Supplementary Information:

Disentangling Multifactorial Impacts on Cathode Thermochemical Properties with Explainable Machine Learning

Yujian Sun,^{1,2,a)} Xilin Xu,^{1,2,a)} Luyu Gan,^{1,a)} Sichen Jiao,^{1,2} Shuangshuang Han,³
Yajun Zhao,¹ Yan Li,³ Xiqian Yu,^{1,2,b)} Jizhou Li,^{4,5,c)} Hong Li,^{1,2,d)} and Xuejie
Huang^{1,2}
¹⁾Beijing Frontier Research Center on Clean Energy, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
²⁾ Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
³⁾ College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102627, China
⁴⁾ Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
⁵⁾ CUHK Shenzhen Research Institute, Shenzhen 518057, China
(Dated: 23 November 2024)

^{a)} These authors contributed equally to this work.

^{b)} Corresponding author. Email: xyu@iphy.ac.cn.

^{c)} Corresponding author. Email: lijz@ieee.org.

^{d)} Corresponding author. Email: hli@iphy.ac.cn.

I. DETAILS OF INPUT/OUTPUT VARIABLES

A. Input features

Detailed descriptions of all input feature variables classified into testing parameters, sample conditions, and material properties, are listed in Tab. S1.

Category	Feature name	Description			
Testing parameters	Cutoff voltage	The voltage to which the cathode material sample to be tested is charged.			
	DSC scanning speed	Temperature rising speed in the DSC test.			
Sample conditions	Crucible type	Whether the test is carried out in an open or closed crucible.			
	Crystal morphology	Whether the tested material is monocrystal or polycrystal.			
	Active substance ratio	The mass ratio of active cathode materials in the tested cathode sample.			
	Electrolyte content	The ratio of electrolyte weights to cathode weights for the DSC test.			
	Electrolyte composition	The degree of electrolyte composition changes. The blank group is LiPF ₆ in EC:(DEC/EMC/DMC)=3:7 to 1:1, labeled 0. For those with composition change not exceeding 10% or only the EC/DMC ratio adjusted, it is considered a low-degree modification and labeled 1. If more than 10% or an additive is added based on the adjusted EC/DMC ratio, it is considered highly modified and labeled 2. Samples without electrolytes are labeled 3.			
	Electrolyte modification	Quantification of new chemical substances in- troduced. The blank group is LiPF ₆ in EC:(DEC/EMC/DMC)=3:7 to 1:1, labeled 0. If the EC/DMC content is changed or the additive is still free of fluorine esters, it is considered a low- degree modification and labeled 1. Those containing non-esters or functional groups such as fluorine or phosphate are considered highly modified and labeled 2. Samples without electrolytes are labeled 3.			
	Reversible capacity	The reversible specific discharge capacity of the cath- ode material.			

 TABLE S1: Input feature descriptions

Material properties	Surface modification	Whether the material has been surface modified.			
	Bulk phase doping	Whether the material has been doped in the bulk phase.			
	Anion doping	Whether the fluorine or sulfur anions are introduced in the material.			
	Pristine Li content	The stoichiometric ratio of Li in the pristine material.			
	Ni content	The stoichiometric ratio of Ni in the material.			
	Co content	The stoichiometric ratio of Co in the material.			
	Mn content	The stoichiometric ratio of Mn in the material.			
	EN-TM ave (wt.)	The average electronegativity of transition metal species, weighted by their stoichiometric ratios.			
	EN-TM std (wt.)	The electronegativity standard deviation of transi- tion metal species, weighted by their stoichiometric ratios.			
	EN-TM ave (unwt.)	The average electronegativity of transition metal species, unweighted by their stoichiometric ratios.			
	EN-TM std (unwt.)	The electronegativity standard deviation of transi- tion metal species, unweighted by their stoichiomet- ric ratios.			
	Radii-TM ave (wt.)	The average ionic radii of transition metal species, weighted by their stoichiometric ratios.			
	Radii-TM std (wt.)	The ionic radii standard deviation of transition metal species, weighted by their stoichiometric ratios.			
	Radii-TM ave (unwt.)	The average ionic radii of transition metal species, unweighted by their stoichiometric ratios.			
	Radii-TM std (unwt.)	The ionic radii standard deviation of transition metal species, unweighted by their stoichiometric ratios.			
	Φ -TM ave (wt.)	The average ionic potential of transition metal species, weighted by their stoichiometric ratios.			
	Φ -TM std (wt.)	The ionic potential standard deviations of transition metal species, weighted by their stoichiometric ratios.			
	Φ -TM ave (unwt.)	The average ionic potential of transition metal species, unweighted by their stoichiometric ratios.			
	Φ -TM std (unwt.)	The ionic potential standard deviations of transi- tion metal species, unweighted by their stoichiomet- ric ratios.			

Some additional notes need to be addressed:

- 1. The transition metals mentioned in the last 12 features refer to cation species occupying transition metal sites in the layered cathode materials. Therefore, some modification elements, such as boron and phosphorous, are also included in this scope, even though they are not genuine transition metals.
- 2. When calculating the ionic radii and ionic potentials, we assume the transition metal ions to be at their highest oxidation state when the material is delithiated. This is because the tested cathode material samples are usually taken from a charged cell that is at its highest thermal runaway risk.
- 3. Logarithmic transitions are applied to DSC scanning speed and electrolyte content for a more uniform data distribution that will benefit regression analysis. All the feature values are standardized with a mean value of 0 and a standard deviation of 1 before doing the regression.

B. Output characteristics

Detailed descriptions of all output characteristics are shown in Tab. S2.

Characteristic name	Description			
Onset temperature	The temperature at the intersection of the starting tangent of the first			
	significant (human-judged) heat release peak and the baseline.			
Peak temperature	The temperature at which the heat release power is at its maximum in			
	the first significant heat release peak.			
Max power	The maximum heat release power along the entire thermal analysis curve			
	(minus baseline).			

TABLE S2. Output characteristic descriptions

II. DETAILS OF FEATURE SELECTION

A. Correlation coefficients

According to the calculated Spearman correlation coefficients demonstrated in main text Fig. 1a and the criterion of |Spearman coefficient|>0.8, as well as the principle of "maintaining simpler and more fundamental features", the eliminated features in this step are:

- 1. Electrolyte modification
- 2. EN-TM ave (wt.)
- 3. EN-TM std (wt.)
- 4. Radii-TM ave (wt.)
- 5. Φ -TM ave (wt.)
- 6. Φ -TM std (wt.)
- 7. Φ -TM ave (unwt.)
- 8. Φ -TM std (unwt.)

B. Null importance

According to the null importance feature screening strategy described in our main text, features whose actual importance falls below the first quartile (Q_1) of null importance values are eliminated. We therefore calculate the null importance scores of each feature variable to every output characteristic according to the formula below:

$$Score = \ln \frac{Importance_{Actual} + 1e^{-10}}{Q_1(Importance_{Null}) + 1}$$

Here the e^{-10} in the numerator prevents the logarithm of zero, and the 1 in the denominator prevents division by zero. The expression ensures that the features to be discarded get negative scores. We list the calculated scores of each feature variable to every output characteristic in Tab. S3. The split and gain scores are calculated respectively based on the split and gain importance. In our practice, only those features getting both negative split and gain scores are discarded, colored red in Tab. S3.

The eliminated non-important features for three thermochemical characteristics are summarized below:

1. For **onset temperature**:

- (a) DSC scanning speed
- (b) Active substance ratio
- (c) Bulk phase doping
- (d) Anion doping
- (e) Radii-TM ave (unwt.)

2. For **peak temperature**:

- (a) Bulk phase doping
- (b) Anion doping

3. For max power:

- (a) Anion doping
- (b) Mn content
- (c) EN-TM ave (unwt.)
- (d) EN-TM std (unwt.)
- (e) Radii-TM ave (unwt.)
- (f) Radii-TM std (unwt.).

	Null importance score						
Feature name	Onset temperature		Peak temperature		Max power		
	Split	Gain	Split	Gain	\mathbf{Split}	Gain	
Cutoff voltage	0.263111	1.559504	-0.1202	0.48759	0.057158	0.13869	
DSC scanning speed	-0.21072	-0.32365	0.265376	0.794231	0.980829	2.578186	
Crucible type	0.413833	0.266848	0.775839	2.425989	0.265703	3.063481	
Crystal morphology	0.09646	-0.0387	-0.1431	0.251787	-0.0685	0.028662	
Active substance ratio	-0.07496	-0.12471	0.35315	0.845383	0.182824	1.407127	
Electrolyte content	0.030283	-0.11579	-0.33361	0.483575	0.652897	3.622218	
Electrolyte composition	0.712458	0.975264	0.724238	2.587193	-0.3514	2.601453	
Reversible capacity	-0.28338	0.614095	-0.24256	0.35015	-0.11401	0.288674	
Surface modification	0.318141	0.376506	-0.09937	0.21979	-0.10536	0.026612	
Bulk phase doping	-0.07522	-0.29504	-0.29865	-0.02434	-0.14147	0.26752	
Anion doping	-23.0259	-23.0259	-23.0259	-23.0259	-23.0259	-23.0259	
Pristine Li content	-0.1226	1.069188	0.510826	1.491625	0.231802	0.122433	
Ni content	0.088193	1.295852	0.959929	3.268181	0.27029	0.905089	
Co content	-0.61856	0.713477	0.001714	2.006067	0.528566	1.561223	
Mn content	0.909163	3.719137	0.240336	1.667375	-0.04652	-0.12195	
EN-TM ave (unwt.)	-0.05763	0.975004	-0.15415	0.010162	-0.64265	-1.09932	
EN-TM std (unwt.)	0.541341	1.595916	0.323787	0.846341	-0.21131	-0.34964	
Radii-TM std (wt.)	0.278816	2.211943	-0.25464	1.357604	0.364476	0.694274	
Radii-TM ave (unwt.)	-0.30673	-0.26339	-0.17768	0.017749	-0.51941	-0.26557	
Radii-TM std (unwt.)	0.280539	0.964863	0.559616	1.146372	-0.17768	-0.16003	

TABLE S3. Feature null importance scores

III. TRAINING DETAILS

Five-sixth of the data are randomly chosen for model training, with the rest one-sixth for testing. We exhaustively search the SVR model parameters using the GridSearchCV tool in the scikit-learn library. 5-fold cross-validation is used to assess the performance of each hyperparameter combination included in the parameter grid defined below:

```
param_grid = {
    "C": [10**x for x in range(-1, 3)],
    "kernel": ["linear", "poly", "rbf", "sigmoid"],
    "gamma": ["auto"],
}
```

The best hyperparameter combination for each output characteristic are:

- For onset temperature: {"C": 100, "gamma": "auto", "kernel": "rbf"}
- For peak temperature: {"C": 100, "gamma": "auto", "kernel": "rbf"}
- For max power: {"C": 10, "gamma": "auto", "kernel": "rbf"}

IV. DATA SOURCES

The raw training and testing data are collected from the literature listed below.^{1–187}

- ¹Z. Zhang, D. Fouchard, and J. Rea, "Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells," Journal of Power Sources **70**, 16–20 (1998).
- ²J. Cho and G. Kim, "Enhancement of thermal stability of $LiCoO_2$ by $LiMn_2O_4$ coating," Electrochemical and Solid-State Letters **2**, 253 (1999).
- ³H. Maleki, G. Deng, A. Anani, and J. Howard, "Thermal stability studies of Li-ion cells and components," Journal of the Electrochemical Society **146**, 3224 (1999).
- ⁴J. Cho, H. Jung, Y. Park, G. Kim, and H. S. Lim, "Electrochemical properties and thermal stability of $\text{Li}_a \text{Ni}_{1-x} \text{CO}_x \text{O}_2$ cathode materials," Journal of the Electrochemical Society **147**, 15 (2000).
- ⁵Y. Baba, S. Okada, and J.-i. Yamaki, "Thermal stability of Li_xCoO_2 cathode for lithium ion battery," Solid State Ionics **148**, 311–316 (2002).

- ⁶D. MacNeil and J. Dahn, "Can an electrolyte for lithium-ion batteries be too stable?" Journal of the Electrochemical Society **150**, A21 (2002).
- ⁷D. D. MacNeil, Z. Lu, Z. Chen, and J. R. Dahn, "A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes," Journal of Power Sources **108**, 8–14 (2002).
- ⁸I. Belharouak, Y.-K. Sun, J. Liu, and K. Amine, "Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O₂ as a suitable cathode for high power applications," Journal of Power Sources **123**, 247–252 (2003).
- ⁹J.-i. Yamaki, Y. Baba, N. Katayama, H. Takatsuji, M. Egashira, and S. Okada, "Thermal stability of electrolytes with $\text{Li}_x \text{CoO}_2$ cathode or lithiated carbon anode," Journal of Power Sources **119**, 789–793 (2003).
- ¹⁰J. Cho, H. Kim, and B. Park, "Comparison of overcharge behavior of AlPO₄-coated LiCoO₂ and LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ cathode materials in Li-ion cells," Journal of the Electrochemical Society **151**, A1707 (2004).
- ¹¹E. Roth and D. Doughty, "Thermal abuse performance of high-power 18650 Li-ion cells," Journal of Power Sources **128**, 308–318 (2004).
- ¹²Y.-K. Sun, S.-T. Myung, M.-H. Kim, J. Prakash, and K. Amine, "Synthesis and characterization of Li[(Ni_{0.8}Co_{0.1}Mn_{0.1})_{0.8}(Ni_{0.5}Mn_{0.5})_{0.2}]O₂ with the microscale core-shell structure as the positive electrode material for lithium batteries," Journal of the American Chemical Society **127**, 13411–13418 (2005).
- ¹³Q. Wang, J. Sun, X. Yao, and C. Chen, "Thermal stability of LiPF₆/EC+DEC electrolyte with charged electrodes for lithium ion batteries," Thermochimica Acta **437**, 12–16 (2005).
- ¹⁴Z. Zhang, J. Li, and Y. Yang, "The effects of decomposition products of electrolytes on the thermal stability of bare and TiO₂-coated delithiated Li_{1-x}Ni_{0.8}Co_{0.2}O₂ cathode materials," Electrochimica acta **52**, 1442–1450 (2006).
- ¹⁵C.-H. Doh, D.-H. Kim, J.-H. Lee, D.-J. Lee, B.-S. Jin, H.-S. Kim, S.-I. Moon, Y.-G. Hwang, and A. Veluchamy, "Thermal behavior of Li_xCoO₂ cathode and disruption of solid electrolyte interphase film," Bulletin of the Korean Chemical Society **30**, 783–786 (2009).
- ¹⁶J. Li, L. Wang, Q. Zhang, and X. He, "Synthesis and characterization of LiNi_{0.6}Mn_{0.4-x}Co_xO₂ as cathode materials for Li-ion batteries," Journal of Power Sources **189**, 28–33 (2009).

- ¹⁷Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, and K. Amine, "Highenergy cathode material for long-life and safe lithium batteries," Nature materials 8, 320–324 (2009).
- ¹⁸H. Xiang, H. Wang, C. Chen, X. Ge, S. Guo, J. Sun, and W. Hu, "Thermal stability of LiPF₆-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries," Journal of Power Sources **191**, 575–581 (2009).
- ¹⁹S. H. Lee, J.-M. Jung, J. H. Ok, and C.-H. Park, "Thermal studies of charged cathode material (Li_xCoO₂) with temperature-programmed decomposition-mass spectrometry," Journal of Power Sources **195**, 5049–5051 (2010).
- ²⁰C. T. Love, M. D. Johannes, and K. Swider-Lyons, "Thermal stability of delithiated Al-substituted Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O₂ cathodes," ECS Transactions **25**, 231 (2010).
- ²¹H. Wang, A. Tang, and K. Wang, "Thermal behavior investigation of LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂-based Li-ion battery under overcharged test," Chinese Journal of Chemistry **29**, 27–32 (2011).
- ²²P. Hou, J. Guo, D. Song, J. Zhang, E. Zhou, and L. Zhang, "A novel double-shelled LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ cathode material for Li-ion batteries," Chemistry Letters **41**, 1712– 1714 (2012).
- ²³Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C. S. Yoon, S.-T. Myung, and K. Amine, "Nanostructured high-energy cathode materials for advanced lithium batteries," Nature Materials **11**, 942–947 (2012).
- ²⁴K. Zaghib, J. Dubé, A. Dallaire, K. Galoustov, A. Guerfi, M. Ramanathan, A. Benmayza, J. Prakash, A. Mauger, and C. Julien, "Enhanced thermal safety and high power performance of carbon-coated LiFePO₄ olivine cathode for Li-ion batteries," Journal of Power Sources **219**, 36–44 (2012).
- ²⁵G.-Y. Kim and Y. J. Park, "Enhanced electrochemical and thermal properties of Sm₂O₃ coated Li[Li_{1/6}Mn_{1/2}Ni_{1/6}Co_{1/6}]O₂ for Li-ion batteries," Journal of Electroceramics **31**, 199–203 (2013).
- ²⁶Z. Li, Y. Zhang, H. Xiang, X. Ma, Q. Yuan, Q. Wang, and C. Chen, "Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode," Journal of Power Sources **240**, 471–475 (2013).
- ²⁷H.-J. Noh, S. Youn, C. S. Yoon, and Y.-K. Sun, "Comparison of the structural and electrochemical properties of layered Li[Ni_xCo_yMn_z]O₂ (x=1/3, 0.5, 0.6, 0.7, 0.8 and

0.85) cathode material for lithium-ion batteries," Journal of Power Sources **233**, 121–130 (2013).

- ²⁸J. Yi, C. Wang, and Y. Xia, "Comparison of thermal stability between micro- and nanosized materials for lithium-ion batteries," Electrochemistry Communications **33**, 115–118 (2013).
- ²⁹Y. Chen, Y. Zhang, B. Chen, Z. Wang, and C. Lu, "An approach to application for LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ cathode material at high cutoff voltage by TiO₂ coating," Journal of Power Sources **256**, 20–27 (2014).
- ³⁰Q. Fu, F. Du, X. Bian, Y. Wang, X. Yan, Y. Zhang, K. Zhu, G. Chen, C. Wang, and Y. Wei, "Electrochemical performance and thermal stability of Li_{1.18}Co_{0.15}Ni_{0.15}Mn_{0.52}O₂ surface coated with the ionic conductor Li₃VO₄," Journal of Materials Chemistry A 2, 7555–7562 (2014).
- ³¹J. Geder, J. H. Song, S. H. Kang, and Y. Denis, "Thermal stability of lithium-rich manganese-based cathode," Solid State Ionics **268**, 242–246 (2014).
- ³²P. Hou, L. Zhang, and X. Gao, "A high-energy, full concentration-gradient cathode material with excellent cycle and thermal stability for lithium ion batteries," Journal of Materials Chemistry A 2, 17130–17138 (2014).
- ³³B. Li, H. Yan, J. Ma, P. Yu, D. Xia, W. Huang, W. Chu, and Z. Wu, "Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: Towards better electrochemical performance," Advanced Functional Materials 24, 5112–5118 (2014).
- ³⁴F. Wu, N. Li, Y. Su, L. Zhang, L. Bao, J. Wang, L. Chen, Y. Zheng, L. Dai, J. Peng, et al., "Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries," Nano Letters 14, 3550–3555 (2014).
- ³⁵Y. Li, F. Lian, L. Ma, C. Liu, L. Yang, X. Sun, and K. Chou, "Fluoroethylene carbonate as electrolyte additive for improving the electrochemical performances of high-capacity Li_{1.16}[Mn_{0.75}Ni_{0.25}]_{0.84}O₂ material," Electrochimica Acta **168**, 261–270 (2015).
- ³⁶H.-H. Sun, W. Choi, J. K. Lee, I.-H. Oh, and H.-G. Jung, "Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio," Journal of Power Sources **275**, 877–883 (2015).
- ³⁷Y. Sun, F. Li, Q. Qiao, J. Cao, Y. Wang, and S. Ye, "Surface modification of Li(Li_{0.17}Ni_{0.2}Co_{0.05}Mn_{0.58})O₂ with LiAlSiO₄ fast ion conductor as cathode material for Li-ion batteries," Electrochimica Acta **176**, 1464–1475 (2015).

- ³⁸D. Wang, X. Li, Z. Wang, H. Guo, X. Chen, X. Zheng, Y. Xu, and J. Ru, "Multifunctional Li₂O-2B₂O₃ coating for enhancing high voltage electrochemical performances and thermal stability of layered structured LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ cathode materials for lithium ion batteries," Electrochimica Acta **174**, 1225–1233 (2015).
- ³⁹Z. Wang, Z. Wang, H. Guo, W. Peng, X. Li, G. Yan, and J. Wang, "Mg doping and zirconium oxyfluoride coating co-modification to enhance the high-voltage performance of LiCoO₂ for lithium ion battery," Journal of Alloys and Compounds **621**, 212–219 (2015).
- ⁴⁰J. Zheng, W. H. Kan, and A. Manthiram, "Role of Mn content on the electrochemical properties of nickel-rich layered $\text{LiNi}_{0.8-x}\text{Co}_{0.1}\text{Mn}_{0.1+x}\text{O}_2$ ($0.0 \le x \le 0.08$) cathodes for lithium-ion batteries," ACS Applied Materials & Interfaces 7, 6926–6934 (2015).
- ⁴¹A. Aboulaich, K. Ouzaouit, H. Faqir, A. Kaddami, I. Benzakour, and I. Akalay, "Improving thermal and electrochemical performances of LiCoO₂ cathode at high cut-off charge potentials by MF₃ (M=Ce, Al) coating," Materials Research Bulletin **73**, 362–368 (2016).
- ⁴²Y. Huang, Y.-C. Lin, D. M. Jenkins, N. A. Chernova, Y. Chung, B. Radhakrishnan, I.-H. Chu, J. Fang, Q. Wang, F. Omenya, *et al.*, "Thermal stability and reactivity of cathode materials for Li-ion batteries," ACS Applied Materials & Interfaces 8, 7013–7021 (2016).
- ⁴³Y. Lee, J. Lee, K. Y. Lee, J. Mun, J. K. Lee, and W. Choi, "Facile formation of a Li₃PO₄ coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries," Journal of Power Sources **315**, 284–293 (2016).
- ⁴⁴J. Yang and Y. Xia, "Enhancement on the cycling stability of the layered Ni-rich oxide cathode by in-situ fabricating nano-thickness cation-mixing layers," Journal of the Electrochemical Society 163, A2665 (2016).
- ⁴⁵J. Gong, Q. Wang, and J. Sun, "Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteries," Thermochimica Acta **655**, 176–180 (2017).
- ⁴⁶B. Guo, J. Zhao, X. Fan, W. Zhang, S. Li, Z. Yang, Z. Chen, and W. Zhang, "Aluminum and fluorine co-doping for promotion of stability and safety of lithium-rich layered cathode material," Electrochimica Acta 236, 171–179 (2017).
- ⁴⁷T. Inoue and K. Mukai, "Are all-solid-state lithium-ion batteries really safe?-Verification by differential scanning calorimetry with an all-inclusive microcell," ACS Applied Materials & Interfaces 9, 1507–1515 (2017).

- ⁴⁸T. Inoue and K. Mukai, "Roles of positive or negative electrodes in the thermal runaway of lithium-ion batteries: accelerating rate calorimetry analyses with an all-inclusive microcell," Electrochemistry Communications 77, 28–31 (2017).
- ⁴⁹Y. Ji, P. Zhang, M. Lin, W. Zhao, Z. Zhang, Y. Zhao, and Y. Yang, "Toward a stable electrochemical interphase with enhanced safety on high-voltage LiCoO₂ cathode: A case of phosphazene additives," Journal of Power Sources **359**, 391–399 (2017).
- ⁵⁰Y. Lee, S.-O. Kim, J. Mun, M.-S. Park, K. J. Kim, K. Y. Lee, and W. Choi, "Influence of salt, solvents, and additives on the thermal stability of delithiated cathodes in lithium-ion batteries," Journal of Electroanalytical Chemistry 807, 174–180 (2017).
- ⁵¹Y. Yu, J. Wang, P. Zhang, and J. Zhao, "A detailed thermal study of usual LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂, LiMn₂O₄ and LiFePO₄ cathode materials for lithium ion batteries," Journal of Energy Storage **12**, 37–44 (2017).
- ⁵²W. Cho, Y. J. Lim, S.-M. Lee, J. H. Kim, J.-H. Song, J.-S. Yu, Y.-J. Kim, and M.-S. Park, "Facile mn surface doping of Ni-rich layered cathode materials for lithium ion batteries," ACS Applied Materials & Interfaces 10, 38915–38921 (2018).
- ⁵³M. Eilers-Rethwisch, S. Hildebrand, M. Evertz, L. Ibing, T. Dagger, M. Winter, and F. Schappacher, "Comparative study of Sn-doped Li[Ni_{0.6}Mn_{0.2}Co_{0.2-x}Sn_x]O₂ cathode active materials (x=0-0.5) for lithium ion batteries regarding electrochemical performance and structural stability," Journal of Power Sources **397**, 68–78 (2018).
- ⁵⁴A. Kapylou, J. H. Song, A. Missiul, D. J. Ham, D. H. Kim, S. Moon, and J. H. Park, "Improved thermal stability of lithium-rich layered oxide by fluorine doping," ChemPhysChem 19, 116–122 (2018).
- ⁵⁵U.-H. Kim, D.-W. Jun, K.-J. Park, Q. Zhang, P. Kaghazchi, D. Aurbach, D. T. Major, G. Goobes, M. Dixit, N. Leifer, *et al.*, "Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries," Energy & Environmental Science **11**, 1271–1279 (2018).
- ⁵⁶G. Liu, M. Li, N. Wu, L. Cui, X. Huang, X. Liu, Y. Zhao, H. Chen, W. Yuan, and Y. Bai, "Single-crystalline particles: an effective way to ameliorate the intragranular cracking, thermal stability, and capacity fading of the LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ electrodes," Journal of the Electrochemical Society **165**, A3040 (2018).
- ⁵⁷S. Liu, Z. Liu, X. Shen, W. Li, Y. Gao, M. N. Banis, M. Li, K. Chen, L. Zhu, R. Yu, et al., "Surface doping to enhance structural integrity and performance of Li-rich layered

oxide," Advanced Energy Materials 8, 1802105 (2018).

- ⁵⁸H. Tsukasaki, W. Fukuda, H. Morimoto, T. Arai, S. Mori, A. Hayashi, and M. Tatsumisago, "Thermal behavior and microstructures of cathodes for liquid electrolyte-based lithium batteries," Scientific Reports 8, 15613 (2018).
- ⁵⁹P. Yan, J. Zheng, J. Liu, B. Wang, X. Cheng, Y. Zhang, X. Sun, C. Wang, and J.-G. Zhang, "Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries," Nature Energy **3**, 600–605 (2018).
- ⁶⁰D. Becker, M. Börner, R. Nölle, M. Diehl, S. Klein, U. Rodehorst, R. Schmuch, M. Winter, and T. Placke, "Surface modification of Ni-rich LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries," ACS Applied Materials & Interfaces **11**, 18404–18414 (2019).
- ⁶¹J.-H. Kim, K.-J. Park, S. J. Kim, C. S. Yoon, and Y.-K. Sun, "A method of increasing the energy density of layered Ni-rich Li[Ni_{1-2x}Co_xMn_x]O₂ cathodes (x=0.05, 0.1, 0.2)," Journal of Materials Chemistry A 7, 2694–2701 (2019).
- ⁶²C. Li, W. H. Kan, H. Xie, Y. Jiang, Z. Zhao, C. Zhu, Y. Xia, J. Zhang, K. Xu, D. Mu, et al., "Inducing favorable cation antisite by doping halogen in Ni-rich layered cathode with ultrahigh stability," Advanced Science 6, 1801406 (2019).
- ⁶³W. Li, A. Dolocan, J. Li, Q. Xie, and A. Manthiram, "Ethylene carbonate-free electrolytes for high-nickel layered oxide cathodes in lithium-ion batteries," Advanced Energy Materials **9**, 1901152 (2019).
- ⁶⁴Y. Liu, S. Shi, G. G. Wang, Y. Lu, and W. Gu, "Improved electrochemical properties and thermal stability of Li_{1.20}Mn_{0.54}Ni_{0.13}Co_{0.13}O₂ cathode material by Li₂ZrO₃ coating for lithium-ion batteries," Journal of Materials Science: Materials in Electronics **30**, 18471– 18483 (2019).
- ⁶⁵Q.-Q. Qiu, Z. Shadike, Q.-C. Wang, X.-Y. Yue, X.-L. Li, S.-S. Yuan, F. Fang, X.-J. Wu, A. Hunt, I. Waluyo, *et al.*, "Improving the electrochemical performance and structural stability of the LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ cathode material at high-voltage charging through Ti substitution," ACS Applied Materials & Interfaces **11**, 23213–23221 (2019).
- ⁶⁶G.-L. Xu, Q. Liu, K. K. Lau, Y. Liu, X. Liu, H. Gao, X. Zhou, M. Zhuang, Y. Ren, J. Li, et al., "Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes," Nature Energy 4, 484–494 (2019).

- ⁶⁷X. Yan, L. Zhang, and J. Lu, "Improve safety of high energy density LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂/graphite battery using organosilicon electrolyte," Electrochimica Acta **296**, 149–154 (2019).
- ⁶⁸J.-N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge, X. Huang, E. Hu, C. Ma, S. Li, R. Xiao, et al., "Trace doping of multiple elements enables stable battery cycling of LiCoO₂ at 4.6 V," Nature Energy 4, 594–603 (2019).
- ⁶⁹Y. Zhang, H. Li, J. Liu, J. Zhang, F. Cheng, and J. Chen, "LiNi_{0.90}Co_{0.07}Mg_{0.03}O₂ cathode materials with Mg-concentration gradient for rechargeable lithium-ion batteries," Journal of Materials Chemistry A 7, 20958–20964 (2019).
- ⁷⁰Q. Fan, K. Lin, S. Yang, S. Guan, J. Chen, S. Feng, J. Liu, L. Liu, J. Li, and Z. Shi, "Constructing effective TiO₂ nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control," Journal of Power Sources **477**, 228745 (2020).
- ⁷¹U.-H. Kim, G.-T. Park, B.-K. Son, G. W. Nam, J. Liu, L.-Y. Kuo, P. Kaghazchi, C. S. Yoon, and Y.-K. Sun, "Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge," Nature Energy 5, 860–869 (2020).
- ⁷²W. Li, S. Lee, and A. Manthiram, "High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries," Advanced Materials **32**, 2002718 (2020).
- ⁷³Y. Li, X. Liu, D. Ren, H. Hsu, G.-L. Xu, J. Hou, L. Wang, X. Feng, L. Lu, W. Xu, *et al.*, "Toward a high-voltage fast-charging pouch cell with TiO₂ cathode coating and enhanced battery safety," Nano Energy **71**, 104643 (2020).
- ⁷⁴A. L. Lipson, J. L. Durham, M. LeResche, I. Abu-Baker, M. J. Murphy, T. T. Fister, L. Wang, F. Zhou, L. Liu, K. Kim, *et al.*, "Improving the thermal stability of NMC 622 Li-ion battery cathodes through doping during coprecipitation," ACS Applied Materials & Interfaces **12**, 18512–18518 (2020).
- ⁷⁵R. Ma, Z. Zhao, J. Fu, H. Lv, C. Li, B. Wu, D. Mu, and F. Wu, "Tuning cobalt-free nickel-rich layered LiNi_{0.9}Mn_{0.1}O₂ cathode material for lithium-ion batteries," ChemElectroChem 7, 2637–2642 (2020).
- ⁷⁶Y. Wang, Q. Zhang, Z.-C. Xue, L. Yang, J. Wang, F. Meng, Q. Li, H. Pan, J.-N. Zhang, Z. Jiang, *et al.*, "An in situ formed surface coating layer enabling LiCoO₂ with stable 4.6 V high-voltage cycle performances," Advanced Energy Materials **10**, 2001413 (2020).

- ⁷⁷X. Zeng, T. Jian, Y. Lu, L. Yang, W. Ma, Y. Yang, J. Zhu, C. Huang, S. Dai, and X. Xi, "Enhancing high-temperature and high-voltage performances of single-crystal LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ cathodes through a LiBO₂/LiAlO₂ dual-modification strategy," ACS Sustainable Chemistry & Engineering 8, 6293–6304 (2020).
- ⁷⁸Z. Zeng, X. Liu, X. Jiang, Z. Liu, Z. Peng, X. Feng, W. Chen, D. Xia, X. Ai, H. Yang, *et al.*, "Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte," InfoMat 2, 984–992 (2020).
- ⁷⁹X. Zhang, M. Hou, A. G. Tamirate, H. Zhu, C. Wang, and Y. Xia, "Carbon coated nanosized LiMn_{0.8}Fe_{0.2}PO₄ porous microsphere cathode material for Li-ion batteries," Journal of Power Sources **448**, 227438 (2020).
- ⁸⁰Z. Zhong, L. Chen, S. Huang, W. Shang, L. Kong, M. Sun, L. Chen, and W. Ren, "Singlecrystal LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂: a high thermal and cycling stable cathodes for lithium-ion batteries," Journal of Materials Science **55**, 2913–2922 (2020).
- ⁸¹Z. Hong, H. Dong, S. Han, W. Li, Q. Dong, Y. Cao, X. Gao, Y. Zhang, W. Lu, and L. Chen, "Nail penetration-safe LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ pouch cells enabled by LiMn_{0.7}Fe_{0.3}PO₄ cathode safety additive," Journal of Power Sources **512**, 230505 (2021).
- ⁸²N. Hu, C. Zhang, K. Song, H. Wu, P. Yang, and L. Zhang, "Enhanced high-temperature performance and thermal stability of lithium-rich cathode via combining full concentration gradient design with surface spinel modification," Chemical Engineering Journal **415**, 129042 (2021).
- ⁸³J. Langdon, Z. Cui, and A. Manthiram, "Role of electrolyte in overcoming the challenges of LiNiO₂ cathode in lithium batteries," ACS Energy Letters 6, 3809–3816 (2021).
- ⁸⁴Y. Levartovsky, A. Chakraborty, S. Kunnikuruvan, S. Maiti, J. Grinblat, M. Talianker, D. T. Major, and D. Aurbach, "Enhancement of structural, electrochemical, and thermal properties of high-energy density Ni-rich LiNi_{0.85}Co_{0.1}Mn_{0.05}O₂ cathode materials for Liion batteries by niobium doping," ACS applied materials & interfaces **13**, 34145–34156 (2021).
- ⁸⁵Y. Li, X. Liu, L. Wang, X. Feng, D. Ren, Y. Wu, G. Xu, L. Lu, J. Hou, W. Zhang, *et al.*, "Thermal runaway mechanism of lithium-ion battery with LiNi_{0.8}Mn_{0.1}Co_{0.1}O₂ cathode materials," Nano Energy **85**, 105878 (2021).
- ⁸⁶C. Liang, W. Zhang, Z. Wei, Z. Wang, Q. Wang, and J. Sun, "Transition-metal redox evolution and its effect on thermal stability of $\text{LiNi}_x \text{Co}_y \text{Mn}_z \text{O}_2$ based on synchrotron soft

X-ray absorption spectroscopy," Journal of Energy Chemistry 59, 446–454 (2021).

- ⁸⁷P. Pang, X. Tan, Z. Wang, Z. Cai, J. Nan, Z. Xing, and H. Li, "Crack-free singlecrystal LiNi_{0.83}Co_{0.10}Mn_{0.07}O₂ as cycling/thermal stable cathode materials for highvoltage lithium-ion batteries," Electrochimica Acta **365**, 137380 (2021).
- ⁸⁸X. Qi, B. Liu, J. Pang, F. Yun, R. Wang, Y. Cui, C. Wang, K. Doyle-Davis, C. Xing, S. Fang, *et al.*, "Unveiling micro internal short circuit mechanism in a 60 Ah high-energy-density Li-ion pouch cell," Nano Energy **84**, 105908 (2021).
- ⁸⁹Y. Sun, D. Ren, G. Liu, D. Mu, L. Wang, B. Wu, J. Liu, N. Wu, and X. He, "Correlation between thermal stabilities of nickel-rich cathode materials and battery thermal runaway," International Journal of Energy Research 45, 20867–20877 (2021).
- ⁹⁰Y. Wang, D. Ren, X. Feng, L. Wang, and M. Ouyang, "Thermal kinetics comparison of delithiated Li[Ni_xCo_yMn_{1-x-y}]O₂ cathodes," Journal of Power Sources **514**, 230582 (2021).
- ⁹¹C. Wu, Y. Wu, X. Yang, T. Xin, S. Chen, M. Yang, Y. Peng, H. Xu, Y. Yin, T. Deng, et al., "Thermal runaway suppression of high-energy lithium-ion batteries by designing the stable interphase," Journal of the Electrochemical Society 168, 090563 (2021).
- ⁹²T. Wu, X. Liu, X. Zhang, Y. Lu, B. Wang, Q. Deng, Y. Yang, E. Wang, Z. Lyu, Y. Li, *et al.*, "Full concentration gradient-tailored Li-rich layered oxides for high-energy lithiumion batteries," Advanced Materials **33**, 2001358 (2021).
- ⁹³Y. Wu, X. Feng, X. Liu, X. Wang, D. Ren, L. Wang, M. Yang, Y. Wang, W. Zhang, Y. Li, et al., "In-built ultraconformal interphases enable high-safety practical lithium batteries," Energy Storage Materials 43, 248–257 (2021).
- ⁹⁴Y. Wu, D. Ren, X. Liu, G.-L. Xu, X. Feng, Y. Zheng, Y. Li, M. Yang, Y. Peng, X. Han, et al., "High-voltage and high-safety practical lithium batteries with ethylene carbonatefree electrolyte," Advanced Energy Materials 11, 2102299 (2021).
- ⁹⁵Q. Xie, Z. Cui, and A. Manthiram, "Unveiling the stabilities of nickel-based layered oxide cathodes at an identical degree of delithiation in lithium-based batteries," Advanced Materials **33**, 2100804 (2021).
- ⁹⁶C. Zhang, B. Wei, W. Jiang, M. Wang, W. Hu, C. Liang, T. Wang, L. Chen, R. Zhang, P. Wang, *et al.*, "Insights into the enhanced structural and thermal stabilities of Nbsubstituted lithium-rich layered oxide cathodes," ACS Applied Materials & Interfaces 13, 45619–45629 (2021).

- ⁹⁷E. Zhitao, H. Guo, G. Yan, J. Wang, R. Feng, Z. Wang, and X. Li, "Evolution of the morphology, structural and thermal stability of LiCoO₂ during overcharge," Journal of Energy Chemistry 55, 524–532 (2021).
- ⁹⁸F. Chen, X. Zhu, W. Dai, C. Yao, J. Qian, Z. Chen, and C. Liu, "Optimized Ni-rich LiNi_{0.83}Co_{0.06}Mn_{0.06}Al_{0.05}O₂ cathode material with a Li_{1.3}Al_{0.3}Ti_{1.7}(PO4)₃ fast ion conductor coating for lithium-ion batteries," Journal of Alloys and Compounds **923**, 166277 (2022).
- ⁹⁹T. Fan, W. Kai, V. K. Harika, C. Liu, A. Nimkar, N. Leifer, S. Maiti, J. Grinblat, M. N. Tsubery, X. Liu, *et al.*, "Operating highly stable LiCoO₂ cathodes up to 4.6 V by using an effective integration of surface engineering and electrolyte solutions selection," Advanced Functional Materials **32**, 2204972 (2022).
- ¹⁰⁰L. Gan, R. Chen, X. Yang, X. Xu, M. Zan, Q. Li, Y. Wang, D. Su, X. Yu, H. Li, *et al.*, "Comparative study on high-voltage safety performance of $\text{LiNi}_x \text{Mn}_y \text{Co}_z \text{O}_2$ cathode with different nickel contents," Applied Physics Letters **121** (2022).
- ¹⁰¹C. Huang, Z. Wang, H. Wang, D. Huang, Y.-b. He, and S.-X. Zhao, "Mg²⁺ doping into Li sites to improve anionic redox reversibility and thermal stability of lithium-rich manganese-based oxides cathode," Materials Today Energy **29**, 101116 (2022).
- ¹⁰²Y. Levartovsky, A. Chakraborty, S. Kunnikuruvan, S. Maiti, J. Grinblat, M. Talianker, D. Aurbach, and D. T. Major, "High-energy Ni-rich LiNi_{0.85}Co_{0.1}Mn_{0.05}O₂ cathode material for Li-ion batteries enhanced by Nd- and Y-doping: A structural, electrochemical, and thermal investigation," ACS Applied Energy Materials 5, 11142–11151 (2022).
- ¹⁰³X. Li, Q. Gu, B. Qiu, C. Yin, Z. Wei, W. Wen, Y. Zhang, Y. Zhou, H. Gao, H. Liang, et al., "Rational design of thermally stable polymorphic layered cathode materials for next generation lithium rechargeable batteries," Materials Today 61, 91–103 (2022).
- ¹⁰⁴C. Liang, L. Jiang, Z. Wei, W. Zhang, Q. Wang, and J. Sun, "Insight into the structural evolution and thermal behavior of LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ cathode under deep charge," Journal of Energy Chemistry 65, 424–432 (2022).
- ¹⁰⁵J. Wang, R. Chen, L. Yang, M. Zan, P. Chen, Y. Li, W. Li, H. Yu, X. Yu, X. Huang, *et al.*, "Raising the intrinsic safety of layered oxide cathodes by surface re-lithiation with LLZTO garnet-type solid electrolytes," Advanced Materials **34**, 2200655 (2022).
- ¹⁰⁶Y. Wang, X. Feng, Y. Peng, F. Zhang, D. Ren, X. Liu, L. Lu, Y. Nitta, L. Wang, and M. Ouyang, "Reductive gas manipulation at early self-heating stage enables controllable

battery thermal failure," Joule 6, 2810–2820 (2022).

- ¹⁰⁷C. Wu, Y. Wu, X. Xu, D. Ren, Y. Li, R. Chang, T. Deng, X. Feng, and M. Ouyang, "Synergistic dual-salt electrolyte for safe and high-voltage LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂//graphite pouch cells," ACS Applied Materials & Interfaces **14**, 10467–10477 (2022).
- ¹⁰⁸L. Yang, J. Zhang, W. Xue, J. Li, R. Chen, H. Pan, X. Yu, Y. Liu, H. Li, L. Chen, et al., "Anomalous thermal decomposition behavior of polycrystalline LiNi_{0.8}Mn_{0.1}Co_{0.1}O₂ in PEO-based solid polymer electrolyte," Advanced Functional Materials **32**, 2200096 (2022).
- ¹⁰⁹S.-J. Yang, N. Yao, F.-N. Jiang, J. Xie, S.-Y. Sun, X. Chen, H. Yuan, X.-B. Cheng, J.-Q. Huang, and Q. Zhang, "Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells," Angewandte Chemie **134**, e202214545 (2022).
- ¹¹⁰X. Yang, C. Wang, P. Yan, T. Jiao, J. Hao, Y. Jiang, F. Ren, W. Zhang, J. Zheng, Y. Cheng, *et al.*, "Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering," Advanced Energy Materials **12**, 2200197 (2022).
- ¹¹¹M. Yi, W. Li, and A. Manthiram, "Delineating the roles of Mn, Al, and Co by comparing three layered oxide cathodes with the same nickel content of 70% for lithium-ion batteries," Chemistry of Materials **34**, 629–642 (2022).
- ¹¹²K. Zhang, J. Qi, J. Song, Y. Zuo, Y. Yang, T. Yang, T. Chen, X. Liu, L. Chen, and D. Xia, "Sulfuration of Li-rich Mn-based cathode materials for multianionic redox and stabilized coordination environment," Advanced Materials **34**, 2109564 (2022).
- ¹¹³R. Zhang, C. Wang, P. Zou, R. Lin, L. Ma, L. Yin, T. Li, W. Xu, H. Jia, Q. Li, *et al.*, "Compositionally complex doping for zero-strain zero-cobalt layered cathodes," Nature **610**, 67–73 (2022).
- ¹¹⁴R. Zhang, S. Yang, H. Li, T. Zhai, and H. Li, "Air sensitivity of electrode materials in Li/Na ion batteries: Issues and strategies," InfoMat 4, e12305 (2022).
- ¹¹⁵H. Zhao, W. Li, J. Li, H. Xu, C. Zhang, J. Li, C. Han, Z. Li, M. Chu, and X. Qiu, "Enhance performances of Co-free Li-rich cathode by eutesctic melting salt treatment," Nano Energy **92**, 106760 (2022).
- ¹¹⁶F. Chen, P. Bao, J. Qian, Y. Zhou, X. Guan, Z. Chen, C. Liu, and S. Liu, "Li₇La₃Zr₂O₁₂ coated LiNi_{0.87}Co_{0.05}Mn_{0.05}Al_{0.03}O₂ for lithium-ion cells with enhanced performance," Electrochimica Acta **462**, 142684 (2023).

- ¹¹⁷Y. Cheng, X. Zhang, Q. Leng, X. Yang, T. Jiao, Z. Gong, M.-S. Wang, and Y. Yang, "Boosting electrochemical performance of Co-free Ni-rich cathodes by combination of Al and high-valence elements," Chemical Engineering Journal **474**, 145869 (2023).
- ¹¹⁸H. He, H. Li, X. Bai, Z. Chang, Z. Gao, X. Zhang, and Z. Ren, "Comparative study of high-temperature cycling and thermal stability of LLOs and NCMs under medium-high voltage," Energy & Fuels **37**, 6854–6864 (2023).
- ¹¹⁹Z. He, M. Zhang, K. Zhou, Y. Cheng, M. Luo, Y. Su, J. Hao, Y. Sun, Y. Li, and Y. Yang, "Enabling excellent thermal stability of an ultrahigh nickel-rich cathode (LiNi_{0.90}Co_{0.05}Mn_{0.05}O₂) by a magnesium and titanium codoping strategy," ACS Applied Energy Materials **6**, 3422–3431 (2023).
- ¹²⁰Z. Jia, Z. Jiang, L. Yu, K. Yang, S. Xiao, B. Xia, J. Zhang, and X. Xie, "Study of polyethylene coating to improve the cycle stability of Ni-rich cathode for Li-ion batteries," Journal of Solid State Electrochemistry 27, 2251–2261 (2023).
- ¹²¹D. Kam, M. Choi, D. Park, and W. Choi, "Unveiling the potential of surface-beneath region doping by induced-diffusion in nickel-rich single crystal cathode for high-performance lithium-ion batteries," Chemical Engineering Journal **472**, 144885 (2023).
- ¹²²X. Kong, H. Yang, Y. Zhang, P. Dai, Y. Tang, J. Zeng, and J. Zhao, "Design and mechanism exploration of single-crystalline NCM811 materials with superior comprehensive performance for Li-ion batteries," Chemical Engineering Journal 452, 139431 (2023).
- ¹²³J. Lee, A.-R. Jeon, H. J. Lee, U. Shin, Y. Yoo, H.-D. Lim, C. Han, H. Lee, Y. J. Kim, J. Baek, *et al.*, "Molecularly engineered linear organic carbonates as practically viable nonflammable electrolytes for safe Li-ion batteries," Energy & Environmental Science 16, 2924–2933 (2023).
- ¹²⁴J. Li, W. Li, C. Zhang, C. Han, X. Chen, H. Zhao, H. Xu, G. Jia, Z. Li, J. Li, et al., "Tuning Li₂MnO₃-like domain size and surface structure enables highly stabilized Li-rich layered oxide cathodes," ACS Nano 17, 16827–16839 (2023).
- ¹²⁵S. Li, L. Yang, Z. Liu, C. Zhang, X. Shen, Y. Gao, Q. Kong, Z. Hu, C.-Y. Kuo, H.-J. Lin, *et al.*, "Surface Al-doping for compromise between facilitating oxygen redox and enhancing structural stability of Li-rich layered oxide," Energy Storage Materials 55, 356–363 (2023).
- ¹²⁶Y. Li, M. Zan, P. Chen, Y. Huang, X. Xu, C. Zhang, Z. Cai, X. Yu, and H. Li, "Facile solid-state synthesis to in situ generate a composite coating layer composed of spinel-

structural compounds and Li_3PO_4 for stable cycling of $LiCoO_2$ at 4.6 V," ACS Applied Materials & Interfaces **15**, 51262–51273 (2023).

- ¹²⁷Z. Li, H. Yi, H. Ren, J. Fang, Y. Du, W. Zhao, H. Chen, Q. Zhao, and F. Pan, "Multiple surface optimizations for a highly durable LiCoO₂ beyond 4.6 V," Advanced Functional Materials **33**, 2307913 (2023).
- ¹²⁸T. Liu, K. Fan, Z. Lin, Z. Liang, C. Chen, G. Li, X. Guo, Y. Zhu, G. Chen, H. Li, *et al.*, "Dual-functional boron-modification on a cobalt-free single-crystal layered cathode for high-voltage lithium-ion batteries," Journal of Materials Chemistry A **11**, 17810–17820 (2023).
- ¹²⁹H. Pan, S. Jiao, Z. Xue, J. Zhang, X. Xu, L. Gan, Q. Li, Y. Liu, X. Yu, H. Li, *et al.*, "The roles of ni and mn in the thermal stability of lithium-rich manganese-rich oxide cathode," Advanced Energy Materials **13**, 2203989 (2023).
- ¹³⁰G.-T. Park, S.-B. Kim, B. Namkoong, N.-Y. Park, H. Kim, C. S. Yoon, and Y.-K. Sun, "A new ternary Co-free layered cathode, Li[Ni_{1-x-y}Ti_xAl_y]O₂, for high-energy lithium-ion batteries," Materials Today **71**, 38–49 (2023).
- ¹³¹G.-T. Park, S.-B. Kim, B. Namkoong, J.-H. Ryu, J.-I. Yoon, N.-Y. Park, M.-C. Kim, S.-M. Han, F. Maglia, and Y.-K. Sun, "Intergranular shielding for ultrafine-grained Mo-doped Ni-rich Li[Ni_{0.96}Co_{0.04}]O₂ cathode for Li-ion batteries with high energy density and long life," Angewandte Chemie **135**, e202314480 (2023).
- ¹³²Q. Peng, Z. Liu, S. Chen, P. Duan, S. Cheng, L. Jiang, J. Sun, and Q. Wang, "Developing multifunctional amide additive by rational molecular design for high-performance Li metal batteries," Nano Energy **113**, 108547 (2023).
- ¹³³X. Rui, D. Ren, X. Liu, X. Wang, K. Wang, Y. Lu, L. Li, P. Wang, G. Zhu, Y. Mao, *et al.*, "Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries," Energy & Environmental Science **16**, 3552–3563 (2023).
- ¹³⁴J.-L. Shi, H. Sheng, X.-H. Meng, X.-D. Zhang, D. Lei, X. Sun, H. Pan, J. Wang, X. Yu, C. Wang, *et al.*, "Size controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries," National Science Review **10**, nwac226 (2023).
- ¹³⁵H. Song, W. Su, H. Mao, Z. Feng, Y. Li, Y. Lyu, and B. Guo, "In-situ formed hybrid phosphates coating layer enabling Co-free Li-rich layered oxides with stable cycle performance," Materials Today Energy **34**, 101314 (2023).

- ¹³⁶Y. Song, Y. Cui, B. Li, L. Geng, J. Yan, D. Zhu, P. Zhou, J. Zhou, Z. Yan, Q. Xue, *et al.*, "Revealing the origin of high-thermal-stability of single-crystal Ni-rich cathodes toward higher-safety batteries," Nano Energy **116**, 108846 (2023).
- ¹³⁷X. Tan, W. Peng, M. Wang, G. Luo, Z. Wang, G. Yan, H. Guo, Q. Li, and J. Wang, "Al, Zr dual-doped cobalt-free nickel-rich cathode materials for lithium-ion batteries," Progress in Natural Science: Materials International **33**, 108–115 (2023).
- ¹³⁸R. Tian, S. Yin, H. Zhang, D. Song, Y. Ma, and L. Zhang, "Influence of Al doping on the structure and electrochemical performance of the Co-free LiNi_{0.8}Mn_{0.2}O₂ cathode material," Dalton Transactions **52**, 11716–11724 (2023).
- ¹³⁹Y. Ugata, K. Yukishita, N. Kazahaya, S. Takahashi, and N. Yabuuchi, "Nonflammable fluorinated ester-based electrolytes for safe and high-energy batteries with LiCoO₂," Chemistry of Materials **35**, 3686–3693 (2023).
- ¹⁴⁰L. Wang, G. Liu, R. Xu, X. Wang, L. Wang, Z. Yao, C. Zhan, and J. Lu, "Enabling an intrinsically safe and high-energy-density 4.5 V-class lithium-ion battery with synergistically incorporated fast ion conductors," Advanced Energy Materials 13, 2203999 (2023).
- ¹⁴¹Y.-Y. Wang, Z. Liang, Z.-C. Liu, S. Liu, C. Ban, G.-R. Li, and X.-P. Gao, "Synergy of epitaxial layer and bulk doping enables structural rigidity of cobalt-free ultrahigh-nickel oxide cathode for lithium-ion batteries," Advanced Functional Materials **33**, 2308152 (2023).
- ¹⁴²Y. Wang, W. Yu, L. Zhao, A. Wu, A. Li, X. Dong, and H. Huang, "AlPO₄-Li₃PO₄ dual shell for enhancing interfacial stability of Co-free Li-rich Mn-based cathode," Electrochimica Acta 462, 142664 (2023).
- ¹⁴³Z. Wang, W. Wei, Q. Han, H. Zhu, L. Chen, Y. Hu, H. Jiang, and C. Li, "Isotropic microstrain relaxation in Ni-rich cathodes for long cycling lithium ion batteries," ACS Nano 17, 17095–17104 (2023).
- ¹⁴⁴Z. Wei, C. Liang, L. Jiang, M. Sun, S. Cheng, L. Wang, S. Chen, Z. Fang, Y. Li, N. Zhang, et al., "Probing the thermal degradation mechanism of polycrystalline and single-crystal Li(Ni_{0.8}Co_{0.1}Mn_{0.1})O₂ cathodes from the perspective of oxygen vacancy diffusion," Energy Storage Materials **56**, 495–505 (2023).
- ¹⁴⁵F. Wu, Q. Shi, L. Chen, J. Dong, J. Zhao, H. Wang, F. Gao, J. Liu, H. Zhang, N. Li, et al., "New insights into dry-coating-processed surface engineering enabling structurally and

thermally stable high-performance Ni-rich cathode materials for lithium ion batteries," Chemical Engineering Journal **470**, 144045 (2023).

- ¹⁴⁶Y.-L. Wu, C.-C. Lan, M.-H. Liu, and C.-J. Lu, "Improving electrochemical performance of LiNi_{0.9}Co_{0.05}Mn_{0.05}O₂ cathode material by coating with nano-LiNbO₃ layer," International Journal of Electrochemical Science **18**, 100278 (2023).
- ¹⁴⁷W. Xiong, Y. Liu, G. Zhu, Y. Wang, and H. Zheng, "Multifunctional composite interfacial layer based on aluminum and boron for single crystal LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ with enhanced electrochemical performance at high voltage and temperature," Journal of Energy Storage **73**, 109086 (2023).
- ¹⁴⁸S.-J. Yang, J.-K. Hu, F.-N. Jiang, X.-B. Cheng, S. Sun, H.-J. Hsu, D. Ren, C.-Z. Zhao, H. Yuan, M. Ouyang, *et al.*, "Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells," Etransportation **18**, 100279 (2023).
- ¹⁴⁹H. Yu, H. Zhu, H. Jiang, X. Su, Y. Hu, H. Jiang, and C. Li, "Restraining the escape of lattice oxygen enables superior cyclic performance towards high-voltage Ni-rich cathodes," National Science Review 10, nwac166 (2023).
- ¹⁵⁰R. Zhang, C. Wang, P. Zou, R. Lin, L. Ma, T. Li, I.-h. Hwang, W. Xu, C. Sun, S. Trask, *et al.*, "Long-life lithium-ion batteries realized by low-Ni, Co-free cathode chemistry," Nature Energy 8, 695–702 (2023).
- ¹⁵¹S. Zhang, J. Wu, G. Zhao, J. Chen, H. Yang, X. Jiang, M. Li, B. Wu, W. Liu, H. Zhou, et al., "Improving stability of high voltage LiCoO₂ by synergetic surface modification via in situ surface conversion," Journal of Power Sources 560, 232687 (2023).
- ¹⁵²T. Cao, H. Fan, Y. Lei, J. Li, W. Fan, B. Zhang, X. Liu, T. Huang, and Y. Zhang, "Stabilized nickel-rich oxide cathode by the confining effect of Nb lattice anchoring and epitaxial shielding layer," Chemical Engineering Journal, 151937 (2024).
- ¹⁵³J. Choi, D. Darbar, M. Chen, X. Huang, G. Qi, L. Wang, and J.-H. Kim, "Fluorine doping for improved lithium and manganese-rich layered cathode performance," ACS Applied Energy Materials 7, 6920–6928 (2024).
- ¹⁵⁴T. Dong, G. Xu, B. Xie, T. Liu, T. Gong, C. Sun, J. Wang, S. Zhang, X. Zhang, H. Zhang, *et al.*, "An electrode-crosstalk-suppressing smart polymer electrolyte for high safety lithium-ion batteries," Advanced Materials , 2400737 (2024).
- ¹⁵⁵J. Guo, Y. Lai, X. Gao, S. Li, H. Zhang, C. Guan, L. Chen, Z. Yang, S. Li, and Z. Zhang, "Triggering cationic/anionic hybrid redox stabilizes high-temperature Li-rich cathodes

materials via three-in-one strategy," Energy Storage Materials 69, 103383 (2024).

- ¹⁵⁶J. W. Heo, G. Lee, B.-J. Lee, J. Kim, and T. Yim, "Preserving the structural stability of LiNi_{0.92}Co_{0.04}Mn_{0.04}O₂ cathode by Ti⁴⁺-ion doping for lithium-ion batteries," Journal of Electroanalytical Chemistry **960**, 118206 (2024).
- ¹⁵⁷P. Hou, M. Gong, Y. Tian, and F. Li, "A new high-valence cation pillar within the Li layer of compositionally optimized Ni-rich LiNi_{0.9}Co_{0.1}O₂ with improved structural stability for Li-ion battery," Journal of Colloid and Interface Science **653**, 129–136 (2024).
- ¹⁵⁸Y. Huang, B. Cao, X. Xu, X. Li, K. Zhou, Z. Geng, Q. Li, X. Yu, and H. Li, "Construction of sulfone-based polymer electrolyte interface enables the high cyclic stability of 4.6 V LiCoO₂ cathode by in situ polymerization," Advanced Energy Materials **14**, 2400943 (2024).
- ¹⁵⁹Z. Ji, X. Guan, Y. Zhou, J. Qian, X. Yin, and F. Chen, "LiNbO₃ coating and F⁻ doping stabilize the crystal structure and ameliorate the interface of LiNi_{0.88}Co_{0.06}Mn_{0.03}Al_{0.03}O₂ to improve the electrochemical properties and safety capability," Langmuir **40**, 8180–8193 (2024).
- ¹⁶⁰M. Jiang, P. Wang, Q. Chen, Y. Zhang, Q. Wu, L. Tan, T. Ning, L. Li, and K. Zou, "Enabling the Nb/Ti co-doping strategy for improving structure stability and rate capability of Ni-rich cathode," Chinese Chemical Letters, 110040 (2024).
- ¹⁶¹X. Jiao, J. Yap, J. Choi, M. Chen, D. Darbar, G. Qi, X. Huang, and J.-H. Kim, "Development of diverse aluminium concentration gradient profiles in Ni-rich layered cathodes for enhanced electrochemical and thermal performances," Journal of Materials Chemistry A 12, 11656–11668 (2024).
- ¹⁶²K.-E. Kim, J. Jeong, Y. Lee, H. Lim, K. Y. Chung, H. Kim, and S.-O. Kim, "Enhancing high-voltage structural stability of single-crystalline Ni-rich LiNi_{0.9}Mn_{0.05}Co_{0.05}O₂ cathode material by ultrathin Li-rich oxide layer for lithium-ion batteries," Journal of Power Sources **601**, 234300 (2024).
- ¹⁶³S. Lee, K. Scanlan, S. Reed, and A. Manthiram, "Cost-effective layered oxide-olivine blend cathodes for high-rate pulse power lithium-ion batteries," Advanced Energy Materials , 2403002 (2024).
- ¹⁶⁴A. Li, C. Hu, W. Tang, Z. Chen, Z. Yang, J. Su, X. Huang, and W. Zhang, "Mg/Ta dualsite doping of high-nickel layered cathode material LiNi_{0.9}Co_{0.1}O₂ for extended cycling and thermal stability," Chemical Engineering Journal **487**, 150644 (2024).

- ¹⁶⁵L. Liang, M. Su, Z. Sun, L. Wang, L. Hou, H. Liu, Q. Zhang, and C. Yuan, "High-entropy doping promising ultrahigh-Ni Co-free single-crystalline cathode toward commercializable high-energy lithium-ion batteries," Science Advances **10**, eado4472 (2024).
- ¹⁶⁶D.-A. Lim, J.-H. Seok, D. Hong, K. H. Ahn, C. H. Lee, and D.-W. Kim, "Non-flammable gel polymer electrolyte for enhancing the safety and high-temperature performance of lithium-ion batteries," ACS Applied Materials & Interfaces 16, 14822–14831 (2024).
- ¹⁶⁷C. Liu, Z. Cui, and A. Manthiram, "Tuning dopant distribution for stabilizing the surface of high-nickel layered oxide cathodes for lithium-ion batteries," Advanced Energy Materials 14, 2302722 (2024).
- ¹⁶⁸Y. Liu, C. Zhang, L. Lin, X. Ai, S. Gui, W. Guo, S. Li, L. Wang, H. Yang, D.-L. Peng, et al., "Intrinsic highly conductive and mechanically robust Li-rich cathode materials enabled by microstructure engineering for enhanced electrochemical properties," Advanced Functional Materials **34**, 2308494 (2024).
- ¹⁶⁹Z.-C. Liu, F. Wang, W.-N. Wang, S. Liu, and X.-P. Gao, "Enhancing structural rigidity of ultrahigh-ni oxide through Al and Nb dual-bulk-doping for high-voltage lithium-ion batteries," Small Methods , 2400224 (2024).
- ¹⁷⁰G.-T. Park, J.-H. Ryu, J.-H. Kim, H. H. Sun, D. E. Suh, S.-M. Han, N.-Y. Park, and Y.-K. Sun, "Aluminum-distribution-dependent microstructural evolution of NCA cathodes: Is aluminum homogeneity really favorable?" Energy Storage Materials **70**, 103496 (2024).
- ¹⁷¹J. Shen, H. Li, H. Qi, Z. Lin, Z. Li, C. Zheng, W. Du, H. Chen, and S. Zhang, "Enhancing thermodynamic stability of single-crystal Ni-rich cathode material via a synergistic dualsubstitution strategy," Journal of Energy Chemistry 88, 428–436 (2024).
- ¹⁷²W. Tang, C. Hu, A. Li, X. Huang, Z. Chen, J. Su, and W. Zhang, "Constructing a stable interface on Ni-rich LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ cathode via lactic acid-assisted engineering strategy," Journal of Energy Chemistry **90**, 412–422 (2024).
- ¹⁷³R. Wang, J. Chen, Y. Zhang, Z. Li, S. Cao, X. Liu, H. Hu, L. Wu, Y. Shen, and X. Wang, "Inhibiting phase conversion and improving cyclic stability of Ni-rich layered oxide by high-valence element concentration gradient doping," Chemical Engineering Journal 485, 149827 (2024).
- ¹⁷⁴Z. Wen, F. Wu, Z. Zhao, Z. Yang, X. Liu, and D. Mu, "Effect of Co/Mn content on electrochemical properties of Ni-rich LiNi_{0.9}Co_xMn_{0.1-x}O₂," Journal of Energy Storage 85, 111135 (2024).

- ¹⁷⁵D. Wu, C. Zhu, H. Wang, J. Huang, G. Jiang, Y. Yang, G. Yang, D. Tang, and J. Ma, "Mechanically and thermally stable cathode electrolyte interphase enables high-temperature, high-voltage Li—LiCoO₂ batteries," Angewandte Chemie International Edition **63**, e202315608 (2024).
- ¹⁷⁶Y. Wu, Z. Zeng, M. Liu, C. Cai, S. Lei, H. Zhang, S. Cheng, and J. Xie, "Restraining lattice oxygen escape by bioinspired antioxidant enables thermal runaway prevention in Ni-rich cathode based lithium-ion batteries," Advanced Energy Materials 14, 2401037 (2024).
- ¹⁷⁷X. Xu, L. Gan, R. Chen, J. Wang, Z. Cai, X. Yu, H. Li, and X. Huang, "Effects of electrolyte/cathode ratio on investigation of their thermal behaviors using differential scanning calorimetry," Applied Physics Letters **124** (2024).
- ¹⁷⁸H. Yan, J. Qian, X. Yin, and F. Chen, "High-energy LiNi_{0.90}Co_{0.04}Mn_{0.03}Al_{0.03}O₂ cathode material with lithium-reactive Li_{0.34}La_{0.56}TiO₃ coating and Li₂NiO₂ lithium supplying for enhanced performance lithium-ion batteries," Journal of Alloys and Compounds **976**, 173128 (2024).
- ¹⁷⁹C. Yang, M. Zheng, R. Qu, H. Zhang, L. Yin, W. Hu, J. Han, J. Lu, and Y. You, "Engineering a boron-rich interphase with nonflammable electrolyte toward stable Li—NCM811 cells under elevated temperature," Advanced Materials **36**, 2307220 (2024).
- ¹⁸⁰K. Yang, Y. Yi, G. Hu, C. Yang, F. Liu, C. Yin, J. Cao, and Z. Chen, "Enhancing the cycling stability of full-concentration-gradient Ni-rich layered cathodes via in-situ Zr doping," Chemical Engineering Journal, 152872 (2024).
- ¹⁸¹G. Zhang, W. Shen, and X. Wei, "Lithium-ion battery thermal safety evolution during high-temperature nonlinear aging," Fuel **362**, 130845 (2024).
- ¹⁸²Z. Zhang, T. Liu, C. Gao, Y. Liu, H. Kuai, H. Du, W. You, X. Huang, J. Shen, H. Huang, et al., "Achieving thermodynamic stability of single-crystal ultrahigh-nickel cathodes via an alcohol-assisted mechanical fusion," Journal of Energy Chemistry 99, 580–592 (2024).
- ¹⁸³C. Zhao, C. Wang, X. Liu, I. Hwang, T. Li, X. Zhou, J. Diao, J. Deng, Y. Qin, Z. Yang, et al., "Suppressing strain propagation in ultrahigh-Ni cathodes during fast charging via epitaxial entropy-assisted coating," Nature Energy 9, 345–356 (2024).
- ¹⁸⁴Q. Zhou, B. Bao, X. Li, X. Guan, Y. Zhou, J. Qian, and F. Chen, "Constructing electronic and ionic conductive double coating to achieve superior structure stability and

electrochemical properties of $LiNi_{0.90}Co_{0.04}Mn_{0.03}Al_{0.03}O_2$," Ceramics International **50**, 4965–4979 (2024).

- ¹⁸⁵X. Zhuang, S. Zhang, Z. Cui, B. Xie, T. Gong, X. Zhang, J. Li, R. Wu, S. Wang, L. Qiao, *et al.*, "Interphase regulation by multifunctional additive empowering high energy lithium-ion batteries with enhanced cycle life and thermal safety," Angewandte Chemie International Edition **63**, e202315710 (2024).
- ¹⁸⁶K. Zou, M. Jiang, T. Ning, L. Tan, J. Zheng, J. Wang, X. Ji, and L. Li, "Thermodynamicsdirected bulk/grain-boundary engineering for superior electrochemical durability of Nirich cathode," Journal of Energy Chemistry **97**, 321–331 (2024).
- ¹⁸⁷Z. Zheng, X. Wang, K. Wang, M. Ling, C. Liang, and M. Wang, "Achieving ultra-low voltage fading in Co-free Li-rich layered oxides via effortless surface defect engineering," Journal of Colloid and Interface Science **678**, 572–582 (2025).