Supplementary Information (SI) for Environmental Science: Atmospheres. This journal is © The Royal Society of Chemistry 2024

## **Supplemental Information**

# Use of Inverse Modeling to determine Particulate Emission Rates from Rural Unpaved Roads

James Kacer<sup>a</sup>, Ralph Altmaier<sup>b</sup>, David M. Cwiertny<sup>c,d</sup> Patrick T. O'Shaughnessy<sup>b</sup>

<sup>a</sup> Center for Health Effects of Environmental Contamination, W195 Chemistry Building, University of Iowa, Iowa City, Iowa, 52242

<sup>b</sup> Department of Occupational and Environmental Health, College of Public Health, University of Iowa

<sup>c</sup> Department of Civil and Environmental Engineering, College of Engineering, University of Iowa

<sup>d</sup> Director, Center for Health Effects of Environmental Contamination, W195 Chemistry Building, University of Iowa, Iowa City, Iowa, 52242

#### Tables

| Parameter       | Site 1                 | Site 2    |
|-----------------|------------------------|-----------|
|                 | μg/m³                  | µg/m³     |
| Sample Size     | 871                    | 558       |
| Geometric Mean  | 50 (3.3 <sup>1</sup> ) | 26 (2.0)  |
| Arithmetic Mean | 106 (162²)             | 34 (30.6) |
| Minimum         | 1                      | 0         |
| Maximum         | 1717                   | 256       |

Table S1 Descriptive Statistics of Hourly  $PM_{10}$  Measurements at Sites 1 and 2.

<sup>1</sup>Geometric standard deviation

<sup>2</sup>Standard deviation

**Table S2** Descriptive Statistics of Emission Rates and Emission Factors (n = 64).

| Parameter       | Emission Rate,<br>g/s     | Emission Rate/<br>Vehicle, g/s-V | Emission Factor,<br>g/VKT |
|-----------------|---------------------------|----------------------------------|---------------------------|
| Geometric Mean  | 1.09 (4.9 <sup>1</sup> )  | 0.26 (4.3 <sup>1</sup> )         | 444 (4.3 <sup>1</sup> )   |
| Arithmetic Mean | 3.34 (5.67 <sup>2</sup> ) | 0.67 (1.06)                      | 1153 (1826)               |
| Minimum         | 0.02                      | 0.01                             | 8.5                       |
| Maximum         | 25.70                     | 4.28                             | 8430                      |

<sup>1</sup>Geometric standard deviation

<sup>2</sup>Standard deviation

| Table S3. Summary of Sensit | vity Analysis of | Variables Affecting the | Value of the AP-42 Emission | n Factor |
|-----------------------------|------------------|-------------------------|-----------------------------|----------|
|-----------------------------|------------------|-------------------------|-----------------------------|----------|

| Veriable   | Variable  | Variable    | Unit   | Range               |
|------------|-----------|-------------|--------|---------------------|
| variable   | Range     | iviid-value | Change | Change <sup>2</sup> |
| % Silt     | 1 - 16    | 8           | 50     | 745                 |
| % Moisture | 0.4 - 1.2 | 0.8         | -113   | -90                 |
| Speed, kph | 48 - 113  | 80          | 2.5    | 162                 |

<sup>1</sup>Change in emission factor per unit change of the variable

<sup>2</sup>Change in emission factor from lowest to highest value of the variable

|                            |      | Vehicle Width, m |                    |                    |                    |        |                    |
|----------------------------|------|------------------|--------------------|--------------------|--------------------|--------|--------------------|
|                            |      | 1.73             | 1.83               | 2.21               | 2.59               | 2.59   | 5.03               |
|                            | 1.42 | 0.6471           |                    |                    |                    |        | 0.650              |
|                            | 1.45 | 0.648            | 0.649 <sup>2</sup> |                    |                    |        | 0.651              |
| Vehicle                    | 2.03 | 0.671            |                    | 0.672 <sup>3</sup> |                    |        | 0.676              |
| height, m                  | 3.53 | 0.798            |                    |                    | 0.798 <sup>4</sup> |        | 0.801              |
|                            | 4.11 | 0.857            |                    |                    |                    | 0.8575 | 0.860              |
|                            | 3.81 | 0.825            |                    |                    |                    |        | 0.829 <sup>6</sup> |
| <sup>1</sup> Small car     |      |                  |                    |                    |                    |        |                    |
| <sup>2</sup> Medium car    |      |                  |                    |                    |                    |        |                    |
| <sup>3</sup> Pickup truck/ | SUV  |                  |                    |                    |                    |        |                    |

Table S4. Sensitivity of the Inversely Modeled Emission Rate (G/S) to Changes in Vehicle Width and Vehicle Height

<sup>3</sup>Pickup truck/SUV

<sup>4</sup>Grain truck

<sup>5</sup>Tractor-trailer

<sup>6</sup>Farm combine, transport width and height

**Table S5** Descriptive Statistics for Vehicle-Generated Plume Characteristics (n = 147).

|         | Average Conc.             | Max Conc.                  | Total Mass               | Time to Peak | Residence Time          |
|---------|---------------------------|----------------------------|--------------------------|--------------|-------------------------|
|         | μg/m³                     | μg/m³                      | μg                       | sec          | sec                     |
| Geomean | 4278 (1.96 <sup>1</sup> ) | 18743 (2.19 <sup>1</sup> ) | 3.4 (2.57 <sup>1</sup> ) | 8.2 (1.98¹)  | 7.4 (5.2 <sup>1</sup> ) |
| Minimum | 1137                      | 2385                       | 0.3                      | 2.0          | 2.2                     |
| Maximum | 32780                     | 221017                     | 54.0                     | 62.0         | 147                     |

<sup>1</sup>Geometric standard deviation

#### Table S6. Regression Coefficients for Plume Sampling Outcomes

|                | In Maximum<br>Concentration | In Average<br>Concentration | In Time to Peak<br>Concentration | In Residence<br>Time | In Total Mass |
|----------------|-----------------------------|-----------------------------|----------------------------------|----------------------|---------------|
| vehicle speed  | 0.021***                    | 0.016***                    | 0.001                            | 0.003                | 0.022***      |
| wind speed     | -0.047*                     | -0.048**                    | -0.108***                        | -0.056***            | -0.132***     |
| wind direction | 0.006                       | 0.004                       | 0.004                            | -0.007*              | 0.001         |

p: \*<0.05, \*\*<0.01, \*\*\*<0.001

### Figures



Fig. S1. Site 1 and Site 2 BAM sample locations.



Fig. S2. Site 3 southerly-wind aerosol photometer sampling site.



Fig. S3. Site 4 northerly-wind aerosol photometer sampling site.



Fig. S4. The Site 1 sample shed containing a BAM monitor positioned near a rural unpaved road.



Fig. S5. The Site 1 sample shed showing configuration of the BAM monitor.



Fig. S6. Site 1 and Site 2  $PM_{10}$  concentration frequency distributions.



**Fig. S7**. Inverse modeled emission rates given varying wind directions and wind speeds while all other model inputs remained constant over a one-hour meteorological period.



**Fig. S8**. Particulate matter plume profiles resulting from a car passing the aerosol photometer every one to three minutes.