Supplementary Information

Impact of atmospheric water-soluble iron on α -pinene-derived SOA formation and

transformation in the presence of aqueous droplets

Sabine Lüchtrath¹, Sven Klemer¹, Clément Dubois^{2*}, Christian George², Andreas Held¹

¹Department of Environmental Chemistry and Air Research, Technische Universität Berlin,

10623 Berlin, Germany

² Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F- 69626, Villeurbanne,

France

*Current laboratory: Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark

SI-1: Procedure of Solid-Phase-Extraction

Half of the filter was extracted in 2 mL of 1.25%-NH₃ and shaken for 1 h using a horizontal shaker with 60 rotations per minute. 1.5 mL of the extract were transferred to a brown glass snap lid jar. The extraction procedure was repeated two times resulting in an extraction volume of 3 mL which was subsequently acidified with 60 μ L of formic acid (\geq 99%, VWR, Radnor, USA). The C₁₈ SPE cartridges were conditioned with 1mL of methanol and 1 mL of 1.25% formic acid. The extract was filtered through a PTFE filter (Minisart SRP4, Sartorius AG, Göttingen, Germany) and added to the SPE cartridges. After washing with 4 mL of 2% formic acid (20 μ L formic acid \geq 99,0%, Carl Roth, Karlsruhe, Germany in 1 mL HPLC-MS grade H₂O, Carl Roth, Karlsruhe, Germany) the sample was eluted in 800 μ L of HPLC-MS grade methanol (HiPerSolv Chromanorm, VWR, Radnor, USA).

According to the protocol the samples were stored in MeOH after the SPE. While Baterman et al. (2008) discovered slow formation of esters by reaction of carboxylic acids, Kourtchev et al. did not observe any differences which could be linked to methylesters of carboxylic acids between boreal forests samples stored in MeOH or acetonitrile.

References

- Bateman, A. P.; Walser, M. L.; Desyaterik, Y.; Laskin, J.; Laskin, A.; Nizkorodov, S. A. The Effect of Solvent on the Analysis of Secondary Organic Aerosol Using Electrospray Ionization Mass Spectrometry. *Environ. Sci. Technol.* 2008, 42 (19), 7341–7346. https://doi.org/10.1021/es801226w.
- Kourtchev, I.; Doussin, J.-F.; Giorio, C.; Mahon, B.; Wilson, E. M.; Maurin, N.; Pangui, E.; Venables, D. S.; Wenger, J. C.;
 Kalberer, M. Molecular Composition of Fresh and Aged Secondary Organic Aerosol from a Mixture of Biogenic
 Volatile Compounds: A High-Resolution Mass Spectrometry Study. *Atmos. Chem. Phys.* 2015, *15* (10), 5683–5695.
 https://doi.org/10.5194/acp-15-5683-2015.

Figure S1: Ratio of formed SOA mass to salt particle surface area ($\Delta TMC/A_{salt}$) as a function of surface area of salt particles.

	Parameters of 0.1 mM FS-solution			Parameters of particles from nebulized FS-solution				Parameter p	s of new articles	Ratio of new formed particles and FS seeds		
experiment	pН	c _{H2O2} [mmol ^{L-1}]	category	A _{salt} [mm²/m³]	GMD _{salt} [nm]	TNC _{salt} [#/cm ³]	TMCsalt [µg/m³]	GMD _{mix-salt} [nm]	TNC _{new} [#/m ³]	$\frac{TMC}{[\mu g/m^3]}$	Δ GMD _{mix-salt} [nm]	TMC _{new} /A _{salt} [µg/mm ²]
3A-2	≈ 5	0	I	389	34.4	46386	6.0	41,57	80554	12,39	7,14	0,03
3B-2	≈ 5	0	I	584	31.9	86373	7.9	35,75	25879	7,03	3,82	0,012
3A-1	≈ 5	1	П	998	34.9	125740	14.3	39,78	19361	10,19	6,32	0,01
3B-1	≈ 5	1	П	572	30.2	94602	7.3	36,35	23264	5,37	6,15	0,008
3B-2	≈ 5	1	П	982	32.8	137491	13.5	35,4	23048	2,1	2,55	0,002
3A-1	< 3	1	ш	882*	*	*	10.6	37,37	52009	31,02	9,21	0,035
3A-2	< 3	0	ш	535	28.9	91235	7.0	39,62	76546	40,44	12,62	0,075
3B-2	< 3	0	ш	1844	30.7	214138	33.7	31,72	50755	3,02	1,77	0,0016
3A-1	< 3	1	IV	882	28.2	165839	10.6	34,38	58709	25,64	6,22	0,03
3A-2	< 3	1	IV	460	29.0	82344	5.7	39,29	90322	40,92	10,28	0,08
3B-1	< 3	1	IV	806	28.7	147189	9.8	38,98	122432	56,43	10,2	0,07
3B-2	< 3	1	IV	1720	29.9	237284	27.2	33,33	62620	23,69	3,38	0,01

Table S1: Overview of calculated parameters of experiment 3 describing FS-seed and new formed

SOA particles

Figure S2: Evolution of particle size distribution over time when initiating SOA formation. Starting times when α -pinene and gaseous ozone were added to the system are marked with the dashed line. **a)** shows quick adjustment of GMD and TNC when only a FS solution is nebulized. b) shows that it needed more than 120 min (in this experiment) until stable conditions were reached when nebulizing an acidified solution of category IV.

Figure S3: Influence of acidity on dimer abundance in FS samples with pH >3 (blue) or pH<3 (red). The samples are corrected by their differences in organic filter loading. A correction factor was calculated by integrating the total ion count over the range of retention time in which molecules linked to α -pinene-ozonolysis were found.

m/z neg.	m/z pos	Formular	potential substance	Ret.	Error	RDB	Bidest	$Fe + H_2O_2$	Fe + HCl	Fe+HCl	reference
mode	mode			time	[∆ppm]					+ H ₂ O ₂	
							ref	cat. II	cat. III	cat. IV	
	169.122	$C_{10}H_{16}O_2$	pinonaldehyde	8.16	-0.562	2.5	Х	X	Х	Х	
171.066		C ₈ H ₁₂ O ₄	terpenylic acid	7.15	1.035	3.5	Х	X	Х	X	
185.081		$C_9H_{14}O_4$	pinic acid	6.63	-0.102	3.5	Х	X	Х	X	
	185.117	$C_{10}H_{16}O_{6}$	cis-pinonic acid	7.53	-0.56	3.5	Х	X	Х	Х	
187.097		$C_9H_{16}O_4$	diaterpenylic acid acetate	7.54	0.985	2.5	Х	X	Х	Х	
203.055		C ₈ H ₁₂ O ₆	MBTCA	-	-	-	0	0	0	0	
217.108		C ₁₀ H ₁₈ O ₅		6.74	-0.177	2.5	0	X	Х	0	Poulain et al., 2022
323.186		C ₁₈ H2 ₈ O ₅		8.42	-1.69	5.5	0	X	Х	X	Kenseth et al., 2018
329.16		C ₁₆ H2 ₂₆ O ₇		7.38	-0.9	5.5	Х	X	Х	X	
335.185		C ₁₉ H2 ₂₈ O ₅		6.75	-0.58	5.5	0	0	0	X	Kristensen et al., 2016
337.202		C ₁₉ H2 ₃₀ O ₅		8.74	-0.47	5.5	Х	X	Х	Х	Kristensen et al., 2016
341.196		C ₁₈ H2 ₃₀ O ₆		8.17	-0.89	4.5	0	0	Х	Х	Kenseth et al., 2018
345.155		C ₁₆ H2 ₂₆ O ₈		8.3	-1.7	4.5	Х	X	Х	Х	Kenseth et al., 2018
353.196		$C_{19}H2_{30}O_6$		8.72	-2.44	5.5	0	X	Х	X	Kristensen et al., 2016
357.155		C ₁₇ H2 ₂₆ O ₈	Pinyl diaterpenyl ester	7.8	-0.28	5.5	Х	X	Х	X	Kristensen et al., 2014
367.175		C ₁₉ H2 ₂₈ O ₇	Pinonyl-pinyl ester	8.77	-2.52	6.5	Х	X	Х	X	Kristensen et al., 2014
369.192		C ₁₉ H2 ₃₀ O ₇		7.55	-0.78	5.5	Х	0	Х	X	Kenseth et al., 2018
377.145		C ₁₆ H2 ₂₆ O ₁₀		7.48	-0.98	4.5	Х	0	0	0	Kristensen et al., 2016

References:

Kenseth, C. M., Huang, Y., Zhao, R., Dalleska, N. F., Hethcox, J. C., Stoltz, B. M., & Seinfeld, J. H. (2018). Synergistic O3 + OH oxidation pathway to extremely low-volatility dimers revealed in βpinene secondary organic aerosol. *Proceedings of the National Academy of Sciences*, *115*(33), 8301–8306. https://doi.org/10.1073/pnas.1804671115

- Kristensen, K., Cui, T., Zhang, H., Gold, A., Glasius, M., & Surratt, J. D. (2014). Dimers in α-pinene secondary organic aerosol: Effect of hydroxyl radical, ozone, relative humidity and aerosol acidity. *Atmospheric Chemistry and Physics*, *14*(8), 4201–4218. https://doi.org/10.5194/acp-14-4201-2014
- Kristensen, K., Watne, Å. K., Hammes, J., Lutz, A., Petäjä, T., Hallquist, M., Bilde, M., & Glasius, M. (2016). High-Molecular Weight Dimer Esters Are Major Products in Aerosols from α-Pinene Ozonolysis and the Boreal Forest. *Environmental Science & Technology Letters*, *3*(8), 280–285. https://doi.org/10.1021/acs.estlett.6b00152
- Poulain, L., Tilgner, A., Brüggemann, M., Mettke, P., He, L., Anders, J., Böge, O., Mutzel, A., & Herrmann, H. (2022). Particle-Phase Uptake and Chemistry of Highly Oxygenated Organic Molecules (HOMs) From α-Pinene OH Oxidation. *Journal of Geophysical Research: Atmospheres*, *127*(16), e2021JD036414. https://doi.org/10.1029/2021JD036414