9(5) | O(3)-Mo(1)-O(6)       | 82.1(5)  |
| O(12)#6-Cs(1)-O(10)   | 111.4(3) | O(3)#3-Mo(1)-O(6)     | 72.0(5)  |
| O(12)#7-Cs(1)-O(10)   | 137.3(3) | O(4)-Mo(1)-O(6)#3     | 166.2(6) |
| O(12)#6-Cs(1)-O(10)#8 | 137.3(3) | O(4)#3-Mo(1)-O(6)#3   | 90.9(5)  |
| O(12)#7-Cs(1)-O(10)#8 | 111.4(3) | O(3)-Mo(1)-O(6)#3     | 72.0(5)  |
| O(10)-Cs(1)-O(10)#8   | 60.7(5)  | O(3)#3-Mo(1)-O(6)#3   | 82.1(5)  |
| O(12)#6-Cs(1)-O(1)#9  | 60.2(4)  | O(6)-Mo(1)-O(6)#3     | 78.9(6)  |
| O(12)#7-Cs(1)-O(1)#9  | 80.0(4)  | O(11)-Mo(2)-O(12)     | 101.3(8) |
| O(10)-Cs(1)-O(1)#9    | 140.4(3) | O(11)-Mo(2)-O(8)      | 103.6(6) |
| O(10)#8-Cs(1)-O(1)#9  | 98.0(4)  | O(12)-Mo(2)-O(8)      | 99.9(5)  |
| O(12)#6-Cs(1)-O(1)#10 | 80.0(4)  | O(11)-Mo(2)-O(10)     | 102.4(6) |
| O(12)#7-Cs(1)-O(1)#10 | 60.2(4)  | O(12)-Mo(2)-O(10)     | 102.2(7) |
| O(10)-Cs(1)-O(1)#10   | 98.0(4)  | O(8)-Mo(2)-O(10)      | 141.5(6) |
| O(10)#8-Cs(1)-O(1)#10 | 140.4(3) | O(11)-Mo(2)-O(7)      | 84.0(6)  |
| O(1)#9-Cs(1)-O(1)#10  | 116.4(6) | O(12)-Mo(2)-O(7)      | 174.6(6) |
| O(12)#6-Cs(1)-O(11)#8 | 171.0(3) | O(8)-Mo(2)-O(7)       | 77.9(4)  |
|                       |          |                       |          |

| O(12)#7-Cs(1)-O(11)#8 | 76.6(3)  | O(10)-Mo(2)-O(7)     | 77.1(5)  |
|-----------------------|----------|----------------------|----------|
| O(10)-Cs(1)-O(11)#8   | 67.1(4)  | O(11)-Mo(2)-O(9)     | 170.2(6) |
| O(10)#8-Cs(1)-O(11)#8 | 50.6(3)  | O(12)-Mo(2)-O(9)     | 86.0(6)  |
| O(1)#9-Cs(1)-O(11)#8  | 127.0(4) | O(8)-Mo(2)-O(9)      | 81.2(5)  |
| O(1)#10-Cs(1)-O(11)#8 | 91.4(3)  | O(10)-Mo(2)-O(9)     | 69.4(5)  |
| O(12)#6-Cs(1)-O(11)   | 76.6(3)  | O(7)-Mo(2)-O(9)      | 88.7(5)  |
| O(12)#7-Cs(1)-O(11)   | 171.0(3) | O(1)-Mo(3)-O(2)      | 103.5(8) |
| O(10)-Cs(1)-O(11)     | 50.6(3)  | O(1)-Mo(3)-O(3)      | 96.1(6)  |
| O(10)#8-Cs(1)-O(11)   | 67.1(4)  | O(2)-Mo(3)-O(3)      | 100.4(7) |
| O(1)#9-Cs(1)-O(11)    | 91.4(3)  | O(1)-Mo(3)-O(10)#3   | 101.0(7) |
| O(1)#10-Cs(1)-O(11)   | 127.0(4) | O(2)-Mo(3)-O(10)#3   | 98.1(7)  |
| O(11)#8-Cs(1)-O(11)   | 107.2(5) | O(3)-Mo(3)-O(10)#3   | 151.0(5) |
| O(12)#6-Cs(1)-O(7)    | 67.0(3)  | O(1)-Mo(3)-O(9)#3    | 97.1(6)  |
| O(12)#7-Cs(1)-O(7)    | 140.1(3) | O(2)-Mo(3)-O(9)#3    | 158.8(7) |
| O(10)-Cs(1)-O(7)      | 45.7(3)  | O(3)-Mo(3)-O(9)#3    | 81.7(5)  |
| O(10)#8-Cs(1)-O(7)    | 100.8(3) | O(10)#3-Mo(3)-O(9)#3 | 73.1(5)  |
| O(1)#9-Cs(1)-O(7)     | 119.0(3) | O(1)-Mo(3)-O(6)#3    | 164.9(7) |
| O(1)#10-Cs(1)-O(7)    | 80.0(3)  | O(2)-Mo(3)-O(6)#3    | 86.6(6)  |
| O(11)#8-Cs(1)-O(7)    | 109.3(4) | O(3)-Mo(3)-O(6)#3    | 70.7(5)  |
| O(11)-Cs(1)-O(7)      | 47.1(3)  | O(10)#3-Mo(3)-O(6)#3 | 88.4(5)  |
| O(12)#6-Cs(1)-O(7)#8  | 140.1(3) | O(9)#3-Mo(3)-O(6)#3  | 74.1(5)  |
| O(12)#7-Cs(1)-O(7)#8  | 67.0(3)  | O(7)-P(1)-O(6)       | 113.4(8) |
| O(10)-Cs(1)-O(7)#8    | 100.8(3) | O(7)-P(1)-O(9)#3     | 109.5(7) |
| O(10)#8-Cs(1)-O(7)#8  | 45.7(3)  | O(6)-P(1)-O(9)#3     | 112.9(7) |
| O(1)#9-Cs(1)-O(7)#8   | 80.0(3)  | O(7)-P(1)-O(5)       | 110.0(7) |
| O(1)#10-Cs(1)-O(7)#8  | 119.0(3) | O(6)-P(1)-O(5)       | 102.0(7) |
| O(11)#8-Cs(1)-O(7)#8  | 47.1(3)  | O(9)#3-P(1)-O(5)     | 108.7(6) |
| O(11)-Cs(1)-O(7)#8    | 109.3(4) |                      |          |

| #1 x-1/2,y-1/2,z    | #2 -x+1/2,γ-1/2,-z+3/2  | #3 -x,y,-z+3/2          |
|---------------------|-------------------------|-------------------------|
| #4 x+1/2,y-1/2,z    | #5 -x-1/2,y-1/2,-z+3/2  | #6 x+1,y,z              |
| #7 x+1,-y+1,-z+1    | #8 x,-y+1,-z+1          | #9 -x+1,-y+1,z-1/2      |
| #10 -x+1,y,-z+3/2   | #11 -x+1/2,-y+1/2,z-1/2 | #12 x-1,y,z             |
| #13 x+1/2,y+1/2,z   | #14 x-1/2,y+1/2,z       | #15 -x+1/2,-y+1/2,z+1/2 |
| #16 -x+1,-y+1,z+1/2 |                         |                         |

Table S3. Selected bond lengths (Å) and angles (°) for  $K_4 Mo_5 P_2 O_{22}.$ 

| K(1)-O(1)#2         | 2.665(6)   | K(3)-O(12)#8          | 3.291(6)   |
|---------------------|------------|-----------------------|------------|
| K(1)-O(2)#1         | 2.752(5)   | K(3)-O(12)#12         | 3.291(6)   |
| K(1)-O(3)           | 2.667(6)   | Mo(1)-O(1)            | 1.706(5)   |
| K(1)-O(3)#3         | 2.933(7)   | Mo(1)-O(1)#8          | 1.706(5)   |
| K(1)-O(4)#1         | 2.960(6)   | Mo(1)-O(2)            | 1.911(5)   |
| K(1)-O(5)#2         | 3.144(5)   | Mo(1)-O(2)#8          | 1.911(5)   |
| K(1)-O(12)#4        | 3.259(6)   | Mo(1)-O(5)            | 2.297(5)   |
| K(2)-O(4)#5         | 3.233(7)   | Mo(1)-O(5)#8          | 2.296(5)   |
| K(2)-O(4)#6         | 3.233(7)   | Mo(2)-O(2)            | 1.948(5)   |
| K(2)-O(8)#7         | 3.296(5)   | Mo(2)-O(3)            | 1.703(6)   |
| K(2)-O(8)#8         | 3.296(5)   | Mo(2)-O(4)            | 1.700(6)   |
| K(2)-O(9)#5         | 2.961(6)   | Mo(2)-O(5)#8          | 2.328(5)   |
| K(2)-O(9)#6         | 2.961(6)   | Mo(2)-O(7)            | 2.236(5)   |
| K(2)-O(10)          | 3.141(5)   | Mo(2)-O(10)           | 1.911(5)   |
| K(2)-O(10)#4        | 3.141(5)   | Mo(3)-O(7)            | 2.406(5)   |
| K(2)-O(12)          | 3.050(6)   | Mo(3)-O(8)#8          | 2.373(5)   |
| K(2)-O(12)#4        | 3.050(6)   | Mo(3)-O(9)            | 1.703(6)   |
| K(3)-O(1)#9         | 2.722(5)   | Mo(3)-O(10)           | 1.912(5)   |
| K(3)-O(1)#11        | 2.722(5)   | Mo(3)-O(11)           | 1.9010(15) |
| K(3)-O(8)           | 2.691(5)   | Mo(3)-O(12)           | 1.699(5)   |
| K(3)-O(8)#10        | 2.691(5)   | P(1)-O(5)             | 1.523(5)   |
| К(3)-О(9)           | 2.881(6)   | P(1)-O(6)             | 1.589(3)   |
| K(3)-O(9)#10        | 2.881(6)   | P(1)-O(7)             | 1.526(5)   |
| K(3)-O(11)          | 3.2771(12) | P(1)-O(8)             | 1.488(5)   |
| K(3)-O(11)#12       | 3.2771(12) |                       |            |
| O(1)#2-K(1)-O(2)#1  | 116.08(18) | O(8)-K(3)-O(1)#11     | 126.86(17) |
| O(1)#2-K(1)-O(3)    | 135.34(19) | O(8)#10-K(3)-O(1)#9   | 126.86(16) |
| O(1)#2-K(1)-O(3)#3  | 80.78(17)  | O(8)#10-K(3)-O(1)#11  | 139.01(15) |
| O(1)#2-K(1)-O(4)#1  | 146.0(2)   | O(8)#10-K(3)-O(8)     | 77.8(2)    |
| O(1)#2-K(1)-O(5)#2  | 57.36(14)  | O(8)-K(3)-O(9)        | 87.42(15)  |
| O(1)#2-K(1)-O(12)#4 | 90.53(16)  | O(8)-K(3)-O(9)#10     | 78.66(16)  |
| O(2)#1-K(1)-O(3)#3  | 135.22(17) | O(8)#10-K(3)-O(9)     | 78.66(16)  |
| O(2)#1-K(1)-O(4)#1  | 56.29(16)  | O(8)#10-K(3)-O(9)#10  | 87.42(15)  |
| O(2)#1-K(1)-O(5)#2  | 98.21(15)  | O(8)-K(3)-O(11)       | 53.42(14)  |
| O(2)#1-K(1)-O(12)#4 | 85.81(16)  | O(8)-K(3)-O(11)#12    | 107.95(15) |
| O(3)-K(1)-O(2)#1    | 98.74(19)  | O(8)#10-K(3)-O(11)    | 107.95(15) |
| O(3)-K(1)-O(3)#3    | 94.08(14)  | O(8)#10-K(3)-O(11)#12 | 53.42(14)  |
| O(3)-K(1)-O(4)#1    | 76.47(19)  | O(8)-K(3)-O(12)#8     | 53.91(13)  |
| O(3)#3-K(1)-O(4)#1  | 86.00(18)  | O(8)-K(3)-O(12)#12    | 131.24(16) |
| O(3)-K(1)-O(5)#2    | 146.68(17) | O(8)#10-K(3)-O(12)#8  | 131.24(15) |
| O(3)#3-K(1)-O(5)#2  | 54.34(14)  | O(8)#10-K(3)-O(12)#12 | 53.91(13)  |
| O(3)-K(1)-O(12)#4   | 63.81(16)  | O(9)-K(3)-O(9)#10     | 162.1(2)   |
| O(3)#3-K(1)-O(12)#4 | 137.55(16) | O(9)-K(3)-O(11)       | 53.29(12)  |

| O(4)#1-K(1)-O(5)#2  | 89.60(17)  | O(9)-K(3)-O(11)#12     | 122.71(13) |
|---------------------|------------|------------------------|------------|
| O(4)#1-K(1)-O(12)#4 | 119.45(19) | O(9)#10-K(3)-O(11)     | 122.71(13) |
| O(5)#2-K(1)-O(12)#4 | 146.09(14) | O(9)#10-K(3)-O(11)#12  | 53.29(12)  |
| O(4)#5-K(2)-O(4)#6  | 120.8(2)   | O(9)-K(3)-O(12)#8      | 103.12(15) |
| O(4)#5-K(2)-O(8)#7  | 78.33(14)  | O(9)-K(3)-O(12)#12     | 77.71(15)  |
| O(4)#5-K(2)-O(8)#8  | 118.77(14) | O(9)#10-K(3)-O(12)#8   | 77.71(15)  |
| O(4)#6-K(2)-O(8)#7  | 118.77(14) | O(9)#10-K(3)-O(12)#12  | 103.12(15) |
| O(4)#6-K(2)-O(8)#8  | 78.33(14)  | O(11)#12-K(3)-O(11)    | 158.7(2)   |
| O(8)#8-K(2)-O(8)#7  | 147.2(2)   | O(11)#12-K(3)-O(12)#8  | 130.96(10) |
| O(9)#5-K(2)-O(4)#5  | 80.70(16)  | O(11)#12-K(3)-O(12)#12 | 50.30(10)  |
| O(9)#5-K(2)-O(4)#6  | 60.23(16)  | O(12)#8-K(3)-O(12)#12  | 174.8(2)   |
| O(9)#6-K(2)-O(4)#5  | 60.23(16)  | O(1)-Mo(1)-O(1)#8      | 103.6(3)   |
| O(9)#6-K(2)-O(4)#6  | 80.70(16)  | O(1)-Mo(1)-O(2)#8      | 103.1(2)   |
| O(9)#5-K(2)-O(8)#7  | 68.54(15)  | O(1)#8-Mo(1)-O(2)      | 103.1(2)   |
| O(9)#5-K(2)-O(8)#8  | 137.98(15) | O(1)#8-Mo(1)-O(2)#8    | 97.8(2)    |
| O(9)#6-K(2)-O(8)#7  | 137.98(15) | O(1)-Mo(1)-O(2)        | 97.8(2)    |
| O(9)#6-K(2)-O(8)#8  | 68.54(15)  | O(1)-Mo(1)-O(5)        | 88.3(2)    |
| O(9)#5-K(2)-O(9)#6  | 96.4(2)    | O(1)-Mo(1)-O(5)#8      | 166.4(2)   |
| O(9)#5-K(2)-O(10)   | 135.70(14) | O(1)#8-Mo(1)-O(5)      | 166.4(2)   |
| O(9)#5-K(2)-O(10)#4 | 115.93(15) | O(1)#8-Mo(1)-O(5)#8    | 88.3(2)    |
| O(9)#6-K(2)-O(10)   | 115.93(15) | O(2)-Mo(1)-O(2)#8      | 146.0(3)   |
| O(9)#6-K(2)-O(10)#4 | 135.70(14) | O(2)-Mo(1)-O(5)        | 81.56(19)  |
| O(9)#5-K(2)-O(12)   | 168.11(14) | O(2)-Mo(1)-O(5)#8      | 72.6(2)    |
| O(9)#5-K(2)-O(12)#4 | 80.50(16)  | O(2)#8-Mo(1)-O(5)      | 72.65(19)  |
| O(9)#6-K(2)-O(12)   | 80.50(16)  | O(2)#8-Mo(1)-O(5)#8    | 81.56(19)  |
| O(9)#6-K(2)-O(12)#4 | 168.11(14) | O(5)#8-Mo(1)-O(5)      | 80.8(2)    |
| O(10)-K(2)-O(4)#5   | 140.95(15) | O(2)-Mo(2)-O(5)#8      | 71.31(19)  |
| O(10)-K(2)-O(4)#6   | 94.41(15)  | O(2)-Mo(2)-O(7)        | 80.53(19)  |
| O(10)#4-K(2)-O(4)#5 | 94.41(15)  | O(3)-Mo(2)-O(2)        | 99.5(2)    |
| O(10)#4-K(2)-O(4)#6 | 140.95(15) | O(3)-Mo(2)-O(5)#8      | 85.8(2)    |
| O(10)-K(2)-O(8)#7   | 100.19(14) | O(3)-Mo(2)-O(7)        | 157.8(2)   |
| O(10)-K(2)-O(8)#8   | 48.25(13)  | O(3)-Mo(2)-O(10)       | 99.9(2)    |
| O(10)#4-K(2)-O(8)#7 | 48.25(13)  | O(4)-Mo(2)-O(2)        | 95.3(3)    |
| O(10)#4-K(2)-O(8)#8 | 100.19(14) | O(4)-Mo(2)-O(3)        | 105.4(3)   |
| O(10)#4-K(2)-O(10)  | 60.31(19)  | O(4)-Mo(2)-O(5)#8      | 164.1(3)   |
| O(12)-K(2)-O(4)#5   | 87.85(14)  | O(4)-Mo(2)-O(7)        | 96.7(3)    |
| O(12)-K(2)-O(4)#6   | 129.79(16) | O(4)-Mo(2)-O(10)       | 101.4(3)   |
| O(12)#4-K(2)-O(4)#5 | 129.79(16) | O(7)-Mo(2)-O(5)#8      | 73.07(18)  |
| O(12)#4-K(2)-O(4)#6 | 87.84(14)  | O(10)-Mo(2)-O(2)       | 150.0(2)   |
| O(12)-K(2)-O(8)#7   | 106.15(15) | O(10)-Mo(2)-O(5)#8     | 87.5(2)    |
| O(12)-K(2)-O(8)#8   | 51.46(13)  | O(10)-Mo(2)-O(7)       | 72.95(19)  |
| O(12)#4-K(2)-O(8)#7 | 51.46(13)  | O(8)#8-Mo(3)-O(7)      | 86.93(17)  |
| O(12)#4-K(2)-O(8)#8 | 106.14(15) | O(9)-Mo(3)-O(7)        | 85.4(2)    |
| O(12)-K(2)-O(10)    | 54.65(14)  | O(9)-Mo(3)-O(8)#8      | 172.3(2)   |
|                     |            |                        |            |

| O(12)-K(2)-O(10)#4    | 61.53(14)  | O(9)-Mo(3)-O(10)   | 101.3(3)  |
|-----------------------|------------|--------------------|-----------|
| O(12)#4-K(2)-O(10)    | 61.53(14)  | O(9)-Mo(3)-O(11)   | 101.0(2)  |
| O(12)#4-K(2)-O(10)#4  | 54.65(14)  | O(10)-Mo(3)-O(7)   | 68.98(19) |
| O(12)-K(2)-O(12)#4    | 104.8(2)   | O(10)-Mo(3)-O(8)#8 | 75.0(2)   |
| O(1)#11-K(3)-O(1)#9   | 59.0(2)    | O(11)-Mo(3)-O(7)   | 81.4(2)   |
| O(1)#9-K(3)-O(9)      | 125.99(17) | O(11)-Mo(3)-O(8)#8 | 78.65(15) |
| O(1)#9-K(3)-O(9)#10   | 71.50(16)  | O(11)-Mo(3)-O(10)  | 140.9(2)  |
| O(1)#11-K(3)-O(9)     | 71.50(16)  | O(12)-Mo(3)-O(7)   | 169.5(2)  |
| O(1)#11-K(3)-O(9)#10  | 125.99(17) | O(12)-Mo(3)-O(8)#8 | 83.7(2)   |
| O(1)#9-K(3)-O(11)     | 124.66(16) | O(12)-Mo(3)-O(9)   | 103.8(3)  |
| O(1)#9-K(3)-O(11)#12  | 75.71(15)  | O(12)-Mo(3)-O(10)  | 103.7(2)  |
| O(1)#11-K(3)-O(11)    | 75.71(15)  | O(12)-Mo(3)-O(11)  | 101.5(2)  |
| O(1)#11-K(3)-O(11)#12 | 124.66(16) | O(5)-P(1)-O(6)     | 101.4(3)  |
| O(1)#9-K(3)-O(12)#8   | 91.99(16)  | O(5)-P(1)-O(7)     | 112.9(3)  |
| O(1)#9-K(3)-O(12)#12  | 83.50(16)  | O(7)-P(1)-O(6)     | 106.7(2)  |
| O(1)#11-K(3)-O(12)#8  | 83.50(16)  | O(8)-P(1)-O(5)     | 113.5(3)  |
| O(1)#11-K(3)-O(12)#12 | 91.99(16)  | O(8)-P(1)-O(6)     | 110.5(3)  |
| O(8)-K(3)-O(1)#9      | 139.01(15) | O(8)-P(1)-O(7)     | 111.3(3)  |

| #1 x-1/2,-y+3/2,-z+1    | #2 -x+3/2,-y+3/2,z-1/2  | #3 x+1/2,-y+3/2,-z+1 |
|-------------------------|-------------------------|----------------------|
| #4 x,-y+1,-z+1          | #5 x-1,-y+1,-z+1        | #6 x-1,y,z           |
| #7 -x+1,-y+1,z-1/2      | #8 -x+1,y,-z+3/2        | #9 x+1/2,y-1/2,z     |
| #10 -x+2,y,-z+3/2       | #11 -x+3/2,y-1/2,-z+3/2 | #12 x+1,y,z          |
| #13 -x+3/2,-y+3/2,z+1/2 | #14 x-1/2,y+1/2,z       | #15 -x+1,-y+1,z+1/2  |

| S14 | 4 |
|-----|---|
| 01  |   |

| li | able S4. Selected bond lengths (A) and angles $(^{\circ})$ for $K_2 K D_2 W O_5 P_2 O_{22}$ . |            |                       |            |  |  |
|----|-----------------------------------------------------------------------------------------------|------------|-----------------------|------------|--|--|
|    | K(1)-O(3)                                                                                     | 3.2985(16) | Rb(2)-O(1)#2          | 3.146(8)   |  |  |
|    | K(1)-O(3)#8                                                                                   | 3.2985(16) | Rb(2)-O(12)#4         | 3.040(8)   |  |  |
|    | K(1)-O(6)                                                                                     | 2.687(7)   | Rb(2)-O(12)           | 3.454(9)   |  |  |
|    | K(1)-O(6)#10                                                                                  | 2.687(7)   | Mo(1)-O(3)            | 1.904(2)   |  |  |
|    | K(1)-O(9)#13                                                                                  | 2.712(7)   | Mo(1)-O(4)            | 1.907(6)   |  |  |
|    | K(1)-O(9)#14                                                                                  | 2.712(7)   | Mo(1)-O(5)            | 2.405(7)   |  |  |
|    | K(1)-O(2)#10                                                                                  | 2.906(8)   | Mo(1)-O(6)#3          | 2.357(7)   |  |  |
|    | K(1)-O(2)                                                                                     | 2.906(8)   | Mo(1)-O(2)            | 1.698(7)   |  |  |
|    | K(1)-O(1)#3                                                                                   | 3.297(8)   | Mo(1)-O(1)            | 1.700(7)   |  |  |
|    | K(1)-O(1)#8                                                                                   | 3.297(8)   | Mo(2)-O(4)            | 1.913(6)   |  |  |
|    | K(2)-O(11)                                                                                    | 2.735(8)   | Mo(2)-O(5)            | 2.245(7)   |  |  |
|    | Rb(1)-O(4)#8                                                                                  | 3.182(7)   | Mo(2)-O(10)           | 1.936(7)   |  |  |
|    | Rb(1)-O(4)#9                                                                                  | 3.182(7)   | Mo(2)-O(8)#3          | 2.343(6)   |  |  |
|    | Rb(1)-O(6)#10                                                                                 | 3.380(7)   | Mo(2)-O(11)           | 1.708(8)   |  |  |
|    | Rb(1)-O(6)#11                                                                                 | 3.380(7)   | Mo(2)-O(12)           | 1.689(8)   |  |  |
|    | Rb(1)-O(2)#2                                                                                  | 3.052(8)   | Mo(3)-O(10)#3         | 1.908(7)   |  |  |
|    | Rb(1)-O(2)                                                                                    | 3.052(8)   | Mo(3)-O(10)           | 1.908(7)   |  |  |
|    | Rb(1)-O(1)#8                                                                                  | 3.134(8)   | Mo(3)-O(8)#3          | 2.295(7)   |  |  |
|    | Rb(1)-O(1)#9                                                                                  | 3.134(8)   | Mo(3)-O(8)            | 2.295(7)   |  |  |
|    | Rb(1)-O(12)                                                                                   | 3.261(8)   | Mo(3)-O(9)            | 1.696(7)   |  |  |
|    | Rb(1)-O(12)#2                                                                                 | 3.261(8)   | Mo(3)-O(9)#3          | 1.696(7)   |  |  |
|    | Rb(2)-O(10)#4                                                                                 | 2.837(7)   | P(1)-O(5)             | 1.534(7)   |  |  |
|    | Rb(2)-O(8)#12                                                                                 | 3.285(6)   | P(1)-O(8)             | 1.522(7)   |  |  |
|    | Rb(2)-O(11)#7                                                                                 | 2.975(9)   | P(1)-O(6)             | 1.495(7)   |  |  |
|    | Rb(2)-O(11)                                                                                   | 2.735(8)   | P(1)-O(7)             | 1.594(4)   |  |  |
|    | Rb(2)-O(9)#12                                                                                 | 2.732(7)   |                       |            |  |  |
|    | O(1)#8-K(1)-O(3)                                                                              | 131.12(14) | O(4)#8-Rb(1)-O(6)#11  | 100.36(17) |  |  |
|    | O(1)#8-K(1)-O(3)#8                                                                            | 50.18(13)  | O(4)#9-Rb(1)-O(6)#10  | 100.36(17) |  |  |
|    | O(1)#3-K(1)-O(3)                                                                              | 50.18(13)  | O(4)#9-Rb(1)-O(6)#11  | 47.21(17)  |  |  |
|    | O(1)#3-K(1)-O(3)#8                                                                            | 131.12(14) | O(4)#8-Rb(1)-O(6)#10  | 47.21(17)  |  |  |
|    | O(1)#8-K(1)-O(1)#3                                                                            | 174.5(3)   | O(4)#8-Rb(1)-O(12)    | 95.68(19)  |  |  |
|    | O(2)#10-K(1)-O(3)#8                                                                           | 52.63(14)  | O(4)#9-Rb(1)-O(12)#2  | 95.68(19)  |  |  |
|    | O(2)-K(1)-O(3)#8                                                                              | 123.68(16) | O(4)#8-Rb(1)-O(12)#2  | 140.86(18) |  |  |
|    | O(2)#10-K(1)-O(3)                                                                             | 123.68(16) | O(4)#9-Rb(1)-O(12)    | 140.86(18) |  |  |
|    | O(2)-K(1)-O(3)                                                                                | 52.63(14)  | O(6)#10-Rb(1)-O(6)#11 | 146.4(2)   |  |  |
|    | O(2)#10-K(1)-O(2)                                                                             | 163.3(3)   | O(12)-Rb(1)-O(6)#11   | 118.75(19) |  |  |
|    | O(2)#10-K(1)-O(1)#8                                                                           | 102.28(19) | O(12)#2-Rb(1)-O(6)#10 | 118.75(19) |  |  |
|    | O(2)-K(1)-O(1)#3                                                                              | 102.29(19) | O(12)#2-Rb(1)-O(6)#11 | 79.17(19)  |  |  |
|    | O(2)-K(1)-O(1)#8                                                                              | 78.53(19)  | O(12)-Rb(1)-O(6)#10   | 79.17(19)  |  |  |
|    | O(2)#10-K(1)-O(1)#3                                                                           | 78.53(19)  | O(12)-Rb(1)-O(12)#2   | 119.2(3)   |  |  |
|    | O(3)-K(1)-O(3)#8                                                                              | 159.2(3)   | O(1)#2-Rb(2)-O(8)#12  | 145.66(18) |  |  |
|    | O(6)-K(1)-O(3)                                                                                | 52.90(19)  | O(1)#2-Rb(2)-O(12)    | 75.1(2)    |  |  |
|    | O(6)#10-K(1)-O(3)#8                                                                           | 52.90(19)  | O(8)#12-Rb(2)-O(12)   | 114.02(18) |  |  |

Table S4. Selected bond lengths (Å) and angles (°) for  $K_2Rb_2Mo_5P_2O_{22}$ .

| O(6)#10-K(1)-O(3)    | 108.9(2)  | O(9)#12-Rb(2)-O(10)#4 | 114.5(2)   |
|----------------------|-----------|-----------------------|------------|
| O(6)-K(1)-O(3)#8     | 108.9(2)  | O(9)#12-Rb(2)-O(8)#12 | 55.21(18)  |
| O(6)#10-K(1)-O(6)    | 78.8(3)   | O(9)#12-Rb(2)-O(11)   | 138.8(2)   |
| O(6)-K(1)-O(9)#13    | 139.6(2)  | O(9)#12-Rb(2)-O(11)#7 | 79.9(2)    |
| O(6)#10-K(1)-O(9)#14 | 139.6(2)  | O(9)#12-Rb(2)-O(1)#2  | 92.8(2)    |
| O(6)#10-K(1)-O(9)#13 | 125.9(2)  | O(9)#12-Rb(2)-O(12)   | 92.0(2)    |
| O(6)-K(1)-O(9)#14    | 125.9(2)  | O(9)#12-Rb(2)-O(12)#4 | 142.2(2)   |
| O(6)-K(1)-O(2)       | 87.0(2)   | O(10)#4-Rb(2)-O(8)#12 | 95.44(18)  |
| O(6)#10-K(1)-O(2)#10 | 87.0(2)   | O(10)#4-Rb(2)-O(11)#7 | 131.0(2)   |
| O(6)-K(1)-O(2)#10    | 80.1(2)   | O(10)#4-Rb(2)-O(1)#2  | 86.6(2)    |
| O(6)#10-K(1)-O(2)    | 80.1(2)   | O(10)#4-Rb(2)-O(12)   | 148.7(2)   |
| O(6)-K(1)-O(1)#8     | 131.8(2)  | O(10)#4-Rb(2)-O(12)#4 | 54.3(2)    |
| O(6)#10-K(1)-O(1)#8  | 53.64(19) | O(11)-Rb(2)-O(10)#4   | 99.7(2)    |
| O(6)-K(1)-O(1)#3     | 53.64(19) | O(11)#7-Rb(2)-O(8)#12 | 52.91(19)  |
| O(6)#10-K(1)-O(1)#3  | 131.8(2)  | O(11)-Rb(2)-O(8)#12   | 146.1(2)   |
| O(9)#13-K(1)-O(3)#8  | 75.4(2)   | O(11)-Rb(2)-O(11)#7   | 95.15(18)  |
| O(9)#13-K(1)-O(3)    | 124.5(2)  | O(11)-Rb(2)-O(1)#2    | 65.9(2)    |
| O(9)#14-K(1)-O(3)    | 75.4(2)   | O(11)#7-Rb(2)-O(1)#2  | 141.4(2)   |
| O(9)#14-K(1)-O(3)#8  | 124.5(2)  | O(11)-Rb(2)-O(12)     | 49.8(2)    |
| O(9)#14-K(1)-O(9)#13 | 58.4(3)   | O(11)#7-Rb(2)-O(12)   | 67.4(2)    |
| O(9)#13-K(1)-O(2)    | 125.1(2)  | O(11)-Rb(2)-O(12)#4   | 76.7(2)    |
| O(9)#14-K(1)-O(2)#10 | 125.1(2)  | O(11)#7-Rb(2)-O(12)#4 | 85.0(2)    |
| O(9)#13-K(1)-O(2)#10 | 71.2(2)   | O(12)#4-Rb(2)-O(8)#12 | 88.2(2)    |
| O(9)#14-K(1)-O(2)    | 71.2(2)   | O(12)#4-Rb(2)-O(1)#2  | 119.5(2)   |
| O(9)#14-K(1)-O(1)#8  | 92.4(2)   | O(12)#4-Rb(2)-O(12)   | 113.78(15) |
| O(9)#13-K(1)-O(1)#3  | 92.4(2)   | O(1)-Mo(1)-O(3)       | 101.7(3)   |
| O(9)#14-K(1)-O(1)#3  | 82.8(2)   | O(1)-Mo(1)-O(4)       | 103.8(3)   |
| O(9)#13-K(1)-O(1)#8  | 82.8(2)   | O(1)-Mo(1)-O(5)       | 169.8(3)   |
| O(10)#4-K(2)-O(8)#12 | 95.44(18) | O(1)-Mo(1)-O(6)#3     | 83.8(3)    |
| O(10)#4-K(2)-O(11)#7 | 131.0(2)  | O(2)-Mo(1)-O(1)       | 103.4(4)   |
| O(10)#4-K(2)-O(1)#2  | 86.6(2)   | O(2)-Mo(1)-O(3)       | 100.5(3)   |
| O(10)#4-K(2)-O(12)#4 | 54.3(2)   | O(2)-Mo(1)-O(4)       | 101.6(3)   |
| O(11)-K(2)-O(10)#4   | 99.7(2)   | O(2)-Mo(1)-O(5)       | 85.4(3)    |
| O(11)#7-K(2)-O(8)#12 | 52.91(19) | O(2)-Mo(1)-O(6)#3     | 172.7(3)   |
| O(11)-K(2)-O(8)#12   | 146.1(2)  | O(3)-Mo(1)-O(4)       | 141.1(3)   |
| O(11)-K(2)-O(11)#7   | 95.15(18) | O(3)-Mo(1)-O(5)       | 81.5(3)    |
| O(11)#7-K(2)-O(1)#2  | 141.4(2)  | O(3)-Mo(1)-O(6)#3     | 78.6(2)    |
| O(11)-K(2)-O(1)#2    | 65.9(2)   | O(4)-Mo(1)-O(5)       | 68.9(2)    |
| O(11)-K(2)-O(12)#4   | 76.7(2)   | O(4)-Mo(1)-O(6)#3     | 75.5(3)    |
| O(11)#7-K(2)-O(12)#4 | 85.0(2)   | O(4)-Mo(2)-O(5)       | 72.6(3)    |
| O(9)#12-K(2)-O(10)#4 | 114.5(2)  | O(4)-Mo(2)-O(10)      | 149.9(3)   |
| O(9)#12-K(2)-O(8)#12 | 55.21(18) | O(4)-Mo(2)-O(8)#3     | 87.7(3)    |
| O(9)#12-K(2)-O(11)   | 138.8(2)  | O(5)-Mo(2)-O(8)#3     | 73.1(2)    |
| O(9)#12-K(2)-O(11)#7 | 79.9(2)   | O(10)-Mo(2)-O(5)      | 81.0(3)    |

| O(9)#12-K(2)-O(1)#2  | 92.8(2)    | O(10)-Mo(2)-O(8)#3   | 70.8(3)  |
|----------------------|------------|----------------------|----------|
| O(9)#12-K(2)-O(12)#4 | 142.2(2)   | O(11)-Mo(2)-O(4)     | 99.7(3)  |
| O(1)#9-Rb(1)-O(4)#9  | 53.46(17)  | O(11)-Mo(2)-O(5)     | 157.9(3) |
| O(1)#8-Rb(1)-O(4)#8  | 53.46(17)  | O(11)-Mo(2)-O(10)    | 99.6(3)  |
| O(1)#8-Rb(1)-O(4)#9  | 63.63(19)  | O(11)-Mo(2)-O(8)#3   | 86.1(3)  |
| O(1)#9-Rb(1)-O(4)#8  | 63.63(19)  | O(12)-Mo(2)-O(4)     | 101.8(3) |
| O(1)#9-Rb(1)-O(6)#11 | 49.86(18)  | O(12)-Mo(2)-O(5)     | 97.5(3)  |
| O(1)#9-Rb(1)-O(6)#10 | 107.24(19) | O(12)-Mo(2)-O(10)    | 95.5(3)  |
| O(1)#8-Rb(1)-O(6)#11 | 107.24(19) | O(12)-Mo(2)-O(8)#3   | 164.2(3) |
| O(1)#8-Rb(1)-O(6)#10 | 49.86(18)  | O(12)-Mo(2)-O(11)    | 104.4(4) |
| O(1)#9-Rb(1)-O(1)#8  | 106.0(3)   | O(6)#3-Mo(1)-O(5)    | 87.4(2)  |
| O(1)#8-Rb(1)-O(12)#2 | 88.88(19)  | O(8)-Mo(3)-O(8)#3    | 80.4(3)  |
| O(1)#9-Rb(1)-O(12)   | 88.88(19)  | O(9)-Mo(3)-O(8)      | 89.0(3)  |
| O(1)#9-Rb(1)-O(12)#2 | 129.0(2)   | O(9)#3-Mo(3)-O(8)    | 166.6(3) |
| O(1)#8-Rb(1)-O(12)   | 129.0(2)   | O(9)#3-Mo(3)-O(8)#3  | 89.0(3)  |
| O(2)-Rb(1)-O(4)#9    | 136.44(18) | O(9)-Mo(3)-O(8)#3    | 166.6(3) |
| O(2)#2-Rb(1)-O(4)#8  | 136.44(18) | O(9)#3-Mo(3)-O(9)    | 102.6(5) |
| O(2)#2-Rb(1)-O(4)#9  | 114.21(19) | O(9)-Mo(3)-O(10)     | 98.1(3)  |
| O(2)-Rb(1)-O(4)#8    | 114.21(19) | O(9)-Mo(3)-O(10)#3   | 103.0(3) |
| O(2)-Rb(1)-O(6)#11   | 139.07(18) | O(9)#3-Mo(3)-O(10)   | 103.0(3) |
| O(2)#2-Rb(1)-O(6)#10 | 139.07(18) | O(9)#3-Mo(3)-O(10)#3 | 98.1(3)  |
| O(2)-Rb(1)-O(6)#10   | 67.95(19)  | O(10)-Mo(3)-O(8)     | 81.7(3)  |
| O(2)#2-Rb(1)-O(6)#11 | 67.95(19)  | O(10)#3-Mo(3)-O(8)   | 72.4(3)  |
| O(2)-Rb(1)-O(2)#2    | 97.8(3)    | O(10)-Mo(3)-O(8)#3   | 72.4(3)  |
| O(2)#2-Rb(1)-O(1)#9  | 79.1(2)    | O(10)#3-Mo(3)-O(10)  | 146.0(4) |
| O(2)#2-Rb(1)-O(1)#8  | 168.69(18) | O(10)#3-Mo(3)-O(8)#3 | 81.7(3)  |
| O(2)-Rb(1)-O(1)#8    | 79.1(2)    | O(5)-P(1)-O(7)       | 107.6(3) |
| O(2)-Rb(1)-O(1)#9    | 168.69(18) | O(8)-P(1)-O(5)       | 112.5(4) |
| O(2)-Rb(1)-O(12)#2   | 60.3(2)    | O(8)-P(1)-O(7)       | 101.5(4) |
| O(2)#2-Rb(1)-O(12)#2 | 80.2(2)    | O(6)-P(1)-O(5)       | 110.8(4) |
| O(2)#2-Rb(1)-O(12)   | 60.3(2)    | O(6)-P(1)-O(8)       | 113.2(4) |
| O(2)-Rb(1)-O(12)     | 80.2(2)    | O(6)-P(1)-O(7)       | 110.8(4) |
| O(4)#8-Rb(1)-O(4)#9  | 60.6(2)    |                      |          |

| #1 x+1,y,z           | #2 x,-y+1,-z+1          | #3 -x+1,y,-z+1/2        |
|----------------------|-------------------------|-------------------------|
| #4 x+1/2,-y+1/2,-z+1 | #5 -x+1/2,-y+1/2,z-1/2  | #6 x+1/2,y-1/2,z        |
| #7 x-1/2,-y+1/2,-z+1 | #8 x-1,y,z              | #9 x-1,-y+1,-z+1        |
| #10 -x,y,-z+1/2      | #11 -x,-y+1,z+1/2       | #12 -x+1/2,-y+1/2,z+1/2 |
| #13 x-1/2,y+1/2,z    | #14 -x+1/2,y+1/2,-z+1/2 | #15 -x,-y+1,z-1/2       |

| Table S5. Selected | bond lengths () | Å) and angles | (°) for | NaRb <sub>3</sub> Mo <sub>5</sub> P <sub>2</sub> O <sub>22</sub> . |
|--------------------|-----------------|---------------|---------|--------------------------------------------------------------------|

| Table 55. Selected bolld lell |           |                       |           |
|-------------------------------|-----------|-----------------------|-----------|
| Na(1)-O(1)#2                  | 2.587(11) | Rb(2)-O(11)#11        | 3.453(10) |
| Na(1)-O(1)#4                  | 2.587(11) | Mo(1)-O(2)            | 1.921(10) |
| Na(1)-O(7)                    | 2.902(11) | Mo(1)-O(3)#12         | 2.347(9)  |
| Na(1)-O(7)#3                  | 2.902(11) | Mo(1)-O(4)            | 1.686(10) |
| Na(1)-O(11)                   | 2.490(10) | Mo(1)-O(5)            | 1.699(10) |
| Na(1)-O(11)#3                 | 2.490(10) | Mo(1)-O(6)            | 1.912(8)  |
| Rb(1)-O(1)#7                  | 2.804(10) | Mo(1)-O(10)           | 2.244(9)  |
| Rb(1)-O(2)#5                  | 2.861(9)  | Mo(2)-O(6)            | 1.898(9)  |
| Rb(1)-O(3)#8                  | 3.264(9)  | Mo(2)-O(7)            | 1.681(10) |
| Rb(1)-O(4)                    | 2.818(10) | Mo(2)-O(8)            | 1.686(10) |
| Rb(1)-O(4)#7                  | 2.929(11) | Mo(2)-O(10)           | 2.423(9)  |
| Rb(1)-O(5)                    | 3.497(11) | Mo(2)-O(11)#12        | 2.378(9)  |
| Rb(1)-O(5)#5                  | 3.031(11) | Mo(2)-O(12)           | 1.894(3)  |
| Rb(1)-O(7)#6                  | 3.509(11) | Mo(3)-O(1)            | 1.689(10) |
| Rb(1)-O(8)#6                  | 2.994(10) | Mo(3)-O(1)#12         | 1.689(10) |
| Rb(2)-O(5)                    | 3.191(11) | Mo(3)-O(2)            | 1.921(9)  |
| Rb(2)-O(5)#6                  | 3.191(10) | Mo(3)-O(2)#12         | 1.921(9)  |
| Rb(2)-O(6)#9                  | 3.163(10) | Mo(3)-O(3)#12         | 2.333(9)  |
| Rb(2)-O(6)#10                 | 3.163(10) | Mo(3)-O(3)            | 2.333(9)  |
| Rb(2)-O(7)                    | 3.143(11) | P(1)-O(3)             | 1.509(9)  |
| Rb(2)-O(7)#6                  | 3.144(11) | P(1)-O(9)             | 1.595(6)  |
| Rb(2)-O(8)#9                  | 3.180(11) | P(1)-O(10)            | 1.526(9)  |
| Rb(2)-O(8)#10                 | 3.180(11) | P(1)-O(11)            | 1.500(10) |
| Rb(2)-O(11)#3                 | 3.453(10) |                       |           |
| O(1)#4-Na(1)-O(1)#2           | 60.8(5)   | O(7)-Rb(2)-O(6)#9     | 138.2(2)  |
| O(1)#2-Na(1)-O(7)             | 67.3(3)   | O(7)#6-Rb(2)-O(6)#9   | 111.8(3)  |
| O(1)#4-Na(1)-O(7)             | 123.3(3)  | O(7)-Rb(2)-O(6)#10    | 111.8(3)  |
| O(1)#2-Na(1)-O(7)#3           | 123.3(3)  | O(7)-Rb(2)-O(7)#6     | 98.4(4)   |
| O(1)#4-Na(1)-O(7)#3           | 67.3(3)   | O(7)#6-Rb(2)-O(8)#9   | 78.0(3)   |
| O(7)-Na(1)-O(7)#3             | 169.2(5)  | O(7)#6-Rb(2)-O(8)#10  | 168.4(2)  |
| O(11)-Na(1)-O(1)#4            | 138.3(3)  | O(7)-Rb(2)-O(8)#9     | 168.4(2)  |
| O(11)#3-Na(1)-O(1)#2          | 138.3(3)  | O(7)-Rb(2)-O(8)#10    | 78.0(3)   |
| O(11)-Na(1)-O(1)#2            | 122.7(3)  | O(7)-Rb(2)-O(11)#11   | 140.0(2)  |
| O(11)#3-Na(1)-O(1)#4          | 122.7(3)  | O(7)#6-Rb(2)-O(11)#3  | 140.0(2)  |
| O(11)#3-Na(1)-O(7)#3          | 88.7(3)   | O(7)#6-Rb(2)-O(11)#11 | 65.8(3)   |
| O(11)-Na(1)-O(7)#3            | 83.2(3)   | O(7)-Rb(2)-O(11)#3    | 65.8(3)   |
| O(11)-Na(1)-O(7)              | 88.7(3)   | O(8)#9-Rb(2)-O(5)     | 90.8(2)   |
| O(11)#3-Na(1)-O(7)            | 83.2(3)   | O(8)#10-Rb(2)-O(5)#6  | 90.8(2)   |
| O(11)-Na(1)-O(11)#3           | 83.5(5)   | O(8)#9-Rb(2)-O(5)#6   | 127.7(3)  |
| O(1)#7-Rb(1)-O(2)#5           | 114.3(3)  | O(8)#10-Rb(2)-O(5)    | 127.7(3)  |
| O(1)#7-Rb(1)-O(3)#8           | 56.1(3)   | O(8)#9-Rb(2)-O(8)#10  | 107.6(4)  |
| O(1)#7-Rb(1)-O(4)             | 138.9(3)  | O(8)#10-Rb(2)-O(11)#3 | 48.5(2)   |
| O(1)#7-Rb(1)-O(4)#7           | 80.8(3)   | O(8)#9-Rb(2)-O(11)#11 | 48.5(2)   |

| O(1)#7-Rb(1)-O(5)     | 92.9(3)    | O(8)#9-Rb(2)-O(11)#3   | 109.9(3) |
|-----------------------|------------|------------------------|----------|
| O(1)#7-Rb(1)-O(5)#5   | 144.0(3)   | O(8)#10-Rb(2)-O(11)#11 | 109.9(3) |
| O(1)#7-Rb(1)-O(7)#6   | 56.5(3)    | O(11)#11-Rb(2)-O(11)#3 | 148.4(3) |
| O(1)#7-Rb(1)-O(8)#6   | 91.8(3)    | O(2)-Mo(1)-O(3)#12     | 71.5(3)  |
| O(2)#5-Rb(1)-O(3)#8   | 96.9(2)    | O(2)-Mo(1)-O(10)       | 81.3(3)  |
| O(2)#5-Rb(1)-O(4)#7   | 133.4(3)   | O(4)-Mo(1)-O(2)        | 100.0(4) |
| O(2)#5-Rb(1)-O(5)#5   | 54.5(3)    | O(4)-Mo(1)-O(3)#12     | 86.5(4)  |
| O(2)#5-Rb(1)-O(5)     | 146.6(3)   | O(4)-Mo(1)-O(5)        | 105.9(5) |
| O(2)#5-Rb(1)-O(7)#6   | 124.6(3)   | O(4)-Mo(1)-O(6)        | 98.3(5)  |
| O(2)#5-Rb(1)-O(8)#6   | 82.6(3)    | O(4)-Mo(1)-O(10)       | 158.7(4) |
| O(3)#8-Rb(1)-O(5)     | 114.8(2)   | O(5)-Mo(1)-O(2)        | 96.3(4)  |
| O(3)#8-Rb(1)-O(7)#6   | 110.5(2)   | O(5)-Mo(1)-O(3)#12     | 164.2(4) |
| O(4)-Rb(1)-O(2)#5     | 98.4(3)    | O(5)-Mo(1)-O(6)        | 101.5(4) |
| O(4)-Rb(1)-O(3)#8     | 146.1(3)   | O(5)-Mo(1)-O(10)       | 95.0(4)  |
| O(4)#7-Rb(1)-O(3)#8   | 53.5(2)    | O(6)-Mo(1)-O(2)        | 149.8(4) |
| O(4)-Rb(1)-O(4)#7     | 94.8(2)    | O(6)-Mo(1)-O(3)#12     | 85.9(4)  |
| O(4)-Rb(1)-O(5)       | 49.2(3)    | O(6)-Mo(1)-O(10)       | 73.0(4)  |
| O(4)-Rb(1)-O(5)#5     | 75.5(3)    | O(10)-Mo(1)-O(3)#12    | 73.7(3)  |
| O(4)#7-Rb(1)-O(5)#5   | 86.7(3)    | O(6)-Mo(2)-O(10)       | 69.1(3)  |
| O(4)#7-Rb(1)-O(5)     | 67.1(3)    | O(6)-Mo(2)-O(11)#12    | 75.4(4)  |
| O(4)#7-Rb(1)-O(7)#6   | 101.0(3)   | O(7)-Mo(2)-O(6)        | 102.3(5) |
| O(4)-Rb(1)-O(7)#6     | 84.8(3)    | O(7)-Mo(2)-O(8)        | 104.7(5) |
| O(4)-Rb(1)-O(8)#6     | 67.5(3)    | O(7)-Mo(2)-O(10)       | 83.4(4)  |
| O(4)#7-Rb(1)-O(8)#6   | 143.1(3)   | O(7)-Mo(2)-O(11)#12    | 172.4(4) |
| O(5)#5-Rb(1)-O(3)#8   | 89.5(3)    | O(7)-Mo(2)-O(12)       | 100.4(4) |
| O(5)#5-Rb(1)-O(5)     | 113.09(17) | O(8)-Mo(2)-O(6)        | 102.5(5) |
| O(5)#5-Rb(1)-O(7)#6   | 159.5(3)   | O(8)-Mo(2)-O(10)       | 169.7(4) |
| O(5)-Rb(1)-O(7)#6     | 54.8(2)    | O(8)-Mo(2)-O(11)#12    | 82.8(4)  |
| O(8)#6-Rb(1)-O(3)#8   | 144.7(3)   | O(8)-Mo(2)-O(12)       | 103.1(4) |
| O(8)#6-Rb(1)-O(5)#5   | 117.1(3)   | O(11)#12-Mo(2)-O(10)   | 89.1(3)  |
| O(8)#6-Rb(1)-O(5)     | 77.4(3)    | O(12)-Mo(2)-O(6)       | 140.0(4) |
| O(8)#6-Rb(1)-O(7)#6   | 47.6(3)    | O(12)-Mo(2)-O(10)      | 81.3(3)  |
| O(5)-Rb(2)-O(5)#6     | 116.1(4)   | O(12)-Mo(2)-O(11)#12   | 77.8(3)  |
| O(5)-Rb(2)-O(11)#3    | 79.2(2)    | O(1)#12-Mo(3)-O(1)     | 101.6(7) |
| O(5)#6-Rb(2)-O(11)#3  | 118.4(2)   | O(1)-Mo(3)-O(2)#12     | 98.6(4)  |
| O(5)-Rb(2)-O(11)#11   | 118.4(2)   | O(1)#12-Mo(3)-O(2)#12  | 103.3(4) |
| O(5)#6-Rb(2)-O(11)#11 | 79.2(2)    | O(1)#12-Mo(3)-O(2)     | 98.6(4)  |
| O(6)#9-Rb(2)-O(5)#6   | 96.7(3)    | O(1)-Mo(3)-O(2)        | 103.3(4) |
| O(6)#10-Rb(2)-O(5)#6  | 141.9(2)   | O(1)-Mo(3)-O(3)        | 166.5(4) |
| O(6)#10-Rb(2)-O(5)    | 96.7(3)    | O(1)#12-Mo(3)-O(3)     | 90.1(4)  |
| O(6)#9-Rb(2)-O(5)     | 141.9(2)   | O(1)#12-Mo(3)-O(3)#12  | 166.5(4) |
| O(6)#9-Rb(2)-O(6)#10  | 62.6(3)    | O(1)-Mo(3)-O(3)#12     | 90.1(4)  |
| O(6)#10-Rb(2)-O(8)#9  | 66.5(3)    | O(2)#12-Mo(3)-O(2)     | 145.1(5) |
| O(6)#10-Rb(2)-O(8)#10 | 52.3(2)    | O(2)#12-Mo(3)-O(3)#12  | 81.3(3)  |

| O(6)#9-Rb(2)-O(8)#9    | 52.3(2)  | O(2)-Mo(3)-O(3)#12 | 71.8(3)  |
|------------------------|----------|--------------------|----------|
| O(6)#9-Rb(2)-O(8)#10   | 66.5(3)  | O(2)#12-Mo(3)-O(3) | 71.8(3)  |
| O(6)#9-Rb(2)-O(11)#11  | 46.8(2)  | O(2)-Mo(3)-O(3)    | 81.3(3)  |
| O(6)#9-Rb(2)-O(11)#3   | 102.6(2) | O(3)#12-Mo(3)-O(3) | 79.1(5)  |
| O(6)#10-Rb(2)-O(11)#11 | 102.6(2) | O(3)-P(1)-O(9)     | 101.5(5) |
| O(6)#10-Rb(2)-O(11)#3  | 46.8(2)  | O(3)-P(1)-O(10)    | 112.4(5) |
| O(7)-Rb(2)-O(5)#6      | 61.2(3)  | O(10)-P(1)-O(9)    | 107.7(4) |
| O(7)#6-Rb(2)-O(5)      | 61.2(3)  | O(11)-P(1)-O(3)    | 114.5(5) |
| O(7)-Rb(2)-O(5)        | 77.9(3)  | O(11)-P(1)-O(9)    | 109.8(5) |
| O(7)#6-Rb(2)-O(5)#6    | 77.9(3)  | O(11)-P(1)-O(10)   | 110.5(6) |
| O(7)#6-Rb(2)-O(6)#10   | 138.2(2) |                    |          |

| #1 -x+2,-y+1,z-1/2     | #2 x+1/2,y+1/2,z       | #3 -x+2,y,-z+1/2        |
|------------------------|------------------------|-------------------------|
| #4 -x+3/2,y+1/2,-z+1/2 | #5 x-1/2,-y+1/2,-z+1   | #6 x,-y+1,-z+1          |
| #7 x+1/2,-y+1/2,-z+1   | #8 -x+3/2,-y+1/2,z+1/2 | #9 x+1,-y+1,-z+1        |
| #10 x+1,y,z            | #11 -x+2,-y+1,z+1/2    | #12 -x+1,y,-z+1/2       |
| #13 x-1,y,z            | #14 x-1/2,y-1/2,z      | #15 -x+3/2,-y+1/2,z-1/2 |
|                        |                        |                         |

|                             | $K_4Mo_5P_2O_{22}$ | $KCs_3Mo_5P_2O_{22}$ | $Rb_4Mo_5P_2O_{22}$ | $Cs_4Mo_5P_2O_{22}$ |
|-----------------------------|--------------------|----------------------|---------------------|---------------------|
| Mo(1)O <sub>6</sub>         | 2.40               | 2.05                 | 6.71                | 6.50                |
| Mo(2)O <sub>6</sub>         | 3.17               | 2.61                 | 6.19                | 7.04                |
| Mo(3)O <sub>6</sub>         | 4.89               | 2.85                 | 6.07                | 7.23                |
| P(1)O <sub>4</sub>          | 2.90               | 2.19                 | 2.89                | 2.67                |
| $[Mo_5P_2O_{23}]^{6-} ring$ | 3.11               | 2.63                 | 8.96                | 8.37                |

Table S6. Dipole moments (debye) of  $MoO_6$ , and  $PO_4$  polyhedra in  $K_4Mo_5P_2O_{22}$ ,  $KCs_3Mo_5P_2O_{22}$ ,  $Rb_4Mo_5P_2O_{22}$  and  $Cs_4Mo_5P_2O_{22}$ .



Figure S1. TG-DSC curves of (a)  $K_4Mo_5P_2O_{22}$ , (b)  $K_2Rb_2Mo_5P_2O_{22}$ , (c)  $KCs_3Mo_5P_2O_{22}$ , and (d)  $NaRb_3Mo_5P_2O_{22}$ .

Figure S2. Calculated, experimental and after melting PXRD patterns for (a)  $K_4Mo_5P_2O_{22}$ , (b)  $K_2Rb_2Mo_5P_2O_{22}$ , (c)  $KCs_3Mo_5P_2O_{22}$ , and (d)  $NaRb_3Mo_5P_2O_{22}$ , (e) calculated PXRD comparison of  $K_4Mo_5P_2O_{22}$  with  $Cs_4Mo_5P_2O_{22}$  and  $Rb_4Mo_5P_2O_{22}$ .



Figure S3. IR data for (a)  $K_4Mo_5P_2O_{22}$ , (b)  $K_2Rb_2Mo_5P_2O_{22}$ , (c)  $KCs_3Mo_5P_2O_{22}$ , and (d)  $NaRb_3Mo_5P_2O_{22}$ .



Figure S4. UV–Vis–NIR diffuse–reflectance spectra of (a)  $K_4Mo_5P_2O_{22}$ , (b)  $K_2Rb_2Mo_5P_2O_{22}$ , (c)  $KCs_3Mo_5P_2O_{22}$ , and (d)  $NaRb_3Mo_5P_2O_{22}$ .



Figure S5. Oscilloscope traces of the SHG signals for the powders for KDP,  $K_4Mo_5P_2O_{22}$  (a), and (b)  $KCs_3Mo_5P_2O_{22}$  (at 1064 nm Q-switched Nd: YAG laser).



Figure S6. Dipole moment directions of the  $PO_4$  and  $MoO_6$  polyhedra in  $KCs_3Mo_5P_2O_{22}$ ,  $K_4Mo_5P_2O_{22}$ ,



and  $Cs_4Mo_5P_2O_{22}$ . (The arrows represent the approximate directions of the dipole moments).

Figure S7. The SHG density maps of the VE occupied (left) and VE unoccupied orbitals (right) of  $K_4Mo_5P_2O_{22}$  (a-b),  $NaRb_3Mo_5P_2O_{22}$  (c-d).



Figure 8. Calculated band structures of the GGA method, (a)  $K_4Mo_5P_2O_{22}$ , (b)  $KCs_3Mo_5P_2O_{22}$  and (c)  $NaRb_3Mo_5P_2O_{22}$ .



## References

- 1 V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl.

- V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.
   G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112.
   A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
   P. Kubelka and F. Z. Munk, Techn. Phys., 1931, 12, 593.
   S. K. Kurtz and T. T. Perry, J. Appl. Phys., 1968, 39, 3798.
   S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, Kristallogr. Cryst. Mater., 2005, 220, 567.
   B. G. Pfrommer, M. Côté, S. G. Louie and M. L. Cohen, J. Comput. Phys., 1997, 131, 233.
   I. P. Perdew, K. Burke and M. Ernzerhof. Phys. Rev. Lett. 1996, 77, 3865.

- 8 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
  9 A. M. Rappe, K. M. Rabe, E. Kaxiras and J. D. Joannopoulos, *Phys. Rev. B.*, 1990, **41**, 1227.
- 10 J. S. Lin, A. Qteish, M. C. Payne and V. Heine, Phys. Rev. B., 1993, 47, 4174.