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Supplement S1  

Supplement S1 contains a x-y diagram illustrating the enthalpy of vaporisation (∆𝐻!"#) fit 

function, schematics of URMELL aromatics and isoprene chemical degradation mechanisms 

leading to SOA, a plot showing the daily accumulated rain for the 18th and 19th of May 2014 

and a brief summary of simulated gasSOA concentration for sesquiterpene, monoterpene, 

BIGALK and BIGENE. 
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Fig. S1-1: Enthalpy of vaporisation (∆𝐻!"#(𝑇)) as a function of temperature (T) with the linear fit function for 

DHHPEPOX. 

S1.1 Explicit gasSOA through phase partitioning of aromatic and isoprene oxidation 

products 

A brief summary, providing the major changes of aromatics compared to JAMv2b1 necessary 

for explicit gasSOA treatment with URMELL. The reaction of aromatic phenoxy radicals 

(C6H5O, CATEC1O) with NO2 would produce no reaction products, while in URMELL2, 

they lead to NPHEN and NCATECHOL, which are itself considered SOA precursor 

substances. Their further oxidation generates multiple even higher oxidized and non-volatile 

compounds. The latter are hydroperoxides with one or multiple hydroxyl and nitro groups, 

which are lumped into one non-volatile end product NAROMOLOOH, which is not 

undergoing further chemical degradation. Furthermore, the formation of organic nitrates 

(BENZN, TOLN, XYLNO3) from peroxy radicals of initial aromatic OH oxidation with NO 

is considered. Additionally, the SOA channel from the reaction of phenolic compounds 

(PHENOL, CRESOL) with NO3 leading to NPHENOLOOH and NCRESOOH is included. 

The further reactions of bicyclic peroxy radicals from non-functionalised aromatics 

(BENZO2, XYLO2, TOLO2) leads to the production of furanones and from phenols 

(PHENO2, CRESO2) to quinones. MALANHY (leading to MALANHYOOH) is formed via 

further reactions of bicyclic peroxy radicals from nitrophenols and BENZOOH, but has also 

formation pathways not related to aromatic compounds, such as unsaturated organic acids 

(BIGACID1, BIGACID2, BIGAID3) and acyl peroxy radicals (DICARBO2, MALO2, 

MDIALO2). For more details on MALANHY pathways the reader is referred to Luttkus et 

al.2. For toluene and xylene, the reaction products are lumped into benzene or toluene product 

classes, where feasible to reduce the complexity. 
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Species not implemented in the JAMv2b, but in URMELL, are highlighted in bold, semi- and 

low-volatile SOA precursor substances in blue and non-volatile products in red. Images for 

the chemical structures are e.g. taken from the MCM3.3.1 (https://mcm.york.ac.uk/MCM), 

Wennberg et al.3, Vereecken et al.4 or are created using GECKO-A (http://geckoa.lisa.u-

pec.fr/index.php) 

 
Fig. S1-2: Schematic degradation mechanism of benzene (BENZ) in URMELL leading to SOA precursor 
substances. New species highlighted in bold, compounds partitioning into the particle phase in blue and 
non-volatile products in red. 
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Fig. S1-3: Schematic degradation mechanism of toluene (TOL) in URMELL leading to SOA precursor 
substances. New species highlighted in bold, compounds partitioning into the particle phase in blue. 

 

Fig. S1-4: Schematic degradation mechanism of xylene (XYL) in URMELL leading to SOA precursor 
substances. New species highlighted in bold, compounds partitioning into the particle phase in blue. 
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Fig. S1-5: Schematic degradation mechanism of initial OH isoprene (C5H8) oxidation in URMELL leading to 
SOA precursor substances. New species highlighted in bold, compounds partitioning into the particle phase in 
blue. Big arrows indicate similar pathways for multiple species marked by dashed boxes. 
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Fig. S1-6: Schematic degradation mechanism of isoprene (C5H8) ozonolysis in URMELL leading to SOA 

precursor substances. New species highlighted in bold, compounds partitioning into the particle phase in blue. 
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Fig. S1-7: Schematic degradation mechanism of initial NO3 isoprene (C5H8) oxidation in URMELL leading to 

SOA precursor substances. New species highlighted in bold, compounds partitioning into the particle phase in 

blue. Big arrows indicate similar pathways for multiple species marked by boxes with dashed lines. IDHNBOO 

is produced via multiple pathways and marked with *. Its further degradation is only presented once (bottom 

left). 
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Fig. S1-7: Accumulated rain during the 18th a) and 19th b) of May 2024 for the model domain. 

S1.2 Simulated gasSOA from other precursors 

To provide a short outline and to emphasise future model development steps a brief summary 

of sesquiterpene, monoterpene, higher alkane and alkene SOA is given here. For 

sesquiterpenes (Fig. S4-1, S4-2), monoterpenes (Fig. S4-3, S4-4), alkanes (Fig. S4-5, S4-6) 

and alkenes (Fig. S4-7, S4-8), URMELL simulates lower SOA precursor and SOA 

concentrations. Especially for monoterpenes, there is a huge reduction in the north-east at 3 

UTC in the area of heavy rain events (Fig. S4-3, S4-4). In general, the gas-phase analysis19 

already indicated restrictions with the currently implemented monoterpene chemistry 

mechanism and identified lower O3 concentrations in monoterpene emission dominated areas 

(e.g. pine forests). Here, the lower amount of available oxidising partners also hinders the 

production of SOA precursor substances not just for monoterpenes but also for 

sesquiterpenes, which frequently react with O3. Besides the differences for modelled oxidants, 

the slower reaction rate constants for monoterpenes in URMELL compared to RACM lowers 

also the production of SOA precursor substances. The applied SOA yields for the lumped 

species BIGALK und BIGENE as described in section 2.4. lead to one magnitude lower 

concentrations (Fig. S4-5 – S4-8). But as already stated, the yields for BIGALK and BIGENE 

should be seen as minimum contribution here. Extending the explicit SOA scheme to 

monoterpenes, alkane and alkene requires further chemical mechanism as well as SOA 

scheme development and will be addressed in the near future. 
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