## Trace elements in PM<sub>2.5</sub> shed light over Saharan dust incursions over Munich airshed in spring 2022

S. Padoan<sup>1</sup>, A. Zappi<sup>2</sup>, Jan Bendl<sup>1</sup>, T. Herrmann<sup>1</sup>, A. P. Mudan<sup>1</sup>, Carsten Neukirchen<sup>1</sup>, Erika Brattich<sup>3</sup>, Laura

Tositti<sup>2</sup>, T. Adam<sup>1</sup>

<sup>1</sup> University of the Bundeswehr Munich, Faculty for Mechanical Engineering, Institute of Chemical and Environmental Engineering, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany

<sup>2</sup>University of Bologna, Department of Chemistry "G. Ciamician", Bologna, Italy

<sup>3</sup> University of Bologna, Department of Physics and Astronomy "Augusto Righi", Bologna, Italy

Corresponding author: Sara Padoan (sara.padoan@unibw.de)

## Supplementary material

**Table S1.** Signal-to-noise ratio (SNR), background equivalent concentrations (BEC), limits of detection (LoD) and limits of quantification (LoQ) for all the elements. All data are in  $\mu$ g L<sup>-1</sup>.

| Element | SNR    | BEC     | LOD   | LOQ   |
|---------|--------|---------|-------|-------|
| Na      | 1      | 77.6    | 79    | 82    |
| Mg      | 0.7    | 1.18    | 2     | 3     |
| Al      | 0.6    | 2.16    | 3     | 4     |
| Са      | 5      | 21.2    | 26    | 38    |
| S       | 0.3    | 3.35    | 4     | 4     |
| К       | 4      | 29.6    | 34    | 44    |
| Cr      | 0.013  | 0.0920  | 0.10  | 0.13  |
| Mn      | 0.03   | 0.0339  | 0.06  | 0.13  |
| Fe      | 0.07   | 1.25    | 1.3   | 1.5   |
| Со      | 0.0010 | 0.00481 | 0.006 | 0.008 |
| Ni      | 0.03   | 0.108   | 0.14  | 0.2   |
| Cu      | 0.011  | 0.119   | 0.13  | 0.2   |
| Zn      | 0.2    | 3.19    | 3     | 4     |
| V       | 0.002  | 0.00213 | 0.004 | 0.009 |
| As      | 0.005  | 0.0121  | 0.02  | 0.03  |
| Sr      | 0.017  | 0.119   | 0.14  | 0.2   |
| Se      | 0.02   | 0.00838 | 0.03  | 0.09  |
| Мо      | 0.006  | 0.0150  | 0.02  | 0.03  |
| Cd      | 0.002  | 0.00319 | 0.006 | 0.011 |
| Sb      | 0.002  | 0.00497 | 0.007 | 0.011 |
| Ва      | 0.007  | 0.192   | 0.2   | 0.2   |
| Pb      | 0.015  | 0.0919  | 0.11  | 0.14  |



**Figure S1.** Synoptic situation for the period of 14-17 March 2022 (from top-left to bottom-right). 'H' and 'T' indicate, respectively, the centers of high and low pressure systems). Source: Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Austria.



**Figure S2.** Multimodel forecast of dust optical depth at 550 nm, for the period 14-19 March 2022 (from top-left to bottom-right), 12 UTC. Source: SDS-WAS from AEMET and the Barcelona Dust Center.



**Figure S3.** Time-series of the vertical profiles of attenuated backscatter coefficient measured at a ceilometer network, coordinated by E-PROFILE of the EUMETNET Composite Observing System, EUCOS (https://e-profile.eu/) at Oberschleissheim nearby Munich for 15-16-17March 2022.



**Figure S4.** Synoptic situation for the period of 27-30 March 2022 (from top-left to bottom-right). 'H' and 'T' indicate, respectively, the centers of high and low pressure systems. Source: Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Austria.



**Figure S5.** Multimodel forecast of dust optical depth at 550 nm, for the period 28-31 March 2022 (from top-left to bottom-right), 12 UTC. Source: SDS-WAS from AEMET and the Barcelona Dust Center.



**Figure S6.** Time-series of the vertical profiles of attenuated backscatter coefficient measured at a ceilometer network, coordinated by E-PROFILE of the EUMETNET Composite Observing System, EUCOS (https://e-profile.eu/) at Oberschleissheim nearby Munich for 30-31 March 2022.

| Table S2. Varin<br>Bold values co<br>variance. | <b>Fable S2.</b> Varimax loadings for metal concentrations in the reduced-dataset case, without SD-affected days.   3old values correspond to the most representative variables for each factor, EV stands for the explained variance. |          |          |          |          |          |          |  |  |  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|--|--|--|
|                                                |                                                                                                                                                                                                                                        | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 |  |  |  |
|                                                | EV (%)                                                                                                                                                                                                                                 | 19.8     | 18.89    | 14.71    | 9.65     | 8.81     | 5.1      |  |  |  |

|        | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 |
|--------|----------|----------|----------|----------|----------|----------|
| EV (%) | 19.8     | 18.89    | 14.71    | 9.65     | 8.81     | 5.1      |
| Na     | -0.24    | -0.24    | -0.15    | 0.18     | 0.05     | -0.20    |
| Mg     | -0.06    | -0.41    | -0.07    | -0.09    | 0.08     | -0.10    |
| Al     | 0.03     | -0.25    | 0.05     | -0.28    | -0.13    | -0.35    |
| Ca     | 0.07     | -0.46    | 0.12     | -0.19    | -0.07    | 0.11     |
| S      | 0.45     | 0.12     | 0.05     | -0.18    | 0.06     | -0.01    |
| К      | 0.16     | 0.05     | 0.08     | 0.44     | -0.09    | -0.01    |
| Cr     | -0.03    | 0.02     | -0.55    | -0.11    | -0.03    | 0.15     |
| Mn     | -0.01    | 0.14     | -0.52    | -0.03    | -0.06    | 0.14     |
| Fe     | 0.14     | -0.23    | -0.26    | 0.07     | -0.06    | -0.09    |
| Со     | 0.00     | -0.06    | -0.10    | -0.02    | 0.23     | 0.73     |
| Ni     | 0.08     | -0.21    | 0.07     | -0.51    | -0.05    | 0.18     |
| Cu     | 0.11     | -0.15    | -0.28    | 0.04     | -0.08    | -0.22    |
| Zn     | -0.12    | -0.01    | 0.00     | 0.05     | -0.61    | 0.08     |
| V      | 0.04     | 0.01     | -0.02    | 0.02     | -0.62    | 0.18     |
| As     | 0.32     | 0.02     | 0.12     | 0.07     | -0.33    | 0.08     |
| Sr     | 0.03     | -0.45    | 0.15     | 0.08     | 0.04     | 0.22     |
| Se     | 0.45     | 0.08     | 0.03     | 0.03     | 0.13     | -0.07    |
| Мо     | 0.00     | -0.12    | -0.34    | 0.12     | 0.03     | -0.05    |
| Cd     | 0.38     | -0.09    | -0.08    | 0.10     | -0.02    | 0.09     |
| Sb     | 0.20     | -0.22    | -0.16    | 0.16     | 0.01     | -0.12    |
| Ва     | -0.02    | -0.25    | 0.14     | 0.53     | 0.06     | 0.16     |
| Pb     | 0.40     | 0.01     | -0.09    | 0.02     | 0.08     | -0.04    |



Figure S7. Linear relation between Se and S



Figure S8. Comparison of the time trends of sulfur EF and the ratio S/Se.