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Supplementary Notes 

Supplementary Note 1. The raw material cost and average voltage of some typical Lattice Oxygen Redox 

(LOR) active materials are counted in Figure N1. The average charge voltage is generally higher than the 

average discharge voltage, indicating energy loss in the process of energy storage. The corresponding cost 

of the positive electrode in charge is universally lower than that in discharge. P2/P3 Na0.6Li0.2Mn0.8O2 has 

a high average discharge voltage owe to the maintenance of the plateau voltage in discharge. The increase 

of the discharge voltage is crucial for minimizing expenses and preserving energy sustainability.  

 

Figure N1. Average operating voltage and raw positive electrode cost of representative 3d transition metal 

oxide positive electrode with lattice oxygen redox reactions. The collected cut-off voltage in discharge is 2 

V or 2.5 V. The circle point is the data in charge, and the triangle point represents the data in discharge. The 

data obtained from P-type Na-deficient transition metal oxides are represented by the red point[1-16]. 

  



Supplementary Note 2. Voltage hysteresis as a general electrochemistry behavior is usually discussed as 

a global system throughout the whole voltage range, however, the electrochemistry curve shown in Figure 

1 in various voltage ranges and the underlying causes are diverse. For better understanding the 

electrochemistry behavior, further subdivision of voltage hysteresis is essential. Here, we divide voltage 

hysteresis in oxygen redox materials into two types plateau hysteresis and slope hysteresis without 

considering capacity loss and voltage fade for better controlling variables. The charge curves in Figure 1 

(a)-(c) are High Voltage Plateau (HVP), and the discharge curves show HVP, slope and S shape. The second 

type of plateau hysteresis is shown in Figure 1 (d)-(f). The shape of the charge curve is S, and the HVP 

corresponds to the redox couple of O2-/O2
n-. The hysteresis is still obvious. As shown in Table N1, most 

materials belong to the type in Figure 1 (d). The last type is slope hysteresis, in which the redox couples of 

O2-/O2
n- and Ma+/Mb+ are on the same slope. 



Table N1 The type of voltage hysteresis and corresponding typical cathode. Each cathode belongs to one 
kind of figure in Figure 1. 

 Hysteresis type Typical Cathode Corresponding figure Ref. 

1 No hysteresis Na0.6Li0.2Mn0.8O2 Figure 1 (a) [17] 

2 

Plateau hysteresis 

Na2/3[Mg0.28Mn0.72]O2 

Figure 1 (b) 

[11] 

3 Na0.72Li0.24Mn0.76O2 [13] 

4 Na2/3[Mn7/9Zn2/9]O2 [2] 

5 Na0.66Li0.22Ti0.15Mn0.63O2 [3] 

6 Li1.17Ti0.58Ni0.25O2 Figure 1 (c) [8] 

7 
No hysteresis 

Na2IrO3 
Figure 1 (d) 

[18] 

8 Na2Mn3O7 [12] 

9 

Plateau hysteresis 

Li2Ru0.75Sn0.25O3 

Figure 1 (e) 

[19] 

10 Li2Ir0.75Sn0.25O3 [20] 

11 β-Li2IrO3 [21] 

12 Li1.20Mn0.54Co0.13Ni0.13O2 [6] 

13 Li[Li0.2Ni0.2Mn0.6]O2 [16] 

14 Na2RuO3 [22] 

15 Li1.17Ti0.33Fe0.5O2 Figure 1 (f) [9] 

16 

Slope hysteresis 

Na2Ru0.75Sn0.25O3 

Figure 1 (h) 

[23] 

17 Li1.90Mn0.95O2.05F0.95 [5] 

18 Li1.12-yNi0.17Mn0.71O2 [4] 

 
 
  



Supplementary Figures 

 

Supplementary Figure 1. Rietveld refinement of the neutron powder diffraction pattern of pristine P2-

Na0.6[Li0.2Mn0.8]O2. 
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Supplementary Figure 2. Voltage curves of the desodiation and (de)lithiation of P2-NLMO. Red and black 

curves indicate Na and Li (de)intercalation, respectively. Points 1~8 represent the different insertion states 

for ex-situ characterization. 

 

  



 

Supplementary Figure 3. Electrochemical curve for (de)sodiation or (de)lithiation of P3-NLMO. a, 30 

cycles for (de)sodiation of P3-NLMO. b, 30 cycles for (de)lithiation of P3-NLMO. c, Average voltage decay 

of P3-NLMO in Na cell and Li cell. 

 

 

  



 

 

Supplementary Figure 4. Magnetic susceptibility versus temperature for the a, Super-P and b, PTFE. As 

the signal is poor, the signal of the copper rod is detected explaining the existence of a diamagnetic signal. 

  



 

Supplementary Figure 5. Magnetic susceptibility and inverse magnetic susceptibility versus temperature 

for the state of P3-NLMO at Points 1-9. The red curve through the data is Curie-Weiss fitting and the green 

curve is the selected fitting point. The x-axis intercept of the red dotted line is the cw. 



 

Supplementary Figure 6. dQ/dV plots for the a, desodiation and initial lithiation and b, (de)lithiation in 

Li and Na cells  



 

Supplementary Figure 7. The in situ XRD patterns collected during the first charge in Na cell and the first 

discharge and charge in Li cell for P2-NLMO. 

  



 

Supplementary Figure 8. High-angel annular dark-field (HAADF) images along the [100] for P3-NLMO 

at Point 1,2,3,4,5,7. Scale bars, 2nm.  

  



 

Supplementary Figure 9. Voltage curves of the desodiation and (de)lithiation of P3-NLMO between 4V 

and 4.8 V. Red and black curves indicate Na and Li (de)intercalation, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

Supplementary Figure 10. a, X-ray diffraction pattern of sample holder and b, sample holder and plastic 

wraps. Revealing the amorphous wide peak from the sample holder and the sharp peaks at 21.5°, 23.8° and 

36.3° from plastic wraps. 

 

  



 
Supplementary Figure 11. The ex situ XRD patterns of P3-NLMO at different states from 10° to 80° 

tagged by Points 1~9. 

 

  



 
Supplementary Figure 12. The ex situ XRD patterns of P2-NLMO at different states from 10° to 80° 

tagged by Points 1~8. 

 

 

  



 

Supplementary Figure 13. a, (214) b, (223) and c, (213) in P3-NLMO; d, (214) e, (223) and f, (213) in 

O3-LLMO; g, (211) and h, (022) in O3-LLMO. Revealing that the (214), (223) and (213) crystal faces 

pass through alkali metal ions in the TM layer of P3-NLMO, however, not in the TM layer of O3-LLMO. 

Correspondingly, the alkali metal ions in the TM layer are passed through by (211) and (022). 

  



 

Supplementary Figure 14. a, The high-angle annular dark-field-scanning transmission electron 

microscope (HAADF-STEM) images and b, Corresponding annular bright-field (ABF)-STEM images at 

Point 5 (O3-Na0.1Lix [Li0.2Mn0.8]O2).  

 

  



 

Supplementary Figure 15. Ex situ a, O K-edge TEY-XAS spectra and b, Mn L2,3-edge TEY-XAS spectra 

of P2-NLMO at different states from Point 1 to Point 8.  

  



Supplementary Tables 

Supplementary Table 1. The molecular formula from ICP results, the effective moment eff and the Curie-

Weiss temperature cw from Curie-Weiss law fit in the temperature range of 300-380 K at different SOC of 

P3-NLMO (Point 1-8). 

Point molecular formula eff (B) cw (K) 

1 Na0.587Li0.208Mn0.8O2 3.697 -13.07 

2 Na0.309Li0.185Mn0.8O2 3.842 -85.55 

3 Na0.233Li0.407Mn0.8O2 3.754 -53.57 

4 Na0.102Li0.642Mn0.8O2 3.735 -49.47 

5 Na0.102Li1.020Mn0.8O2 4.551 -161.59 

6 Na0.124Li0.740Mn0.8O2 3.765 -39.52 

7 Na0.076Li0.381Mn0.8O2 4.297 -97.99 

8 Na0.092Li1.033Mn0.8O2 4.376 -108.38 

 

  



Supplementary Table 2. The research summary of doping at alkali metal site. 

Materials Doped ion  Doped Method Reference 

NaxCayCoO2 
(0.45≤x≤0.64, 0.02≤y≤0.10) Ca2+ Dry media reaction [24] 

Na0.7Mg0.05[Mn0.6Ni0.2Mg0.15]O2 Mg2+ Dry media reaction [25] 

Li0.99M0.01Ni0.8Co0.1Mn0.1O2  
(M=Li, Na, K, Rb) 

Li+, Na+, K+, Rb+ 
Dry media reaction  
(co-precipitation) 

[26] 

(Li0.995Mg0.005)NiO2 Mg2+ 
Dry media reaction  
(co-precipitation) 

[27] 

Li0.9Mg0.05CoO2 Mg2+ Dry media reaction [28] 

Na0.98Ca0.01[Ni0.5Mn0.5]O2 Ca2+ 
Dry media reaction  
(co-precipitation) 

[29] 

[Na0.67Zn0.05]Ni0.18Cu0.1Mn0.67O2 Zn2+ 
Dry media reaction  

(sol-gel method) 
[30] 

Na0.67-xCaxNi0.33Mn0.67O2-2xF2x Ca2+ Dry media reaction [31] 

NaxK0.08Ni0.2Mn0.8O2 K+ 

Dry media reaction 
& 

Electrochemical 
intercalation reaction 

[32] 

Na0.524Mg0.146Ni0.15Fe0.20Mn0.65F0.05O1.95 Mg2+ 
Electrochemical 

intercalation reaction 
[33] 

Na0.7Li0.03[Mg0.15Li0.07Mn0.75]O2 Li+ Dry media reaction [34] 

LiNi0.95Al0.04Mg0.01O2 Mg2+ 
Dry media reaction  
(co-precipitation) 

[35] 

Li1.1(Ni0.21Mn0.65Al0.04)O2 TM 

Dry media reaction 
& 

Chemical intercalation 
reaction 

[36] 

β-AxV2O5 (A = Na, K) Na+, K+ Chemical pre-intercalation [37] 

  



Supplementary Table 3. The ions with the same effective ion radius as the Na+ for a given coordination 

number[38]. 

Ion 
Number of 

coordination 
Effective ionic radius (ppm)  

Na+ 6 116 

Ag+ 6 108 

Ca2+ 6 114 

Bi3+ 6 117 
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