Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Are Sodiation/De-Sodiation Reactions Reversible in Two-Dimensional Metallic NbSe₂?

Zaichun Liu, Rui Wang, Panpan Zhang, Chaochao Dun, Jeffrey J. Urban, Sheng Yang, Tao Wang, Yuan Ma, Yiren Zhong, Jiarui He, Zhi Zhu, Xiaosong Xiong, Weijia Fan, Qi Zhou, Haoyuan Yang, Xin-Bing Cheng, Faxing Wang^{*}, Ying Huang^{*}, and Yuping Wu^{*}

*Corresponding authors: F. Wang, Y. Huang, and Y. Wu **E-mail:** wuyp@seu.edu.cn (Y.W.), yinghuang215@hotmail.com (Y.H.), faxing.wang@seu.edu.cn (F.W.)

This PDF file includes:

Figs. S1 to S9

Fig. S1 (a) SEM images of exfoliated NbSe₂ samples with different magnifications. (b) XRD pattern of exfoliated NbSe₂ samples. (c) UV absorbance spectrum of exfoliated NbSe₂ samples. The insert is a photograph of typically NbSe₂ flake dispersion. XPS spectra of (d) Se 3d and (e) Nb 3d peaks from NbSe₂ flakes. The Se species can be fitted with Se $3d_{5/2}$ (53.2 eV) and Se $3d_{3/2}$ (54.1 eV) peaks in agreement with the Se²⁺ state. The two peaks at 203.0 and 206.5 eV correspond to the Nb⁴⁺ state.

Fig. S2 Synchrotron XRD patterns of NbSe₂ flakes and Rietveld analysis.

Fig. S3 Synchrotron XRD patterns of Nb metal reference and Rietveld analysis.

Fig. S4 Schematic illustration of the topotactic conversion reaction and lattice models of Nb atoms in the crystal structures of NbSe₂ (4×4 supercells with 48 atoms) and *bcc* Nb (4×4 supercells with16 atoms in the surface layer). The grey and blue spheres represent Se and Nb atoms, respectively.

Fig. S5 Band structures of (a) $NbSe_2$ and (b) Na_xNbSe_2 .

Fig. S6 Electrochemical impedance spectroscopy (EIS) of (a) pristine NbSe₂ electrodes and (b) NbSe₂ electrode after 240 cycles.

Fig. S7 The Coulombic efficiency of the assembled dual-ion battery based on activated NbSe₂ anode and graphite cathode.

Fig. S8 The calculated dissolution energy of intermediate Na_2Se_x species in the used electrolyte solvents.

Fig. S9 Photographs of the dual-ion battery using (a) pure Se and (b) Nb/Se (activated NbSe₂) anodes in a two-electrode glass cell device. To understand the inhibition effect of polyselenides, two-electrode glass battery device was assembled to observe the dissolution behavior during charge/discharge process.

Electrodes	Stored metal	Maximum	Cycle/capacity retention	Ref.
	ion	reversible capacity		
		/ mAh g⁻¹		
NbSe ₂ nanosheets	Li-ion	347	-	1
	Li-ion	313	-	
NbSe ₂ nanoparticles	Mg-ion	101	42% after 40 cycles	2
NbSe ₂ flakes	K-ion	115	91% after 40 cycles	3
NbSe ₂ flakes	Na-ion	~125	84% after 100 cycles	4
	Na-ion	154	94% after 100 cycles	
NbSe ₂ nanoparticles	Li-ion	485	83% after 100 cycles	5
NbSe ₂ / N,Se co-	K-ion	288	~100% after 1200 cycles	
doped CNFs				6
NbSe ₂ @graphene	Li-ion	489	>100% after 1000 cycles	7
	Li-ion	672	88% after 250 cycles	8
Flower-like Nb ₂ Se ₉	Na-ion	342	52% after 250 cycles	
NbSe ₂ /SnSe	K-ion	~375	~75% after 1000 cycles	9
NbSe ₂ /NbS ₂	Na-ion	~200	92% after 500 cycles	10
NbSe ₂ flakes	Na-ion	212	72% after 500 cycles	This
				work

Table S1. Main electrochemical performance parameters of NbSe₂ based electrodes in half-cell tests.

References

- E. Hitz, J. Wan, A. Patel, Y. Xu, L. Meshi, J. Dai, Y. Chen, A. Lu, A. V. Davydov and L. Hu, ACS Appl. Mater. Interfaces, 2016, 8, 11390–11395.
- C. Peng, H. Lyu, L. Wu, T. Xiong, F. Xiong, Z. Liu, Q. An and L. Mai. ACS Appl. Mater. Interfaces, 2018, 10, 36988–36995.
- 3. Y. Luo, J. Han, Q. Ma, R. Zhan, Y. Zhang, Q. Xu and M. Xu, *ChemistrySelect*, 2018, **3**, 9807–9811.
- 4. B. Xu, X. Ma, J. Tian, F. Zhao, Y. Liu, B. Wang, H. Yang and Y. Xia, *Ionics*, 2019, 25, 4171–4177.
- 5. Y. Subramanian, G. K. Veerasubramani, M. S. Park and D. W. Kim, *J. Electrochem. Soc.*, 2019, **166**, A598-A604.
- M. Chen, L. Wang, X. Sheng, T. Wang, J. Zhou, S. Li, X. Shen, M. Zhang, Q. Zhang, X. Yu, J. Zhu and B. Lu, Adv. Funct. Mater., 2020, 30, 2004247.

- 7. Q. H. Nguyen, H. Kim, T. Kim, W. Choi, J. Hur, Chem. Eng. J., 2020, **382**, 122981.
- X. Wu, B. Wu, H. Wang, Q. Zhuang, Z. Xiong, H. Yi, P. Xu, G. Shi, Y. Guo and B. Wang, *Energy Fuels*, 2021, 35, 11563–11571.
- 9. Q. Peng, F. Ling, H. Yang, P. Duan, R. Xu, Q. Wang and Y. Yu, *Energy Storage Mater.* 2021, **39**, 265–270.
- 10. L. F. Zhou, X. W. Gao, T. Du, H. Gong, L. Y. Liu and W. B. Luo, *Chem. Eng. J.*, 2022, **435**, 134838.