Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Refining Grain and Optimizing Grain Boundary by Al₂Yb to Enable the Dendrite-free Lithium Anode

Yunlong Deng^{†, a}, Jian Gao^{†, a, b,} *, Ming Wang^a, Jinxiang Deng^a, Yicheng Zhou^a and

Wei Sun^{b,} *

Y. Deng, Prof. J. Gao, Dr. M. Wang, J. Deng, Y. Zhou

^a New Energy Materials Laboratory, Sichuan Changhong Electric Co.; Ltd.; Chengdu,

610041, China.

Prof. W. Sun

^b School of Materials and Energy, University of Electronic Science and Technology of

China, Chengdu 611731, China.

[†] These authors contributed equally to this work.

*Corresponding authors: gaojian@changhong.com (J. Gao), weisun@uestc.edu.cn (W. Sun)

Supplementary Figure 1 The crystallographic orientation relationships between Al₂Yb and β -Li (large circle: Al₂Yb atom; small circle: Li atom)

Supplementary Figure 2 The crystallographic orientation relationships between Al₂Y and β -Li (large circle: Al₂Y atom; small circle: Li atom)

Supplementary Figure 3 The crystallographic orientation relationships between AlB₂ and β -Li (large circle: Li atom; small circle: Al₂B atom)

Supplementary Figure 4 (a) The formation process of composite alloy anode materials; (b) The stress strain curve; (c) The tensile strength and the Non-Proportional Extensional Strength.

Supplementary Figure 5 (a) The XRD patterns of the Li-Al₂Y sample; (b) The SEM image for the surface of Li-Al₂Y alloy material after etching.

Supplementary Figure 6 (a) and (b) the surface of Li-3Al-1Yb alloy electrode materials from various areas.

Supplementary Figure 7 Scanning electron microscopy (SEM) images for metallic Li anode material: (a) stripping and (b) platting at 0.5 mA cm⁻².

Supplementary Figure 8Large-scale scanning electron microscopy (SEM) images for metallic Li anode: stripping for (a) 0.5 mAh cm⁻², (b) 1 mAh cm⁻² and (c) 3 mAh cm⁻²; plating for (d) 0.5 mAh cm⁻², (e) 1 mAh cm⁻² and (f) 3 mAh cm⁻².

Supplementary Figure 9 Large-scale scanning electron microscopy (SEM) images for Li-3Al-1Yb alloy anode: stripping for (a) 0.5 mAh cm⁻², (b) 1 mAh cm⁻² and (c) 3 mAh cm⁻²; plating for (d) 0.5 mAh cm⁻², (e) 1 mAh cm⁻² and (f) 3 mAh cm⁻².

Supplementary Figure 10 Scanning electron microscopy (SEM) images: stripped 3 mAh cm⁻² for (a) Li and (d) Li-3Al-1Yb at 0.5 mA cm⁻²; plated for (b, c) Li and (e, f) Li-3Al-1Yb at 0.5 mA cm⁻².

Supplementary Figure 11 the cycle performance at the current density of 4 mA cm⁻² (plating/stripping capacity: 4 mAh cm⁻²) for bare Li and Li-3Al-1Yb anode in Li||Li symmetrical cell systems.

Supplementary Figure 12 The impedance spectroscopy of the Li||NCM811 and Li-3Al-1Yb||NCM811 at 5th cycle and 100th cycle.

Supplementary Figure 13 Nyquist plots of the Li||NCM811 and Li-3Al-1Yb||NCM811 at 5th cycle and 100th cycle after fitting.

Supplementary Figure S14 Cycling performances of pouch cells (Li||NCM811 and Li-3Al-1Yb||NCM811) at 0.5 C.

Compound	Crystal	Lattice parameters	
Compound	structure	а	с
Al ₂ Yb	fcc	0.788	0.788
Al_2Y	fcc	0.786	0.786
AlB ₂	hex	0.301	0.326
β-Li	bcc	0.351	0.351

Table S1 the crystal structure, lattice parameters and atomic radius of Al_2Yb , Al_2Y , AlB_2 and β -Li.

				·····					
	(100)Al ₂ Yb//(100)Li			(100)Al ₂ Yb//(110)Li			(100)Al ₂ Yb//(111)Li		
[uvw]Al ₂ Yb	[001]	[011]	[010]	[001]	[011]	[010]	[001]	[011]	[010]
<i>d</i> [uvw]Li	[001]	[011]	[010]	[110]	[111]	[001]	[101]	[211]	[110]
$[uvw]Al_2Yb$	0.788	0.557	0.788	0.788	0.557	0.788	0.788	0.557	0.788
d[uvw]Li	0.351	0.496	0.351	0.496	0.304	0.351	0.496	0.860	0.496
heta	0	0	0	0	10°	0	30°	15°	0
δ		87.10%			87.94%			44.63%	

Table S2 the disregistries of matched crystal plane between $(100)Al_2Yb$ with $(100)\beta$ -Li, $(110)\beta$ -Li and $(111)\beta$ -Li.

				<u> </u>					
	(110)Al ₂ Yb//(100)Li			(110)Al ₂ Yb//(110)Li			(110)Al ₂ Yb//(111)Li		
[uvw]Al ₂ Yb	[110]	[111]	[001]	[110]	[111]	[001]	[110]	[111]	[001]
d[uvw]Li	[001]	[011]	[010]	[110]	[111]	[001]	[101]	[211]	[110]
[uvw]Al ₂ Yb	0.557	1.365	0.788	0.557	1.365	0.788	0.557	1.365	0.788
d[uvw]Li	0.351	0.496	0.351	0.496	0.304	0.351	0.496	0.860	0.496
heta	0	10°	0	0	0	0	30°	25°	0
δ		118.07%			161.94%			35.16%	

Table S3 the disregistries of matched crystal plane between $(110)Al_2Yb$ with $(100)\beta$ -Li, $(110)\beta$ -Li and $(111)\beta$ -Li.

				()					
	(111)Al ₂ Yb//(100)Li			(111)Al ₂ Yb//(110)Li			(111)Al ₂ Yb//(111)Li		
[uvw]Al ₂ Yb	[101]	[211]	[110]	[101]	[211]	[110]	[101]	[211]	[110]
d[uvw]Li	[001]	[011]	[010]	[110]	[111]	[001]	[101]	[211]	[110]
[uvw]Al ₂ Yb	0.557	0.965	0.557	0.557	0.965	0.557	0.557	0.965	0.557
d[uvw]Li	0.351	0.496	0.351	0.496	0.304	0.351	0.496	0.860	0.496
heta	30°	15°	0	30°	25°	0	0	0	0
δ		61.34%			83.04%			12.27%	

Table S4 the disregistries of matched crystal plane between (111)Al₂Yb with (100) β -Li, (110) β -Liand (111) β -Li.

				()	-				
	(100)Al ₂ Y//(100)Li			(100)Al ₂ Y//(110)Li			(100)Al ₂ Y//(111)Li		
[uvw]Al ₂ Y	[001]	[011]	[010]	[001]	[011]	[010]	[001]	[011]	[010]
d[uvw]Li	[001]	[011]	[010]	[110]	[111]	[001]	[101]	[211]	[110]
[uvw]Al ₂ Y	0.786	0.556	0.786	0.786	0.556	0.786	0.786	0.556	0.786
d[uvw]Li	0.351	0.496	0.351	0.496	0.304	0.351	0.496	0.860	0.496
heta	0	0	0	0	10°	0	30°	15°	0
δ		86.65%			87.44%			44.44%	

Table S5 the disregistries of matched crystal plane between $(100)Al_2Y$ with $(100)\beta$ -Li, $(110)\beta$ -Li and $(111)\beta$ -Li.

					-				
	(110)Al ₂ Y//(100)Li			(110)Al ₂ Y//(110)Li			(110)Al ₂ Y//(111)Li		
[uvw]Al2Y	[110]	[111]	[001]	[110]	[111]	[001]	[110]	[111]	[001]
d[uvw]Li	[001]	[011]	[010]	[110]	[111]	[001]	[101]	[211]	[110]
[uvw]Al2Y	0.556	1.361	0.786	0.556	1.361	0.786	0.556	1.361	0.786
d[uvw]Li	0.351	0.496	0.351	0.496	0.304	0.351	0.496	0.860	0.496
θ	0	10°	0	0	0	0	30°	25°	0
δ		117.56%			161.24%			34.89%	

Table S6 the disregistries of matched crystal plane between (110)Al₂Y with (100) β -Li, (110) β -Li and (111) β -Li.

				()						
	(111	(111)Al ₂ Y//(100)Li			(111)Al ₂ Y//(110)Li			(111)Al ₂ Y//(111)Li		
[uvw]Al ₂ Y	[101]	[211]	[110]	[101]	[211]	[110]	[101]	[211]	[110]	
d[uvw]Li	[001]	[011]	[010]	[110]	[111]	[001]	[101]	[211]	[110]	
$[uvw]Al_2Y$	0.556	0.963	0.556	0.556	0.963	0.556	0.556	0.963	0.556	
d[uvw]Li	0.351	0.496	0.351	0.496	0.304	0.351	0.496	0.860	0.496	
θ	30°	15°	0	30°	25°	0	0	0	0	
δ		61.07%			82.80%			12.06%		

Table S7 the disregistries of matched crystal plane between (111)Al₂Y with (100) β -Li, (110) β -Li and (111) β -Li.

	(100)AlB ₂ //(100)Li (100)AlB ₂ //(110)Li			(100)AlB ₂ //(111)Li						
[uvw]AlB ₂	[0001]	[110]	[20]	[0001]	[110]	[20]	[0001]	[110]	[20]	
<i>d</i> [uvw]Li	[001]	[011]	[010]	[110]	[111]	[001]	[101]	[211]	[110]	
[uvw]AlB ₂	0.326	0.444	0.301	0.326	0.444	0.301	0.326	0.444	0.301	
d[uvw]Li	0.351	0.496	0.351	0.496	0.304	0.351	0.496	0.860	0.496	
heta	0	2.3°	0	0	7.4°	0	30°	17.3°	0	
δ		10.64%			31.18%			44.36%		

Table S8 the disregistries of matched crystal plane between $(100)AlB_2$ with $(100)\beta$ -Li, $(110)\beta$ -Li and $(111)\beta$ -Li.

Table S9 the disregistries of matched crystal plane between $(0001)AlB_2$ with $(100)\beta$ -Li, $(110)\beta$ -Li

	(000	(0001)AlB ₂ //(100)Li (0001)AlB ₂ //(110)Li			l0)Li	(0001)AlB ₂ //(111)Li			
[uvw]AlB ₂	[110]	[20]	[20]	[110]	[20]	[20]	[110]	[20]	[20]
d[uvw]Li	[001]	[011]	[010]	[110]	[111]	[001]	[101]	[211]	[110]
[uvw]AlB ₂	0.301	0.521	0.301	0.301	0.521	0.301	0.301	0.521	0.301
d[uvw]Li	0.351	0.496	0.351	0.496	0.304	0.351	0.496	0.860	0.496
θ	30°	15°	0	30°	24.7°	0	0	0	0
δ		13.87%			39.13%			39.35%	

and (111)β-Li.

 Table S10 Cell parameters of the LilNCM811 pouch cell.

	Parameter	Value
NCM811 cathode	Discharge capacity	200 mAh g ⁻¹
camode	Active naterial loading	95.94%
	Area weight (each side)	14 mg cm ⁻²
	Area capacity (each side)	2.8 mAh cm ⁻²
	Electrode desity	3.41 g cm ⁻³
	Electrode thickness (each side)	48.3 µm
Al foil	Thickness	12 µm
Li anode	Specific capacity	3860 mAh g ⁻¹
	Anode thickness (each side)	25 µm
	Area capacity (each side)	5.15 mAh cm ⁻²
	N/P ratio	1.84
Electrolyte	E/C ratio	2.5 g Ah ⁻¹
Separator	Thickness	16 µm
	Average voltage	3.8 V
	Capacity	≥4.1Ah
	Energy density	\geq 390 Wh kg ⁻¹

Cathode mass = (14 * 7.7 * 9.7 * 2 * 10 / 1000) g = 20.91 g Anode mass = (0.534 * 7.7 * 9.7 * 2 * 25 * 10 / 10000) g = 1.99 g Al foil mass = (2.7 * 7.7 * 9.7 * 12 * 10 / 10000) g = 2.41 g Separator mass = (1.43 * 16 * 7.7 * 9.7 * 10 / 10000) g = 1.70 g Electrolyte mass = (4.15 * 2.5) g = 10.37 g Package foil mass = (0.0181 * 8 * 10 * 2) g = 2.89 g The total mass = 40.27 g The total energy density = (4.148 * 3.8 / 40.27) * 1000 = 391.6 Wh kg⁻¹

Table S11 the fitting results of Nyquist plots for Li||NCM811 and Li-3Al-1Yb||NCM811 at 5th

	cycle and Tooth cycle.									
Sample	R_e (ohm)	$R_{sf}(ohm)$	R_{ct} (ohm)							
Li-5th cycle	5.434	1.372	46.4							
Li-100th cycle	29.61	27.91	122.6							
Li-3Al-1Yb-5th cycle	5.967	2.553	38.37							
Li-3Al-1Yb-100th cycle	6.17	2.907	40.76							

cycle and 100th cycle.