Supplementary information

Fine particulate air pollution estimation in Ouagadougou using satellite aerosol optical depth and meteorological parameters

Joe Adabouk Amooli^{a,b}, Daniel M Westervelt*^b, Kwame Oppong Hackman^c, Bernard Nana^d

Table S1: % values of data availability of $PM_{2.5}$ from the embassy dataset for the measurement periods

Month	% of Data Availability
Jan	65
Feb	100
March	100
April	100
May	100
June	20
July	14
August	86
September	100
October	17
November	53
December	65

Table S2: % values of data availability of satellite AOD over the data collection period.

Year	% of Data Availability	Year	% of Data Availability
2000	45	2012	60
2001	46	2013	61
2002	50	2014	56
2003	58	2015	63
2004	60	2016	58
2005	59	2017	62
2006	61	2018	56
2007	55	2019	55
2008	58	2020	58
2009	59	2021	63
2010	57	2022	57
2011	59		

Table S3: Pearson correlation coefficients between observed and satellite weather parameters at Ouagadougou International Airport

Parameters	Dry season	Rainy Season
	r	r
Observed precipitation and CHIRPS precipitation	0.83	0.79
(resampled to 1km resolution)		
Observed relative humidity and Era5-Land relative	0.87	0.89
humidity (resampled to 1km resolution)		
Observed temperature and Era5-Land surface	0.97	0.84

temperature		
Observed wind speed and Era5-Land wind speed	0.90	0.88
(resampled to 1km resolution)		
Observed wind direction and Era5-Land wind	0.85	0.81
direction (resampled to 1km resolution)		

Figure S1: Simple linear models for correcting satellite data in Ouagadougou

Figure S2: Temporal changes of $PM_{2.5}$ on weekdays and weekends

Figure S3: Potential source regions and contributions to $PM_{2.5}$ from Trajstat model (NOAA HYSPLIT model) for extremely polluted days in Ouagadougou at three receptor heights 500 m (red), 1000 m (blue), and 1500 m (green).

Figure S4: Conditional bivariate analysis of the relationship between wind speed, wind direction, and $PM_{2.5}$ concentrations

Figure S5: Schematic of AOD and weather parameters as model input

Table S4: Models and hyperparameters set to obtain optimal performance.

Model	Hyperparameters set
Decision tree	ccp_alpha = 0.01

	max_depth = 5
	max_teatures = 'sqrt'
	min_samples_split = 2
	solitter = 'best'
	spinter – best
Random forest	max_depth =7
	n_estimators = 50
	max_features = 'sqrt'
	ccp_alpha=0.01
	min_samples_split = 4
	min_samples_leaf=2
XGBoost	base score = 0.5
	booster = gbtree
	callbacks = None
	colsample_bylevel = None
	colsample_bynode = None
	colsample_bytree = 0.5
	early_stopping_rounds = None
	enable_categorical = False
	eval_metric = None
	feature_types = None
	gamma = 0.4
	gpu_id = None
	grow_policy = None
	interaction constraints - None
	Interaction_constraints = None
	learning_rate =0.1
	max_bin = None max_cat_threshold = None
	max_cat_to_onebot = None
	max_cat_to_onenot = None max_delta_sten = None
	$max_denth = 7$
	max_depth = /
	min_child_weight = 7
	missing = nan
	monotone constraints = None
	n estimators = 100
	n jobs = None
	num parallel tree = None
	predictor = None

Figure S6: Feature importance in the DT, RF, and XGBoost models

Figure S7: Schematic of semi-supervised XGBoost

Figure S8: Validation of the semi-supervised XGBoost model using an independent dataset (TEOM 1400a, a federal equivalent method gravimetric PM_{2.5} monitor located at Université Joseph Ki-Zerbo in Ouagadougou)