# Supplementary material - Introducing a new airborne research facility in Australia: New airborne research facility observes sensitivity of cumulus cloud microphysical properties to aerosol regime over the Great Barrier Reef

Diana C. Hernandez-Jaramillo, Christopher Medcraft, Ramon Campos Braga, Peter Butcherine, Adrian Doss, Brendan Kelaher, Daniel Rosenfeld, and Daniel P. Harrison

### Section S1

#### **Aircraft instrumentation**

| Table S1 Instrumentation installed onboard Cessna 337 during the Mar-Apr 2023 Cooling and Shading campaign |                                      |                                     |                         |                                                |                                    |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------|------------------------------------------------|------------------------------------|--|--|--|--|
| Location                                                                                                   | Instrument                           | Manufacturer                        | Model                   | Measured quantity                              | Range                              |  |  |  |  |
| Aerosol Instrumentation System                                                                             |                                      |                                     |                         |                                                |                                    |  |  |  |  |
| Rack in cabin                                                                                              | mSEMS                                | Brechtel                            | 9404                    | Aerosol Particle Size Distribution<br>(PSD)    | selectable 5 -<br>375 nm           |  |  |  |  |
| Rack in cabin                                                                                              | aMCPC (SEMS)                         | Brechtel                            | 9403                    | Aerosol Particle Size Distribution<br>(PSD)    | 7-2,000 nm                         |  |  |  |  |
| Rack in cabin                                                                                              | MCPC                                 | Brechtel                            | 1720                    | Particle number concentration                  | 7-2,000 nm                         |  |  |  |  |
| Rack in cabin                                                                                              | MCPC (heated)                        | Brechtel                            | 1720                    | Inorganic particle number concentration        | 7-2,000 nm                         |  |  |  |  |
| Underwing pod                                                                                              | mOPC                                 | Brechtel                            | 9405                    | Aerosol Particle Size Distribution<br>(PSD)    | 0.16 – 3 μm                        |  |  |  |  |
| Underwing pod                                                                                              | Isokinetic inlet                     | Airborne Research<br>Australia      | Custom                  | Inlet for aerosol particles                    |                                    |  |  |  |  |
| Underwing pod                                                                                              | Inlet 3-way valve                    | Brechtel                            | 3V                      | select from sample or air from<br>inside pod   |                                    |  |  |  |  |
| Underwing pod                                                                                              | Vacuum pump- Nafion<br>Dryer Circuit | Brechtel                            | N/A                     | Used in nafion drying circuit                  |                                    |  |  |  |  |
| Underwing pod                                                                                              | Nafion Dryer                         | Permapure                           | MD700                   | Dries OPC air sample flow                      |                                    |  |  |  |  |
| Underwing pod                                                                                              | Nafion Dryer                         | Permapure                           | MD700                   | Dries cabin air sample flow                    |                                    |  |  |  |  |
| Rack in cabin                                                                                              | Neutraliser - Soft X-ray             | Brechtel                            | 9002                    | aerosol charge neutraliser used<br>with mSEMS  |                                    |  |  |  |  |
| Rack in cabin                                                                                              | TAP- Black carbon                    | Brechtel                            | 2901                    | light absorption and estimated<br>black carbon | wavelengths<br>467, 528,<br>652 nm |  |  |  |  |
| Rack in cabin                                                                                              | Vacuum pump - TAP                    | Thomas                              | 70060071                |                                                |                                    |  |  |  |  |
| Rack in cabin                                                                                              | Vacuum pump - MCPC1                  | Thomas                              | 70060071                |                                                |                                    |  |  |  |  |
| Rack in cabin                                                                                              | Vacuum pump - MCPC2                  | Thomas                              | 70060071                |                                                |                                    |  |  |  |  |
| Rack in cabin                                                                                              | UHSAS                                | Droplet Measurement<br>Technologies | UHSAS-G                 | 0.06-1um                                       | 60 nm – 1 μm                       |  |  |  |  |
| Rack in cabin                                                                                              | Thermodenuder heater<br>(300 degC)   | Neptech                             | QUEEN-7053-<br>50CM-000 | Pre-treatment for non-volatile<br>CN           |                                    |  |  |  |  |
| Meteorology Instrumentation System                                                                         |                                      |                                     |                         |                                                |                                    |  |  |  |  |
| Wing                                                                                                       | ARIM-200 probe                       | Aventech                            | ARIM-S200               | 3D wind, T, RH, Airspeed                       |                                    |  |  |  |  |
| Wing                                                                                                       | ARIM-200 probe Anti-ice              | Aventech                            | ARIM-S201               | 3D wind, T, RH, Airspeed                       |                                    |  |  |  |  |
| Cabin                                                                                                      | Vectrax 10 module                    | Aventech                            | AIMMS30                 | 3D wind, T, RH, Airspeed                       |                                    |  |  |  |  |
| Cabin                                                                                                      | MetTrack display                     | Aventech                            | AIMMS31                 | 3D wind, T, RH, Airspeed                       |                                    |  |  |  |  |
| Underwing pod                                                                                              | IMU / GPS                            | OXTS                                | XNAV650                 | GPS position /Attitude                         |                                    |  |  |  |  |

| Rack in cabin                             | Hygrometer- power unit                    | Buck Research<br>Instruments        | 1011C                           |                                           |                                                                                   |  |  |  |  |
|-------------------------------------------|-------------------------------------------|-------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
| Underwing pod                             | Hygrometer - sensor                       | Buck Research<br>Instruments        | 1011C                           | dew point temperature                     |                                                                                   |  |  |  |  |
| Radiation Instrumentation System          |                                           |                                     |                                 |                                           |                                                                                   |  |  |  |  |
| Wing                                      | Net radiometer                            | Apogee                              | Net radiometer<br>SN-500        | Net radiation                             | 385 - 2105 nm<br>(upward-<br>looking), 295 -<br>2685 nm<br>(downward-<br>looking) |  |  |  |  |
| Rack in cabin                             | data logger                               | Campbell scientific                 | CR1000X                         | datalogger for radiometer                 |                                                                                   |  |  |  |  |
| Cloud Microphysics Instrumentation System |                                           |                                     |                                 |                                           |                                                                                   |  |  |  |  |
| Fuselage                                  | camera                                    | Milesight                           | MSC5375PD                       | Video - Upward                            |                                                                                   |  |  |  |  |
| Wing                                      | camera                                    | Milesight                           | MSC5375PD                       | Video - Forward down                      |                                                                                   |  |  |  |  |
| Wing                                      | camera                                    | Milesight                           | MSC5375PD                       | Video - Down                              |                                                                                   |  |  |  |  |
| Underwing pod                             | camera                                    | Milesight                           | MSC5375PD                       | Video - Forward                           |                                                                                   |  |  |  |  |
| Rack in cabin                             | camera recorder + 2TB<br>HDD              | HikVision                           | DS-MP5604N                      |                                           |                                                                                   |  |  |  |  |
| Wing                                      | CCP/CIPg                                  | Droplet Measurement<br>Technologies | ССР                             | Cloud Particle Size Distribution<br>(PSD) | 15 - 960 μm                                                                       |  |  |  |  |
| Wing                                      | CCP/CDP                                   | Droplet Measurement<br>Technologies | ССР                             | Cloud Particle Size Distribution<br>(PSD) | 3 - 50 μm                                                                         |  |  |  |  |
| Wing                                      | CCP/Hot-wire                              | Droplet Measurement<br>Technologies | ССР                             | Liquid Water Content (LWC)                | 0 - 3 g/m3                                                                        |  |  |  |  |
| Wing                                      | Cloud Combination Probe<br>(CCP) Anti-ice | Droplet Measurement<br>Technologies | ССР                             |                                           |                                                                                   |  |  |  |  |
| Data processing, storage, & Display       |                                           |                                     |                                 |                                           |                                                                                   |  |  |  |  |
| Rack in cabin                             | fanless computer                          | NEXCOM                              | ATC 8110                        | Data acquisition                          |                                                                                   |  |  |  |  |
| Cabin                                     | Rear seat monitor                         | Aplex                               | ARCDISS-115                     | instruments display                       |                                                                                   |  |  |  |  |
| Rack in cabin                             | Network time server                       | Time Machines<br>Corporation        | TM1000A -GPS<br>NTP time server | GPS based time to nanosecond<br>accuracy  |                                                                                   |  |  |  |  |
| Rack in cabin                             | Unmanaged Network<br>Switch               | Weidmuller                          | IE-SW-EL10-<br>8GTPOE-2GESFP    |                                           |                                                                                   |  |  |  |  |
| Cabin                                     | Laptop                                    | Dell                                | Lattitude 14                    |                                           |                                                                                   |  |  |  |  |
| Power supply system                       |                                           |                                     |                                 |                                           |                                                                                   |  |  |  |  |
| Rack in cabin                             | Power distribution board                  |                                     |                                 |                                           |                                                                                   |  |  |  |  |
| Rack in cabin                             | 240V inverters                            |                                     |                                 | Power assumes 95% efficient               |                                                                                   |  |  |  |  |
| Rack in cabin                             | 28V to 12V Transformer(s)                 |                                     |                                 | Power assumes 95% efficient               |                                                                                   |  |  |  |  |

Section S2.

The strategy of measurements with the research aircraft during the Marine Cloud Brightening campaign



Figure S1. Schematic figure of the flight pattern during MCB campaign.

- 1. Transfer from the Gladstone airport to the reef: Low-level flight for monitoring aerosols and thermodynamics on the way. (Not higher than 1000 ft).
- 2. Descend to 300 ft into the plume towards the vessel.
- 3. Comparison with ship measurements circling twice around it at a low level.
- 4. Vertical ascending spiral windward of the ship to avoid the sea spray plume. The spiral ascending is performed with a full rate of ascent at a bank angle of 15° to 2000 ft above cloud tops, or 10,000', whatever comes first.
- 5. Radiation measurements above clouds before descending through cloud tops.
- 6. Descend by doing cloud cross-sections to establish cloud background ( $\sim$  5 steps, no more than 1000' vertical spacing), including base and below base passes.
- 7. Fly into the plume downwind of the ship just below the cloud base, finding ingestion to the cloud base.
- 8. Ascending by doing cloud cross-sections to document seeding signatures from cloud base to top.
- 9. Radiation measurements above clouds.
- 10. Descend only through clouds for another case. Not more than -1000 fpm in the cloud.

#### Section S3

#### **Calculated Cloud Microphysical Properties**

From the DSD measured with CCP-CDP and CCP-CIP, the following cloud microphysical properties were calculated:

• Number concentration of cloud droplets - N<sub>d</sub> (cm<sup>-3</sup>):

$$N_d = \int_{1.5\mu m}^{25\mu m} N(r)dr \tag{1}$$

where, *N* is the particle concentration in size range of the probe bin, and *r* is the particle radius ( $\mu$ m).

• Cloud Water Content - CWC (g m<sup>-3</sup>):

$$CWC = \frac{4\pi}{3} \rho \int_{1.5\mu m}^{25\mu m} r^3 N(r) dr \qquad (2)$$

where,  $\rho$  is the particle density. The density of water (1 g cm<sup>-3</sup>) is used in calculations since our measurements were performed in temperature above 0 °C.

• Cloud Droplet Effective Radius- *r*<sub>e</sub> (μm):

$$r_{e} = \frac{\int_{1.5\mu m}^{25\mu m} r^{3} N(r) dr}{\int_{1.5\mu m}^{25\mu m} r^{2} N(r) dr}$$
(3)

• Drizzle Water Content - DWC (g m<sup>-3</sup>):

$$DWC = \frac{4\pi}{3} \rho \int_{25\mu m}^{125\mu m} r^3 N(r) dr$$
 (4)

#### Section S4

Type of clouds sampled



Figure S2 Images captured by the pod camera of the clouds sampled during March 25 and April 01 2023, and cloud-type (The International Satellite Cloud Climatology Project ISCCP) plots derived from from Himawari-8 satellite data for the respective flights

## Section S5

# Additional Vertical profile of APSDs

## March 25, 2023



Figure S3 a-b). Aerosol particle size distribution measurements in a vertical ascending spiral on March 25, 2023.





Figure S4 a-b). Aerosol particle size distribution measurements in a vertical ascending spiral on April 01, 2023.



Figure S5 a-b). Aerosol particle size distribution measurements collected at low levels (~300 m) using a miniaturised Optical Particle Counter (9405 mOPC; Brechtel, USA).



Figure S6. CCP-CIP image correspondent to a cloud pass with  $r_e$  = 12.4 µm at altitude of  $\simeq$  3000 m when rain starts (*DWC* > 0.05 g m<sup>-3</sup>) on April 1.



Figure S7. CCP-CIP image correspondent to a cloud pass with  $r_e$  = 14.3 µm at altitude of ~ 1800 m when rain starts (*DWC* > 0.05 g m<sup>-3</sup>) on March 25.